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ABSTRACT
Pharmaceutical and personal care
products (PPCPs) are considered
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as emerging contaminants (ECS) | mamase

in the environment due to their || Yt emenplans ("
known or suspected adverse eco- | iaraimme

logical effects and human health 'i:ﬂ"l%up(ss'y Tianglocstion

risks. Wastewater, compost, and
manure application release PPCPs s
into the agricultural soil systems. |EEE= ;A' B i i
Since the plants can take up such |= E
ECs, they are considered as a pri-
mary window of human exposure
to the PPCPs via the route of consumption of contaminated plants. This may lead to
deleterious human health effects. However, as PPCPs are of various kinds, differential
uptake and bioaccumulation in the plant have recently received research interest.
Therefore, the present article reviewed the occurrence of PPCPs as antibiotics, anti-inflam-
matory drugs, hormones, cytostatic drugs, contrast media, 3-blockers, blood lipid regula-
tors, antiepileptic drugs, antimicrobials, ultra-violet filters, preservatives, insect repellents,
and synthetic musks in the environment by assembling the literature. Moreover, plant
uptake and translocation under the realistic and greenhouse condition, and the factors
influencing the uptake and translocation through the plants are explicitly demonstrated
in this review. Also, the human risk connected with the consumption of the contami-
nated plants and the research gap areas were investigated with future perspectives.
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1. Introduction

Pharmaceuticals and Personal Care Products (PPCPs) are a group of
chemical substances that are being widely used for human health, cosmetic,

CONTACT Meththika Vithanage @ meththika@sjp.ac.lk e Ecosphere Resilience Research Center, Faculty of
Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.

© 2020 Taylor & Francis Group, LLC


http://crossmark.crossref.org/dialog/?doi=10.1080/10643389.2020.1753634&domain=pdf&date_stamp=2020-05-05
https://orcid.org/0000-0003-2923-4065
https://doi.org/10.1080/10643389.2020.1753634
http://www.tandfonline.com

2 S. KEERTHANAN ET AL.

agriculture, and veterinary purposes. They are ubiquitously found in the
water and soil environment throughout the world and have been implied
for causing deleterious effects on human and non-target organisms (Liu &
Wong, 2013; Wu et al., 2010). Recently, numerous studies have reported
the presence of PPCPs in wastewater (Yang et al., 2017), groundwater
(Balakrishna et al., 2017), surface water (Balakrishna et al., 2017), drinking
water (Odendaal et al., 2015), soil (Boxall et al., 2006) and sludge (Cortés
et al., 2013) arising from the usage of wastewater irrigation, biosolids, and
manure application to agricultural soils which may result in the uptake of
PPCPs into crops (Christou et al., 2019; Madikizela et al., 2018). Various
sources have been identified for contributing PPCPs to the environment,
including effluent from the wastewater and sewage treatment plants, house-
hold and hospital wastewater discharge, agricultural manure application,
and farming activities (Evgenidou et al., 2015; Tasho & Cho, 2016). Most
recently, the first nationwide investigation on surface water bodies in Sri
Lanka reported 41 PPCPs in the range of 5.49 and 993 ng/L in water sour-
ces that abstract drinking water for the general public (Guruge et al., 2019).

In recent years, research publications have focused their special attention
on plant uptake, translocation, and accumulation of PPCPs due to the
inability of conventional water treatment systems to remove those ECs.
Increased emphasis on biosolid and compost application to improve soil
quality and urban and rooftop farming further provided opportunities for
uptake of PPCPs by plants (Ahmed et al, 2015; Madikizela et al., 2018;
Tasho & Cho, 2016; Wu et al,, 2014; Zhang et al., 2017). Wastewater irriga-
tion may introduce the PPCPs into the agricultural farmlands. For instance,
the wastewater irrigation as a source of PPCPs loaded significant quantity
of PPCPs including carbamazepine (4.4 ng/kg), chloramphenicol (2.7 pg/
kg), gemfibrozil (0.98 pg/kg), N,N-diethyl-meta-toluamide (DEET) (0.68 pug/
kg), and caffeine (2.9 pg/kg) to the soil surface (Ma et al., 2018).

Recently, sorption, plant uptake, and metabolism of benzodiazepines by
Raphanus sativus and Beta vulgaris have been documented by Carter et al.
(2018). Moreover, Ben Mordechay et al. (2018) have presented the data on
uptake, translocation, and metabolism of carbamazepine by tomato, wheat,
and lettuce. A contemporary hydroponic study detected sulfamethoxazole
and trimethoprim at various concentrations in tomato fruit cultivated
under controlled conditions (Christou et al., 2019). Similarly, another
hydroponic study was undertaken by Chuang et al. (2019) to investigate
the uptake and translocation of PPCPs in lettuce. Furthermore, some
research articles assessed plant uptake of PPCPs (Ben Mordechay et al.,
2018; Bhalsod et al., 2018; Riemenschneider et al., 2017). For example, the
uptake, translocation, and transformation of pharmaceuticals in hydropon-
ically grown intact tomato plants have been investigated (Riemenschneider
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et al., 2017). A case study has been reported the effect of treated wastewater
and composted biosolids on plant uptake of PPCPs (Ben Mordechay et al.,
2018). The accumulation of pharmaceuticals in greenhouse lettuce have been
investigated under the overhead and soil surface irrigation with pharmaceuti-
cals contaminated water (Bhalsod et al., 2018). Further, the translocation of
PPCPs in tomato plant irrigated with reclaimed water and its human risk
was assessed under the field condition (Martinez-Piernas et al., 2019).

The dietary intake of PPCPs contaminated vegetables and fruits can
cause a potentially harmful impact on human health. The daily consump-
tion of PPCPs (especially antibiotics) contaminated vegetables can develop
antibiotic-resistant pathogens in the human body, leaving humans at high
risk of complex health complications. Further, some other medical issues,
such as a weak estrogenic activity, immediate systemic hypersensitivity
reactions, and inhibition of the enzyme responsible for the activity of the
central nervous system have also been reported (Stuart et al., 2012). The
plant uptake of PPCPs from the environment has created special attention
over a decade. Only a limited number of reviews have been published, and
the uptake data presented are limited to specific groups of PPCPs by plants
(Al-Farsi et al. 2017; Madikizela et al., 2018; Tasho & Cho, 2016; Wu et al,,
2015). These reviews are more focused on pharmaceuticals; however, lack
of data is reported on personal care products (PCPs) and, together, lack of
risk assessment data resulting in a vast knowledge gap.

Furthermore, the data on the plant uptake of personal care products
have been on track recently due to their emerging concerns in the research
area, which accounts the gap between this review and the previous works.
Although PPCPs are essential in the modern life of the human, they pose
serious environmental problems owing to their use, misuse, overuse, and
uncontrolled disposal. It is essential to feed the knowledge and sensitize the
ordinary people about the environmental implications and human health
risks arising from the usage of PPCPs. The usage and the discharge of
PPCPs into the environment have been increasing day by day with mount-
ing environmental concerns. Therefore, the present paper attempts a com-
prehensive review based on the recently published peer-reviewed review
and research articles, which reported the environmental occurrence, plant
uptake and translocation, and human risk of PPCPs. Thus, the goals of this
review are, to point out the occurrence of various groups of PPCPs in
the environment, and their uptake, translocation, and bioaccumulation in
the plant issues under the simulated greenhouse and realistic environmental
conditions. Further, the human health effects of PPCPs exposure through
ingesting the contaminated crops and vegetables are discussed here.
Besides, the analysis methods to determine the PPCPs in the plant tissues
and the current issues and future scope also discussed.
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2. Types of pharmaceutical and personal care products

PPCPs including pharmaceutical products, for instance, antibiotics, anti-
inflammatory drugs, hormones, cytostatic drugs, contrast media, B-blockers,
blood lipid regulators, and antiepileptic drugs, and personal care products
(PCPs), such as antimicrobials, ultra-violet filters, preservatives, insect
repellents, and synthetic musks are the collection of chemical substances
used in daily activities of human life (Liu & Wong, 2013). Antibiotics are
being used as animal and human therapeutic medicines for the prevention
and treatment of bacterial diseases; hence these are biologically active com-
pounds (Pan & Chu, 2017). Recently antibiotics are being considered as
emerging contaminants in the environment, and it is frequently reported
because of the fact that the occurrence of antibiotics in the environment is
a major threat for human and animal health as it may often lead to the
development of antibiotic-resistant bacteria. These are mainly classified
into many categories including tetracyclines (tetracycline, oxytetracycline,
and chlortetracycline), sulfonamides (sulfachlorpyridazine, sulfadimidine,
sulfadiazine, etc.), quinolone (ciprofloxacin, enrofloxacin, etc.), macrolide
(erythromycin, tylosin, etc.), trimethoprim, thiamphenicol, chlorampheni-
col, lincomycin, and clindamycin (Jiang et al., 2014; Pan & Chu, 2017).

Anti-inflammatory drugs (such as Ibuprofen, Diclofenac, Acetaminophen,
Indomethacin Aspirin, Naproxen, Nimesulide, Phenazone, and Ketoprofen)
are also widely used as pharmaceutical products, and they are frequently
found in the environment due to their unwarranted use (Lonappan et al,
2016; Veras et al,, 2019). Further, the synthetic hormones (for instance, ethi-
nylestradiol) (Gogoi et al., 2018), cytostatic drugs (examples, ifosfamide, and
cyclophosphamide) (Liu & Wong, 2013), contrast media (iopromide, iome-
prol, and diatrizoate) (Wang & Wang, 2016) are widely used pharmaceutical
products detected in the environment. The B-blockers, including atenolol,
metoprolol, nadolol, pindolol, acebutolol, and propranolol prescribed world-
wide, also detected in the environment frequently. Moreover, the blood lipid
regulators (such as Gemfibrozil) (Yang et al., 2017), antiepileptic drugs (such
as Dilantin, Primidone, and Carbamazepine) (Madikizela et al., 2018), stimu-
lant drugs (caffeine) also observed in the environment from ten of pg/L to
thousands of ng/L.

The PPCPs including antimicrobials (triclocarban and triclosan), UV-filters
(Oxybenzone, Enzacamene, and Sulisobenzone) (Aparicio et al.,, 2018; Ebele
et al, 2017) are used in the daily lifespan to improve the quality of life.
These reported in the environment due to the lack of technology to remove
from the wastewater. Moreover, the preservatives (butylparaben, methylpara-
ben, and propylparaben) (Yang et al., 2017), are widely applied to preserve
the cosmetics, food, and pharmaceutical products also detected in the envir-
onment. Also, the insect repellents (DEET) (Murray et al., 2010), synthetic
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musk (divided into nitro musks and polycyclic musks; polycyclic musks such
as galaxolide (HHCB) being applied more frequently in a recent year than
nitro musks) found in the environment in a range of few pg/L to ng/L.
Another widely available PCPs is plasticizers, which are primarily used in cos-
metics, shampoo, hair spray and gel, and plastic bottled water. Phthalate com-
pounds such as bis(2-ethylhexyl)phthalate (BEPH) and di-n-butylphthalate
(DBP) are the mostly used plasticizers (Saeidnia & Abdollahi, 2013). The arti-
ficial sweeteners, for, instance sucralose, saccharin, and acesulfame are
another type of PCPs which are utilized to enhance the taste food during the
food manufacturing process (Subedi et al., 2015). The perfluoroalkyl substan-
ces (PFASs) such as perfluorooctanesulfonate (PFOS), perfluorooctanoate
(PFOA), perfluoropentanoate (PFPeA), perfluorohexanoate (PFHxA), per-
fluorodecanoate (PFDA), etc. are used as a surface activator used in the pack-
aging, textiles, and paper industries, household-cleaning products, agricultural
activities, cosmetic products, medical devices, etc. due to their hydrophilic
and hydrophobic behaviors (Li et al., 2020; Shigei et al., 2020). The types of
PPCPs and their physicochemical properties are displayed in Table 1.

3. Occurrence and persistence of PPCPs in the environment

The water and soil system are the critical reservoirs of PPCPs in the envir-
onment. As demonstrated in Figure 1, the introduction of PPCPs into the
environment occurs through domestic and commercial sources. The
domestic sources include landfills of urban solids, disposal of household
wastes, animals, and human excretions (Madikizela et al., 2018; Yang et al,,
2017), agricultural application of PPCPs laden manure. The commercial
source includes effluent of water and sewage treatment plants, drug manu-
facturing processes, pharmaceutical companies (Tasho & Cho, 2016), and
hospital wastes and effluents (Evgenidou et al., 2015), which may add an
enormous quantity of PPCPs into the aquatic and soil ecosystem. The sew-
age treatment plants and water treatment plants are the primary pathway
that introduces the PPCPs in the environment. Recently different types of
PPCPs, including antibiotics, anti-inflammatory drugs, P-blockers, hor-
mones, lipid regulators, were detected in the effluent from the sewage and
water treatment plants (Hong et al., 2019; Tarpani & Azapagic, 2018; Yang
et al., 2017). Moreover, PPCPs are frequently entered into bodies of
humans and animals and are subjected to metabolic transformations.
However, they do not undergo the complete metabolism, and are, there-
fore, excreted to the environment as either metabolites or unchanged form
of PPCPs through the urine and feces (Tasho & Cho, 2016; Zhou et al,
2013). Furthermore, usage of life enhancement products, such as cosmetics,
detergents, soap, sun-creams, toothpaste, perfumes, etc. leads to the
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Table 1. Physiochemical profile of selected PPCPs.

Molecular Chemical Degradation Solubility log
PPCPs weight, g/mol formula half-life mg/L Kow® pka
Antibiotics
Tetracycline® 44443 C55H24N504 19 days™ 231 -1.3 33
Oxytetracycline® 460.43 CyH24N509 17 days* 313 -0.9 3.27
Chlortetracycline® 478.88 C5,H53CIN,Og 18 days™ 288 —0.629 -
Sulfachlorpyridazine® 284.72 Cy0HsCIN,O5S - 133 1.30" -
Sulfamethazine© 278.33 CqH14N40,55 576 h" 1500 0.89 7.59
Sulfamethoxazole® 253.28 Cq0H171N5055 2 days" 610 0.89" 5.7°
Sulfadiazine® 250.28 Cy0H10N,4055 2h 77 0.39" 6.36
Ciprofloxacin® 331.34 Cy7HgFN303 378h" <1mg/mL 0.28" 6.09
Enrofloxacin® 359.40 Ci9H2,FN303 77 days* 53.9 pg/mL? 0.44" -
Difloxacin® 399.40 Cy1H19F2N303 06 days* - 0.894 -
Flumequine® 261.25 CiaH12FNO3 - - 169 6.59
Norfloxacin® 319.33 Cy6H18FN305 363 h" 1.78E 4 005 0.46" 6.34, 8.759
Ofloxacin® 361.37 CygH20FN304 06 days* 283 —0.39" 5.97, 9.281
Pefloxacin® 33336 Cy7H20FN305 - 114 0.27 -
Roxithromycin® 837.05 C41H76N,045 2.4-10 days"” 0.0189 2.75" -
Tylosin® 916.10 CagH77NO;5 - - 1.639 7.73¢
Erythromycin® 733.93 C57HesNO 3 2.4-10 days"” 2000 3.069 8.88
Clarithromycin® 747.95 C3gHeoNO13 - 0.33 3.16" 8.99
Trimethoprim’ 290.32 Ci4H18N403 HE RV 400 0.79" 7.12
Thiamphenicol® 356.22 Cq,H15CILNOSS - - —0.27¢ -
Chloramphenicol® 323.13 Cy71H72C15N,05 - 2500 1.14 -
Lincomycin® 406.54 C1gH34N,065 - 927" 0.56 7.69
CIindamycinh 42498 C,gH33CIN,05S - 30.6 2.16 7.69
Anti-inflammatory drugs
Ibuprofen’ 206.28 Cy3Hi50, 01 day" 21 3.97 5.3
Diclofenac' ) 296.15 Cyi4H1:CIL,NO, 3 or 4 days" 237 4.51 415
Acetaminophen' 151.16 CgHoNO, 674h" 1.4E 4 004 0.91 9.389
Aspirin' ) 180.16 CoHgO4 - 4600 1.18 3.5
Indomethacin' 357.79 Cy9H16CINO, - 0.937 4.27 4.5
Naproxen' 230.26 Ci4H140;3 HRV 15.9 3.18 415
Nimesulide' 308.31 Cy3H4,N,055 - - 2.6 -
Phenazone' 188.23 Ci7H12N0 - 5.19E + 004 0.38 14
Ketoprofen' 254.28 Ci6H1403 o 51 3.12 4.45
Synthetic hormone
Ethinylestradiol 296.40 Cy0H240, - 1.3 3.67 1.7¢
Stimulant drug
Caffeine 194.19 CgH1oN40; o 2.179/100mL  —0.07 14
Cytostatic drugs
Ifosfamide® 261.09 CyH;5C1,N,0,P - 3780 0.86¢ -
Cyclophosphamidek 261.09 C;Hq5CILNL,0,P - 1-59/100 mL 0.8 -
Contrast media
lopromide' 791.11 CygHa413N505 - - 2059 >106'
lomeprol' 777.09 Cy7H2,15N50¢ - - —2.79% >11.3"
Diatrizoate' 613.91 Cy1HolsN,04 - - 33 1.13, 7.959
f-blockers
Atenolol' 266.34 Cy4H25N,03 HRV 1.33E 4 004 0.16 9.6
Metoprolol 267.36 Cy5H,5NO; 861h" - 2.15 9.7
Nadolol 309.40 Cy7H;NO, 2 or 3 days" 8330 0.81 9.67
Pindolol' _ 248.32 Cy4H20N>0, - 7880 1.75 9.25
Acebutolol' 336.43 CigH28N504 - 259 1.71 -
Propranolol 259.34 Cy6H27NO, 255h" 61.7 3.48 9.42
Sotalol' 272.36 C,H0N,05S - 5510 0.249 -
Blood lipid regulators
Gemfibrozil® 250.33 Cy5H550;5 4 or 3 days" 10 mg/mL 34 459
Antiepileptic drugs
Dilantin® 252.27 Cy5H,,N50, - 32 247 8.33
Primidone® 218.25 Cy,H14N50, - 500 0.91 12.39
Carbamazepine® 236.27 Cq5Hq15N,0 ok v 17.7 0.91 13.99
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Molecular Chemical Degradation Solubility log
PPCPs weight, g/mol formula half-life mg/L Kow® pka
Antimicrobials
Triclocarban' 315.58 Cy3HsCIsN,0 *xY Insoluble 4349 1279
Triclosan' 289.54 C45H,Cl150, 866 h" - 4.769 7.9
UV-Filters
Oxybenzone™ 228.24 Ci4H1203 - - 3.79 7.19
Sulisobenzone™ 308.30 Cq4H1,06S - 10 ug/mL 0379 —24,76°
Enzacamene” 25437 CygH2,0 - Poorly soluble -
Preservatives
Propylparaben® 180.20 CioH1203 - - 3.049 8.59
Butylparaben? 194.23 Cq11H1405 - - 3.579 8.479
Methylparaben® 152.15 CgHsO03 - - 1.969 8.59
Insect repellants
DEET® 191.27 Cy,Hy7NO - - 2.189 -
HHCBP 258.419 CigHz603 - 1.759 5.907 -
Plasticizer
BEPH 390.60 Co4H380,4 - 0.279 - -
DBP 28237 Ci6H2204 - - - -
Artificial sweeteners
Sucralose 397.60 Cy5Hq9C1305 - 227009 —1.009 -
Saccharine 183.19 C;HsNO5S - 40007 0.919 1.319
Acesulfame 163.15 C4H5NO,S - 270g/L9 —1.339 2.09
Surface activators (PFASs)
PFOS 499.09 CgF17503 - - - 0.14
PFOA 413.08 C;F15C0Oy - - - —0.21
PFPeA 263.05 C4FoCOy - - - —0.10
PFHxA 313.06 CsF1,COy - - - -0.17
PFDA 513.10 CoF15C0Oy - - - —0.22
a: (Madikizela et al., 2018); b: (Lee et al., 2019), c: (Prosser & Sibley, 2015), d: (Jiang et al., 2014), e: (Xie et al.,

2019), f: (Kumar et al., 2019), g: (Yang et al., 2017), h: (Subedi et al., 2014), i: (Wang & Wang, 2016), j: (Gogoi
et al., 2018), k: (Liu & Wong, 2013), I: (Colon & Toor, 2016), m: (Aparicio et al., 2018) n: (Ebele et al., 2017) o:
(Zhang et al., 2016) p: (Zeng et al., 2007) q: https://pubchem.ncbi.nlm.nih.gov r: (Liu et al., 2017), s: https://
www.drugbank.ca/, t: (Riemenschneider et al., 2016), u: (Biel-Maeso et al., 2019), v: (Baena-Nogueras et al.,
2017), w: (Batchu et al., 2014), x: (Liu et al., 2019), y: (Li & Zhang, 2010), ** No degradation.
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persistence of personal care products into the environment (Yang et al,
2017). Moreover, the improper disposal of unused and expired PPCPs such
as medicines and cosmetics products in landfills may introduce them into
the land and water bodies (Al-Farsi et al.,, 2017). Finally, the stability and
environmental metabolism of PPCPs are other essential factors that can
regulate the occurrence and functional states of PPCPs in the environment
(Al-Farsi et al., 2017). The state of the knowledge on the existence of
selected PPCPs in the environment is presented in Table 2.

The assessment of PPCPs persistence is the most critical aspect which
helps to understand the fate of PPCPs in the environment. The persistence
of PPCPs in the environment is governed by many environmental facets,
for instance, biodegradation, photolysis, redox reactions, and hydrolysis
(Yamamoto et al., 2009). The persistence of PPCPs in the environment
depends on the environmental conditions, such as temperature, sunlight
exposure, microbial activity, redox status and the medium (soil/sediment/
air/water) (Bu et al., 2016). Usually, the persistence of PPCPs is determined
by the respective half-life of the individual compound in the medium. The
half-lives of chlortetracycline in soil have been reported as >30days. The
half-life of oxytetracycline has been reported as 150days in the marine
sediment. The half-lives of fluoroquinolones and sulfonamides in sediment
have been reported >30, and >40 days, respectively. A minimum degrad-
ation of ciprofloxacin after 40 days exposure to the environment has also
been reported (Brooks et al., 2008). The half-lives of naproxen, bisphenol
A, ibuprofen, clofibric acid, diclofenac, and triclosan vary within the
range of 5.68-16.82, 0.81-5.5, 0.91-6.09, 4.52-18.48, 3.07-20.44, and
12.65-15.68 days, respectively, in four types of agricultural soil (Xu et al.,
2009). Similarly, the aerobic biodegradation of 13 PPCPs including sulfa-
methoxazole, gemfibrozil, carbamazepine, and sulfamethizole in soils with
30days incubation was investigated by Biel-Maeso et al. (2019), and 12
PPCPs except carbamazepine were reported as biodegraded in the range of
36-100% with half-lives range 1-30 days, while carbamazepine behaved as a
recalcitrant with no biodegradative decay after 30days incubation (Biel-
Maeso et al., 2019). The half-life of a few PPCPs is provided in Table 1.
However, the persistence of all groups of PPCPs in the environment is not
well understood.

4. Uptake of PPCPs by plants

Since the PPCPs are frequently encumbered into the environment through
many pathways as already elaborated in Figure 1, the uptake of PPCPs by
the plants is widespread which has been recently reported by many
researchers (Carter et al,, 2018; Knight et al., 2018). This review presents
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Categories

of PPCPs Compounds Country Source Quantity References

Antibiotics Tetracycline Spain Manure 0.9 mg/kg (Conde-Cid et al., 2018)

Oxytetracycline Spain Manure 28 mg/kg (Conde-Cid et al., 2018)
Chlortetracycline Spain Manure 4.0mg/kg (Conde-Cid et al., 2018)
Sulfachloropyridazine Jordan WWTP influent  <0.005pg/L  (Al-Mashagbeh et al., 2019)
Sulfamethazine China Soil 0.11 pg/kg (Liu et al., 2020)
Sulfamethoxazole China Soil 1.31 png/kg (Liu et al., 2020)
Sulfadiazine Bangladesh River water 0.58 ng/L (Hossain et al., 2018)
Ciprofloxacin Sri Lanka  Surface water  36.2ng/L (Guruge et al., 2019)
Enrofloxacin Vietnam Wastewater 2869 ng/L (Tran et al., 2019)
Difloxacin Argentina  wastewater 14.2 pg/L (Teglia et al., 2019)
Flumequine France WWTP influent <4.6 ng/L (Miossec et al., 2019)
Norfloxacin France WWTP influent <3.4ng/L (Miossec et al., 2019)
Ofloxacin Vietnam Wastewater 2867 ng/L (Tran et al., 2019)
Pefloxacin China Wastewater 0.127ng/mL  (Wang et al., 2019)
Roxithromycin Sri Lanka  Surface water  0.63 ng/L (Guruge et al., 2019)
Tylosin Bangladesh River water 16.68 ng/L (Hossain et al., 2018)
Erythromycin Sri Lanka  Surface water  21.6ng/L (Guruge et al., 2019)
Clarithromycin Sri Lanka  Surface water 119 ng/L (Guruge et al., 2019)
Trimethoprim China Soil 0.05 pg/kg (Liu et al., 2020)
Thiamphenicol China Manure 32.8 pg/kg (Qian et al., 2016)
Chloramphenicol China Soil 2.68 1g/kg (Liu et al., 2020)
Lincomycin Sri Lanka  Surface water  3.08 ng/L (Guruge et al., 2019)
Clindamycin Vietnam Wastewater 29ng/L (Tran et al., 2019)

Anti- Ibuprofen China Soil 1.71 ng/kg (Liu et al., 2020)
inflammatory Diclofenac Sri Lanka  Surface water ~ 80.0 ng/L (Guruge et al., 2019)
drugs Acetaminophen Mexico WWTP influent 14900 ng/L (Rivera-Jaimes et al., 2018)

Aspirin India River water 0.777 pg/L (Mutiyar et al., 2018)
Indomethacin Sri Lanka  Surface water  3.18ng/L (Guruge et al., 2019)
Naproxen Mexico WWTP influent 4210 ng/L (Rivera-Jaimes et al., 2018)
Nimesulide Portugal ~ Tap water 9.24ng/L (Paiga & Delerue-

Matos, 2016)
Phenazone France WWTP influent  <0.91 ng/L (Miossec et al., 2019)
Ketoprofen India River water 107 ng/L (Sharma et al., 2019)

Synthetic Ethinylestradiol Spain Sewage sludge 97.8 pg/kg (Martin et al., 2015)
hormone

Stimulant Caffeine Canada Effluent 14200000 ng/L (Kleywegt et al., 2019)
drug

Cytostatic Cyclophosphamide  France WWTP influent  <0.06 ng/L (Miossec et al., 2019)
drugs

Contrast lopromide Korea STP influent 2462 ng/L (Hong et al., 2019)
media lomeprol Spanish Wastewater 2093 pg/L (Mendoza et al., 2015)

Diatrizoate China Surface water 19.6 ng/L (Xu et al., 2017)

B-blockers Atenolol Mexico Surface water  32ng/L (Rivera-Jaimes et al., 2018)

Metoprolol France WWTP influent 192 ng/L (Miossec et al., 2019)
Nadolol Spain WWTP influent 103 ng/L (Biel-Maeso et al., 2018)
Propranolol Sri Lanka  Surface water  2.64 ng/L (Guruge et al., 2019)

Blood lipid Gemfibrozil Sri Lanka  Surface water  25.6 ng/L (Guruge et al., 2019)
regulators

Antiepileptic Dilantin Korea Surface water 4.3 ng/L (Kim et al., 2007)

drugs Carbamazepine Sri Lanka  Surface water  71.2ng/L (Guruge et al., 2019)

Antimicrobials  Triclocarban Sri Lanka  Surface water  41.0ng/L (Guruge et al., 2019)

Triclosan China Soil 25.51 pg/kg (Liu et al., 2020)

UV-filter Oxybenzone Canada Effluent 8160 ng/L (Kleywegt et al., 2019)

Preservatives propylparaben Poland. Landfill leachate 0.77 ng/L (Kapelewska et al., 2018)

Butylparaben Sri Lanka  Surface water  0.25ng/L (Guruge et al., 2019)
Methylparaben Sri Lanka  Surface water 129ng/L (Guruge et al., 2019)

Insect repellant DEET Sri Lanka  Surface water 202 ng/L (Guruge et al., 2019)

Synthetic HHCB USA Effluent 1.86 nug/L (Sun et al., 2014)
musks

Plasticizer BEPH China Drinking water  6.35 ug/L (Liu et al., 2014)

(continued)
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Table 2. Continued.

Categories
of PPCPs Compounds Country Source Quantity References
DBP China Drinking water  1.52 ug/L (Liu et al., 2014)
Artificial Sucralose India Sludge 1870 ng/g (Subedi et al., 2015)
sweetener Saccharine India Sludge 17900 ng/g (Subedi et al., 2015)
Acesulfame India Sludge 8.81ng/g (Subedi et al., 2015)
Surface PFOS Uganda River water 3.89ng/L (Dalahmeh et al., 2018)
activators PFOA Uganda River water 3.90 ng/L (Dalahmeh et al., 2018)
PFPeA Jordan River water 8.1ng/L (Shigei et al., 2020)
PFHXA Jordan River water 2.4ng/L (Shigei et al., 2020)
PFDA Jordan River water 2.3ng/L (Shigei et al., 2020)

the uptake of PPCPs under two conditions; one is the uptake of PPCPs by
plants under the greenhouse condition, and another is the uptake of PPCPs
by plants in the natural environment. Here, uptake means the transfer of
PPCPs into the plant tissues (especially roots) from the plants’ environmen-
tal media (Wu et al,, 2013; Zheng et al., 2014). The experiment under the
greenhouse conditions is usually carried out in the laboratory with con-
trolled light-period, relative-humidity, temperature, etc. (Bhalsod et al.,
2018), whereas the natural environment means the realistic agricultural
farming system with less controlled conditions (Riemenschneider et al.,
2016). The greenhouse condition include hydroponic experiment where the
experiment plant grows into the nutrient solution with the known spiked
amount of PPCPs and pot experiment where the experiment plants sub-
jected to the soil (Kodesovd et al., 2019) or manure amended soil (Dolliver
et al., 2007) or coconut fiber substrate (Gonzdalez Garcia et al., 2019) or
sewage sludge (Cortés et al., 2013). The bioavailability of PPCPs in the
greenhouse condition relatively higher than realistic field conditions since
the photo exposure, microorganisms play a major role in the persistence of
PPCPs in the environment. Therefore, this review has gathered existing
knowledge under both greenhouse and field condition separately.

4.1. Uptake of PPCPs by plants under greenhouse conditions

The uptake of PPCPs by plants under the greenhouse conditions has been
investigated by different authors around the world (Ahmed et al, 2015;
Bassil et al., 2013). In a greenhouse experiment, the plants are grown in the
known quantity of PPCPs spiked media, either soil or water, for a particular
period of time. Finally, PPCPs are extracted from the experimental plants
and preconcentrated for the determination of PPCPs. There are several
greenhouse investigations on the uptake of PPCPs by different plants, and
their main facets and findings are presented in Table 3. The removal percen-
tages of sulfamethoxazole (73%), trimethoprim (59%), and metronidazole
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(96%) after 24 days exposure, and cefadroxil (100%) after 14 days of exposure
to the experimental solution using duckweed (Lemna minor) from the
aquatic environment were reported (Iatrou et al.,, 2017). A similar study was
carried out by Gatidou et al. (2017) with duckweed using five types of ben-
zotriazoles, and it reported 26-72% removal of benzotriazoles by the duck-
weed from the wastewater. An interesting study investigated the uptake of
PPCPs by greenhouse lettuce grown with the soil base and over-head irriga-
tion of PPCPs contaminated water. The authors reported that over-head irri-
gation increased the uptake of PPCPs in lettuce plants (Bhalsod et al., 2018).
Very recently, Rosa et al. (2019) made a study on the uptake of oxytetracyc-
line by seaweed Ulva sp. under laboratory condition by exposing to the
oxytetracycline spiked natural seawater solution containing two different
initial concentrations of oxytetracycline (0.040 and 0.120 mg/L). After 24h
exposure, they detected 40 and 100ng/g of oxytetracycline in the seaweed,
respectively.

4.2. Uptake of PPCPs by plants in the natural environment

Many researchers have investigated the plant uptake of PPCPs under the
laboratory conditions, but studies on the plant uptake under the natural
environment or field condition are minimal. Nuel et al. (2018) conducted
an interesting study on the role of local plants, such as sedge (Carex caryo-
phyllea), callitriche (Callitriche palustris), yellow flag (Iris pseudacorus), soft
rush (Juncus effusus), and white willow (Salix alba) of surface flow treat-
ment wetland in the mitigation of PPCPs from the effluent of the waste-
water treatment system. Moreover, authors investigated the seasonal
variation on the plant uptake of PPCPs, suggested the removal efficiency of
PPCPs was well improved in the summer than those in the winter (Nuel
et al., 2018). Another study investigated the uptake of 141 PPCPs in plants
sweet corn, potato, carrot, and tomato under the normal farming condi-
tions but reported no PPCPs found in the plants above the limit of detec-
tion. This study reported, eight of 141 PPCPs, including atenolol, DEET,
ibuprofen, lincomycin, and sulfamerazine were found in the range of
0.33-6.25ng/g in dry weight (Sabourin et al., 2012). It suggested that the
uptake of PPCPs in the plant was quite smaller under the rational/realistic
farming conditions (Sabourin et al., 2012).

In another field experiment, Christou et al. (2017) detected the presence
of diclofenac, sulfamethoxazole, and trimethoprim at 11.63, 5.26, and
3.40 pg/kg, respectively, in tomato fruits which was irrigated for long-term
under the regular farming conditions with wastewater from municipal
wastewater treatment plant (Christou et al., 2017). Riemenschneider et al.
(2016) reported, 12 types out of 28 micropollutants were found in the
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tield-grown plants including potato, lettuce, carrot, and zucchini irrigated
with Zarqa River in Jordan, with a concentration range of 1.7-216ng/g in
dried weight (Riemenschneider et al., 2016). Ben Mordechay et al. (2018)
explored the uptake of carbamazepine and its metabolism by tomato,
wheat, and lettuce with an introduction of treated wastewater and soil
amended with biosolids in the realistic farming scenario. The same authors
reported that the introduction of treated wastewater in the agricultural
activity led to plant uptake of carbamazepine as a representative of PPCPs
in a significantly higher than the introduction of biosolids (Ben Mordechay
et al.,, 2018).

Very recently, a study reported the occurrence of PPCPs such as carba-
mazepine, methylparaben, and caffeine in seaweeds obtained from the
Saudi red sea at 1.7, 44.3, and 41.3 ng/g, respectively (Ali et al., 2018).
Further, phytoremediation study assessed the use of aquatic plants, includ-
ing Ipomoea aquatica, Phragmites australis, Typha latifolia, Azolla carolini-
ana, Lemna minor, and Salix atrocinerea for the removal of PPCPs from
the wastewater, which achieved 70-90% removal efficiency (Dhir, 2019).
Moreover, a systematic analysis of the accumulation of 11 PPCPs, including
sulfamethoxazole, ibuprofen, trimethoprim, triclosan, chloramphenicol, and
sulfamethazine with long term reclaimed water irrigation (20, 30, and
40 years) in agriculture lands was reported by Liu et al. (2020). The authors
stated that PPCPs were detected in eggplant, cucumber, wheat, and long
bean at the range of 0.02-28.01 ug/kg (Liu et al., 2020). Table 4 provides a
few studies conducted in realistic environmental conditions. However, the
scientific investigation on the plant uptake of PPCPs in realistic field condi-
tion still remains very limited to this date.

5. Translocation of PPCPs in plants

The translocation of PPCPs can be referred to as the passage of PPCPs
from the roots to the areal parts of the plants, such as leaves, stems, fruits
and rhizomes (Cui & Schroder, 2016; Dodgen et al., 2015) as shown in
Figure 2. The translocation of PPCPs in plants can be expressed by the
translocation factor (TF), which is calculated by the ratio between the con-
centrations of PPCPs in areal parts and those in roots of the plants
(Dodgen et al., 2015) (Eq. (1)).

_ Concentration of PPCPs in areal part

TF (1)

concentration of PPCPs in root

Moreover, the translocation of PPCPs depends on several factors, such as
physicochemical properties of PPCPs (pKa, log K., molecular size, etc.),
properties of soil (soil pH, temperature, organic carbon content, etc.), and
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Figure 2. Plant uptake and translocation of PPCPs from the environment to different aerial
parts. The examples are based on Chuang et al. (2019), He et al. (2017), Christou et al. (2016),
and Goldstein et al. (2014).

environmental conditions (temperature, relative humidity, photo-period,
etc.) (Madikizela et al., 2018). The effect of these factors on the plant
uptake PPCPs has explained in the later section. This current study has
reviewed the translocation of PPCPs in two ways; (1) the translocation of
PPCPs in plants under the greenhouse/laboratory conditions, and (2) the
translocation of PPCPs in plants in realistic environmental condition.
Hence, the translocation of PPCPs may vary with environmental condi-
tions, variety of plants, and physicochemical properties of PPCPs.

5.1. Translocation of PPCPs in plants under greenhouse conditions

Until recently, there is plenty of work which studied on the translocation
of PPCPs from roots to the areal part of the plant once it is taken up (Li
et al., 2018; Madikizela et al., 2018). A recent hydroponic study on lettuce
reported that small-sized PPCPs such as carbamazepine and caffeine
showed low affinity to roots, which was expressed by sorption coefficient
(Kp) below 0.05L/g while molecular weight (MW) below 300 g/mol showed
high translocation to the areal parts of lettuce. The small-sized PPCPs such
as trimethoprim, and lamotrigine with relatively high Kp above 12L/g
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showed high translocation to areal pieces of lettuce. Large-sized PPCPs
such as tylosin, monensin sodium, and lincomycin with MW above 400 g/
mol showed higher accumulation ability in lettuce roots (Chuang et al.,
2019). Small-sized PPCPs took up with water through the symplast path-
way could allow the passage of them across the Casparian strip to xylem,
whereas large-sized PPCPs enter into root through the apoplast pathway,
which blocked at the Casparian strip (Chuang et al., 2019). A compara-
tively higher concentration of PPCPs was detected in the plant roots and
shoots under the greenhouse condition. He et al. (2017) reported very low
translocation of triclosan in water spinach, penny grass, purple perilla,
rice, cress, and cane shoot, and it might be due to its high hydrophobic
nature (log K,; 4.76) and high affinity to the roots. Similarly, the high
accumulation of triclosan was observed in the lettuce root (Chuang et al.,
2019). Moreover, higher TFs of carbamazepine were observed (Table 5) in
reddish (4.8), and arugula (6.8) than those in lettuce (0.6), and spinach
(0.7) (Kodesova, Klement, Golovko, Fér, Nikodem, et al., 2019). The same
authors detected higher translocation of atenolol in reddish (2.1), and
spinach (4.6) than those in lettuce (0.2), and arugula (0.7). Recently inves-
tigated data on the translocation of PPCPs in the plant is assembled in
Table 5.

5.2. Translocation of PPCPs in plants in the natural environment

Investigations on the translocation of PPCPs in the plant under the field
condition are scarce. However, some studies reported a limited number of
PPCPs and their translocation to the areal parts of the plant. Martinez-
Piernas et al. (2019) found 17 PPCPs in the realistic field-grown tomato
leaves irrigated with reclaimed water in the concentration range of
0.04-32ng/g. Similarly, the long-term application of manure under the
realistic farming condition introduced the antibiotics to the peanut plants
as investigated by Zhao et al. (2019). Based on their results, sulfamethoxa-
zole shows the highest TF, followed by enrofloxacin, erythromycin, and
chlortetracycline, whereas ciprofloxacin shows the lowest TF (Table 6).
This account, the PPCPs with less TF value, have the highest affinity
toward the root, which led to the accumulation of them in root cell
Different TF values of carbamazepine, in cabbage, lettuce, and zucchini and
caffeine in potato, and zucchini might indicate that the translocation of
these compounds depends on the crop type (Riemenschneider et al., 2016).
However, comparatively less concentration of PPCPs was detected in plant
roots and shoots under the realistic field condition than those under the
greenhouse condition.
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6. Factors affecting the uptake and translocation of PPCPs in the plant

There are several factors that influence the plant’s uptake and transloca-
tion of PPCPs from planted media to roots and areal parts. Biological
characteristics of plants (lipid and carbohydrate content of plant roots),
physiochemical properties of PPCPs (molecular size, K, and pKa), and
environmental conditions of media are the primary categories that influ-
ence the plant uptake of PPCPs (Zhang et al., 2017). Lipid and carbohy-
drate content of root cell walls and permeability of root cell membranes
are the dominant plant biological factors that play a strong influence on
the uptake of PPCPs from external media to roots (Chen et al., 2009;
Zhang et al.,, 2017; Zhang and Zhu, 2009). Moreover, the physicochemical
parameters of PPCPs such as molecular weight, hydrophobicity parameter
(Kows partition coefficient of PPCPs between octanol and water), and
ionic nature of PPCPs, either cationic or neutral or anionic (Zhang et al.,
2017) also affect the uptake and translocation of PPCPs significantly from
the surrounding environment to the plants (Al-Farsi et al., 2017; Zhang
et al., 2017). These physicochemical properties of selected PPCPs are pro-
vided in Table 1. The PPCPs which have a molecular weight less than
1000 g/mol can be efficiently accumulated by the plant (Oztiirk et al,
2016). The volatile and low molecular weight compounds can be taken by
roots and shoot easily. However, the nonvolatile, higher molecular weight,
and hydrophobic compounds can only be accumulated in roots (Zhang
et al., 2017). Besides, the K,,, of PPCPs is an essential quantitative param-
eter that shows the remarkable effect on the PPCPs uptake by the plant;
the PPCPs with significantly higher log K, (>4) are considered as highly
hydrophobic compounds. Usually, these compounds do not translocate
through the plant since it has expressed strong interaction with soil or
root tissues. The PPCPs with lower log K,, (<1), considered as highly
hydrophilic compounds, and these compounds have a low tendency to
move across the phospholipid membrane of root tissues. The PPCPs
which have log K,,, between 1 and 4, can be readily translocated in plant
parts (Colon & Toor, 2016). The ionic nature of PPCPs is another factor
that influences the uptake of PPCPs. For neutral PPCPs such as caffeine,
carbamazepine, and estrone (Chuang et al., 2019), the K,,, phenomena
can be applied. In the case of ionic PPCPs, because of the repulsion or
attraction between the ionized PPCPs, either anionic or cationic and
negatively charged cell membrane of roots, the uptake and translocation
of PPCPs by plant might be affected (Colon & Toor, 2016). The anionic
PPCPs are likely to accumulate in the roots, whereas the neutral and cat-
ionic PPCPs are likely to translocate in areal parts of plant either leaves,
or steams, or fruits (Madikizela et al., 2018). It was reported by Goldstein
et al. (2014), that the positively charged PPCPs such as metoprolol was
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found in the cucumber and tomato leaves at quite high concentration
compared to negatively charged PPCPs, probably as a result of the attrac-
tion of positively charged metoprolol with negatively charged cell mem-
branes. The negatively charged PPCPs such as, ibuprofen, ketoprofen,
gemfibrozil, and sulfamethoxazole are preferentially accumulated in the
root cells since such weak acidic PPCPs undergo the dissociation into
anionic forms in the cytosol once entered inside, which are repels by cell
walls (Goldstein et al., 2014). Similarly, Christou et al. (2016) stated that
being weak acidic property in nature, the diclofenac and sulfamethoxazole
are accumulated at high concentration in the root but very less in leaves.
In contrast, the trimethoprim as a basic PPCPs shows more accumulation
in roots and high translocation to leaves when compared to the weak
acidic PPCPs (Christou et al., 2016). The same author reported that the
neutral PPCPs such as 17a-ethinylestradiol show almost quantitatively
equal accumulation in roots and leaves. The environmental conditions
such as the concentration of PPCPs in soil, pH of outside media, tem-
perature, the concentration of available organic carbon in the soil also
affect the plant uptake of PPCPs (Zhang et al., 2017).

7. Mechanism of uptake and translocation of PPCPs in the plant

Plants take up water along with dissolved solute such as minerals, organic
compounds like PPCPs through the roots from the rhizosphere by passive
diffusion. Generally, the passage of PPCPs through the plant starts at root
hairs. Once PPCPs enter into root hairs, PPCPs reach the xylem/phloem
through cortex, endodermis, and Casparian strip (Miller et al., 2016). The
movement of PPCPs from root hair to xylem/phloem has been demon-
strated by several pathways. (1) the movement of water and solute occurs
through the space outside the cell membrane (apoplastic movement), (2)
flux of water along with solute occurs through the cell cytoplasm (symplas-
tic movement), and (3) the water and solute flow occurs via the vacuoles in
cells (vacuolar movement) (Oztiirk et al, 2016; Zhang & Zhu, 2009).
Mainly, hydrophobic PPCPs move toward the xylem/phloem via the apo-
plastic movement, whereas the movement of hydrophilic PPCPs occurs via
the symplastic movement (Zhang & Zhu, 2009). However, the apoplastic
movement gets stopped at the Casparian strip because the deposition of lig-
nin and suberin on the Casparian strip cell walls blocks the passive move-
ment of water and solute. At this point, the flux of water and solute via
apoplastic movement is forced into the symplastic movement (Cui &
Schroder, 2016). Once the PPCPs reach the xylem/phloem, they get translo-
cated upward to the aerial parts of the plant, such as stems, leaves, or
fruits. Mainly, the water and PPCPs are pulled toward the leaves by the
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combined action of transpiration steam, capillary action, and root pressure.
Apart from this, the hydrophobic PPCPs are translocated to the shoot via
the xylem sap, which contains latex-like-proteins which bind with hydro-
phobic PPCPs (Goto et al., 2019). The solubility enhancement of triclocar-
ban and endosulfan in zucchini and soybean xylem sap was observed when
those solubilities are compared with deionized water (Garvin et al., 2015).

Apart from the root uptake, there is another possibility of PPCPs
uptake by the plant through stomata on the leaf surface, which function
as an inlet for carbon dioxide and an outlet for water vapor. The gaseous
contaminants can be taken up into the plant along with carbon dioxide
through stomata (Colon & Toor, 2016). The recent study of Khuman and
Chakraborty (2019) detected the occurrence of endosulfan, hexachlorocy-
clohexane, and dichlorodiphenyltrichloroethane in the air with a concen-
tration of 429, 888, and 1689 pg/m’. Therefore, it is now possible to
identify the plant uptake of PPCPs through leaves and their uptake and
translocation mechanism.

8. Human health exposure and risks of PPCPs through consumption
of contaminated plants

The PPCPs as endocrine-disrupting contaminants enter into the human
body through the consumption of the contaminated crops, vegetables and
fruits. These PPCPs may cause several harmful effects on human health,
especially in children. Recently, more than two PPCPs were found in the
edible crops such as potato, lettuce, carrot, tomato, and zucchini (Christou
et al., 2017; Riemenschneider et al., 2016). The consumption of two or
more PPCPs at the same time may create interactive concerns in humans
which cases were narrated in a review paper by Wu et al. (2015) showing
500 ng/day of each compound was ingested simultaneously through intake
of the vegetable crops irrigated with PPCPs contaminated water. Daily
exposure of PPCPs, especially antibiotics, will cause resistance to antimicro-
bial activity in humans, and it can increase the probability of risk of death.
In a review on the risk assessment of personal care products, Stuart et al.
(2012) showed that parabens suppressed the estrogenic activity and induced
immunologically mediated, immediate systemic hypersensitivity reactions,
while DEET inhibited the enzyme responsible for the operation of the cen-
tral nervous system. However, Verslycke et al. (2016) found a large margin
of safety for the exposure of triclosan through all routes, including bio-
solids - soil-plant — human, and they drew an inference that the contamin-
ant could pose a minimal risk to human health. Furthermore, the human
risk associated with exposure to PPCPs is determined in terms of risk quo-
tient (RQ) and cumulative health hazard index (HI). The RQ is derived
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from the ratio between estimated daily intake (EDI) and acceptable daily
intake (ADI) (Liu et al., 2017) (Eq. (2)).
_ EDI(ngkg~'day™")

= 2
ADI (ngkg='day™") @

where the EDI value will be calculated by the equation expressed by
Eq. (3).

EDI — Daily intake rate (g person 'day”')*PPCPs in vegetable (ng g~')

person average weight (kg person=!)
3)
and the value of HI is estimated by the tally of RQ of each PPCPs detected

in a vegetable (Zhao et al., 2019), which mathematically expressed by
Eq. (4).

HI = Z RQ; (4)
j=1

It is considered as a negligible human risk when the value of RQ and HI
< 0.01, as a considerable human risk if RQ and HI > 0.01, and as a dis-
tinct human risk if the value of RQ and HI > 0.05 (Liu et al., 2017; Zhao
et al, 2019). Zhao et al. (2019) reported that PPCPs presence in human
bodies living in both rural and urban areas was traced by ingesting PPCPs
contaminated peanut kernels, where the RQ value for enrofloxacin,
exceeded the threshold level of distinct human risk (RQ > 0.05), and for
ofloxacin, norfloxacin, ciprofloxacin, and clarithromycin the RQ values
reached the threshold level of considerable human risk (Zhao et al., 2019).
Moreover, human health risk assessments through calculations of human
exposure to the PPCPs are warranted when human exposure to PPCPs
occurs concurrently via multiple pathways. Generally, human exposure
(HE) of PPCPs is calculated using the mathematical equation expressed in
Eq. (5),

HE = Cx«DxWxT (5)

where C is the concentration of PPCPs in vegetables (ng/kg wet weight), D
is the average daily consumption of vegetables (g wet weight/kg body
weight/day), W is the human body weight, and T is the exposure time
(day) (Wu et al,, 2013). Typically, the acceptable annual human exposure
range of PPCPs is 20-200 mg. Many laboratory experiments suggested that
the human exposure of PPCPs, including carbamazepine, sulfamethazine,
fluoxetine, and diclofenac through ingesting the contaminated plants, was
much lower than the accepted range of 20-200 mg (Carter et al., 2014; Wu
et al., 2013). However, to the best of the knowledge of the authors, no such
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investigation is available in the literature about the human risks associated
with the consumption of the contaminated vegetables.

9. Instrumental analysis methods to determine the PPCPs in
plant tissues

The extraction of PPCPs in the plant tissues is a bit challenging task when
compared to those in water and soil. The occurrence of primary and sec-
ondary metabolites, pigments, and other cellular compounds in plant tis-
sues can interfere with PPCPs during the analysis. Therefore, the PPCPs
extraction procedure from the plant tissue is essential in order to achieve
accurate analysis. Previous studies have utilized various extraction techni-
ques for the extraction of PPCPs from the plant tissues, for instance, solid-
phase extraction (Petrie et al., 2017; Rajapaksha et al., 2014), liquid-liquid
extraction (Loos et al.,, 2013), accelerated solvent extraction (Azanu et al,,
2018), QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe)
extraction (Podio et al.,, 2020). The QUEChERS method is frequently used
by researchers nowadays due to the diversification in the physiochemical
properties of PPCPs.

Moreover, many instrumental analyses (gas and liquid chromatography)
have been employed in the quantification of PPCPs in the plant tissues
after the extraction process. Mostly, the combination of liquid chromatog-
raphy (LC) with mass spectroscopy (MS) can be used to quantify the vari-
ous PPCPs accurately in the plant tissue extraction. The detection
sensitivity of instruments toward the various PPCPs further increased in
the liquid chromatography-tandem MS system. Many researchers have used
different instruments, for instance, liquid chromatography-tandem mass
spectroscopy (LC-MS/MS), high-performance liquid chromatography
coupled mass spectroscopy (HPLC-MS/MS), and ultra-performance liquid
chromatography coupled mass spectroscopy (UPLC-MS/MS) with electro-
spray ionizer. Further, the mobile phases and their flow gradient also cru-
cial during the analysis of PPCPs in plant tissue extraction. Mostly,
acetonitrile, formic acid, ultra-pure water, and methanol used as mobile
phase solvents during the analysis. The different mobile phases composition
with different flow gradients were reported in previous studies. The ultra-
pure water as mobile phase A and acetonitrile as mobile phase B with
35-90% flow gradient of B were used in Liu et al. (2020). Similarly, 0.3% of
formic acid as mobile phase A and 0.3% of formic acid with 65/35 v/v of
acetonitrile and methanol as mobile phase B, with 40-100% gradient of B
were used by Chuang et al. (2019). Table 7 provided commonly used ana-
lytical methods for PPCP analysis with preconcentrated techniques.
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10. Contemporary issues and future scope

We have briefly explained the available groups of PPCPs and respected
compounds come under each group. The physicochemical properties of
each compound play a significant role in their uptake by the plant. It has
been identified that the bioavailability of PPCPs under the realistic field
condition is scarcer than those under the greenhouse condition, and the
translocation of PPCPs from root to shoot occurs along with the water
flow though they are influenced by several factors: plant types, and physio-
chemical properties of PPCPs. Based on the literature, the authors sug-
gested, human exposure and risk were minimal through the consumption
of contaminated crops/vegetables. However, the research on human risk
and exposure is premature due to the lack of comprehensive studies.

Several recent studies have investigated the accumulation of PPCPs in
the edible plants such as water spinach, cucumber, and spinach under the
greenhouse condition (Kurade et al., 2019; Nason et al,, 2019; Sun et al,
2019). In a field study, Christou et al. (2017) reported uptake of diclofenac,
sulfamethoxazole, and trimethoprim in tomato fruits, which were irrigated
with wastewater from municipal wastewater treatment plant for long-term
under the realistic farming conditions. However, the investigation on the
plant uptake of PPCPs under the practical field conditions is minimal.
Therefore, researchers should strive to explore more about the uptake and
transformations of PPCPs under real-life environmental scenarios.
Furthermore, there are very few studies reported so far on the occurrence
of anti-viral drugs in the urban water cycle (Funke et al, 2016).
Nevertheless, there is no such study conducted yet on the uptake of an
anti-viral medication in the plants, neither in the laboratory nor under out-
door environmental conditions. Therefore, it leaves an ample opportunity
for conducting experiments to explore such issues and put some insight
into the future.

The PPCPs undergo the biodegradation process once they are taken up
by the plants. Recently, several studies have found some metabolites of
respective PPCPs in the plant system, which are resulted from the meta-
bolic transformation of the xenobiotics in the individual plant’s body. Tian
et al. (2019) detected eight metabolites of clarithromycin, and two metabo-
lites of sulfadiazine in lettuce (Lactuca sativa). Similarly, Kurade et al.
(2019) reported five metabolites of sulfamethoxazole in water spinach
(Ipomoea aquatica). These metabolites may produce more adverse health
issues than their corresponding parent compounds. Therefore, it is urgently
required in the future to appraise the human health risks of the metabolites
of important PPCPs along with their parent counterparts since health risks
for parent compounds only are mostly estimated in such toxicological stud-
ies. On the other hand, further mechanistic understanding of uptake,
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toxicity, and persistence of all groups of PPCPs needs to be elucidated evi-
dently by future research.

Studies have established that the mechanism of plant uptake of PPCPs
depends on the physicochemical properties of PPCPs, and environmental
conditions. Goto et al. (2019) showed that the translocation of polychlori-
nated biphenyls to the shoot via the xylem sap involves latex-like-proteins,
which bind with hydrophobic PPCPs. Therefore, further investigation needs
to be carried out on other groups of PPCPs how they are translocated to
different aerial parts of the plants employing a suite of biochemical working
horses. Although several studies have reported the plant uptake and trans-
location of PPCPs, most of them have studied well about pharmaceutical
products. Only a few studies have reported the PCPs such as triclosan, tri-
clocarban, caffeine, and phthalate. Therefore, this study suggested, plant
uptake of PCPs should be carried out in future research since the use and
misuse of PCPs have increased in the modern world.

Apart from the root uptake, stomata are the minuscule ‘windows’ on the
surface of plant leaves, which can allow the intake of volatile organic com-
pounds from the air. A greenhouse experiment by Bhalsod et al. (2018) ela-
borated how the over-head irrigation using PPCPs contaminated water
could increase the accumulation of PPCPs, which even exceeded the root
uptake in lettuce (Lactuca sativa). Although the research on the uptake of
PPCPs through the plant leaves remains in a nascent stage in the mostly
unexplored territory. Future research investigations need to be directed
toward the plants’ uptake of PPCPs through their leaves since PPCPs such
as endosulfan, dichlorodiphenyltrichloroethane, and hexachlorocyclohexane
are found in the air and enter into the plant system through stomata.
However, this route of exposure with associated risks remains entirely
ignored without drawing its due attention to date.

11. Conclusion

The pathways which loaded the PPCPs in the environment, plant uptake
and translocate of PPCPs under the greenhouse condition and realistic field
condition, and the mechanism of plant uptake of PPCPs are discussed in
detail. Currently, PPCPs are reported in plant parts, which may end up in
the human bodies. The uptake of PPCPs under the greenhouse condition
comparatively higher than those under the field condition. Furthermore,
only a few studies have investigated the human health issues by ingesting
the contaminated vegetables showed that the human exposure of these
PPCPs is much lower than the accepted intake margin. More research is
needed on personal care products whereas pharmaceuticals have been
well studied.
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