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Summary 
Non-abelian group based cryptosystems are a latest research 
inspiration, since they offer better security due to their non-
abelian properties. In this paper, we propose a novel approach to 
non-abelian group based public-key cryptographic protocols 
using semidirect products of finite groups. An intractable 
problem of determining automorphisms and generating elements 
of a group is introduced as the underlying mathematical problem 
for the suggested protocols. Then, we show that the difficult 
problem of determining paths and cycles of Cayley graphs 
including Hamiltonian paths and cycles could be reduced to this 
intractable problem. The applicability of Hamiltonian paths, and 
in fact any random path in Cayley graphs in the above 
cryptographic schemes and an application of the same concept to 
two previous cryptographic protocols based on a Generalized 
Discrete Logarithm Problem is discussed. Moreover, an 
alternative method of improving the security is also presented. 
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1.  Introduction 

With a quantum computing era expected in the near 
future and the discovery of more and more vulnerabilities 
in the cryptosystems used at present, the scientists and 
mathematicians have drifted towards introducing various 
substitutes to the existing public-key cryptosystems. 
Cryptography using non-abelian groups is one such 
approach.  

In fact, we have been stimulated towards non-abelian 
group based Cryptography, during a study on the existence 
of Hamiltonian cycles in Cayley graphs of finite groups. 
For a literature survey and a recent development related to 
the Hamiltonian Path Problem (HPP)/ Hamiltonian Cycle 
Problem (HCP) in Cayley graphs see [1]–[5]. Since the 
HPP/HCP in Cayley graphs over most non-abelian groups 
is a very difficult mathematical problem, we have 
developed an intuition that it will be a very suitable 
intractable problem to be studied in constructing novel 
public-key cryptosystems. Moreover, we also felt that such 
a system will provide higher security than the existing 
cryptosystems due to the non-abelian structures involved.  

Thereby, after initiating the study of related literature 
(see [6]–[8]), we were able to identify that, indeed, many 
scholars have already begun to investigate regarding 
cryptosystems based on non-abelian groups, since the 

1980’s. The past researches on cryptosystems using non-
abelian groups were focused on underlying problems such 
as Conjugacy Problem [9], Conjugacy Search Problem 
[10], [11], Word Problem [12], [13], Factorization and 
Membership Search Problems [14]–[18] etc. in non-
abelian groups, but a significant application of the HCP or 
HPP was lacking. Most of the intractable problems are 
actually generalizations of some conventional 
cryptographic problem to non-abelian groups: e.g. the 
conjugacy related problems in [9], [10] show one way of 
generalizing the traditional Discrete Logarithm Problem 
(DLP) to problems over non-abelian groups.  

From the numerous cryptosystems proposed in the 
literature based on various mathematical problems, the 
security of almost all were cryptanalyzed (See [8] for some 
of the attacks developed by various authors). Tsaban et al. 
[19] have presented a method of attack, generally called as 
the “algebraic span cryptanalysis”, which can develop 
solutions using spans of algebras. It could break the 
security of most protocols which used groups that can be 
efficiently and faithfully represented as matrix groups. 
Hence, it is applicable to many cryptographic protocols. 
However, V. Roman’kov in [20] has introduced a method 
to offer resistance against this attack. 

In this paper, we initially prove an intractable problem 
involving the homomorphisms determining the semidirect 
products of finite groups (i.e. related to automorphisms 
and generating elements of a group). Then, based on this 
intractable problem, we propose two novel techniques for 
signature protocols. We show that the HPP and HCP and 
in fact, the difficult problems of determining any random 
path or cycle in some Cayley graphs can be reduced to the 
same intractable problem and propose the use of 
Hamiltonian paths, or any random paths as a secret key in 
the protocols. Furthermore, we also propose an application 
of paths in Cayley graphs to variants of two schemes based 
on a Generalized Discrete Logarithm Problem (GDLP). 
Our proposals are resistant to the algebraic span method if 
the platform groups are chosen carefully and we present an 
improved version of the protocols integrating 
Roman’kov’s technique, to be used otherwise. 

Paper outline. The rest of the paper is organized as 
follows. The section 2 presents a brief overview of the 
related fundamentals. The section 3 includes the novel 
signature protocol proposed. The next two sections present 
the use of paths in Cayley graphs, in the protocols 
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followed by the novel application based on GDLP. In 
section 6, we show how the method of being secured 
against algebraic span cryptanalysis can be integrated to 
our proposals as well. Finally, the concluding remarks of 
our study. 

2. Preliminaries 

This section includes an overview of the fundamental 
concepts from Group Theory and Graph Theory related to 
this research.  

Let 𝐺  be the semidirect product between the normal 
subgroup 𝑁 and the subgroup 𝐻, 𝐺 ൌ 𝑁 ⋊థ 𝐻. If both 𝑁 
and 𝐻 are finite, |𝐺| ൌ |𝑁| ൈ |𝐻|. This follows from the 
fact that 𝐺 is of the same order as the semidirect product of 
𝑁 and 𝐻, whose underlying set is 𝑁 ൈ 𝐻. 

For a semidirect product 𝐺 ൌ 𝑁 ⋊థ 𝐻 , let 𝜙: 𝐻 →
Autሺ𝑁ሻ be a homomorphism which sends elements ℎ ∈ 𝐻 
to automorphisms 𝜙௛ , of 𝑁. The group law in 𝐺  can be 
stated as, ሺ𝑛, ℎሻሺ𝑛ଵ, ℎଵሻ ൌ ሺ𝑛𝜙௛ሺ𝑛ଵሻ, ℎℎଵሻ , where 
ሺ𝑛, ℎሻ, ሺ𝑛ଵ, ℎଵሻ ∈ 𝐺 . Here, 𝜙௛ሺ𝑛ሻ ൌ ℎିଵ𝑛ℎ , for ℎ ∈ 𝐻 , 
𝑛 ∈ 𝑁 . The (additive) identity element of 𝐺  can be 
denoted as ሺ𝑒ே, 𝑒ுሻ. The inverse of an element ሺ𝑛, ℎሻ is 
ሺ𝜙௛షభሺ𝑛ିଵሻ, ℎିଵሻ . For a 𝜙௛ , 𝜙௛ሺ𝑛ሻ ൌ ℎିଵ𝑛ℎ , and 
𝜙௛షభሺ𝑛ሻ ൌ ሺℎିଵሻିଵ𝑛ℎିଵ ൌ ℎ𝑛ℎିଵ . Thus 𝜙௛షభሺ𝑛ሻ ൌ
𝜙௛

ିଵሺ𝑛ሻ. Furthermore, considering 𝜙௛
௠ሺ𝑛ሻ ൌ 

𝜙௛ሺ𝜙௛ሺ⋯ ሺ𝜙௛ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௠ି௧௜௠௘௦

ሺ𝑛ሻሻሻሻ ൌ ℎି௠𝑛ℎ௠ ൌ ሺℎ௠ሻିଵ𝑛ℎ௠ ൌ 𝜙௛೘ሺ𝑛ሻ. 

A path in a graph which visits every vertex exactly 
once is known as a Hamiltonian path. When there is an 
edge between the starting and the ending vertices, it is 
called a Hamiltonian cycle. Determining Hamiltonian 
paths or cycles in most of the graphs are considered as 
mathematically intractable problems and are known as the 
HPP and the HCP, respectively. 

Definition 2.1. A vertex-transitive graph is a graph 𝑋 , 
where for any two vertices 𝑣ଵ,  𝑣ଶ ∈ 𝑉ሺ𝑋ሻ, there exists an 
automorphism of 𝑋  which maps 𝑣ଵ  to 𝑣ଶ , where 𝑉ሺ𝑋ሻ is 
the set of vertices of 𝑋. 

A Cayley graph is a type of a vertex-transitive graphs. 
For a finite group 𝐺 and a subset 𝑆 of 𝐺, the Cayley graph 
of 𝐺 with respect to 𝑆 can be defined as follows, provided 
that 1 ∉ 𝑆 (identity element) and 𝑆 is inverse closed. 

Definition 2.2. The Cayley graph of 𝐺 with respect to 𝑆, 
𝐶𝑎𝑦ሺ𝐺, 𝑆ሻ is the graph whose vertices are the elements of 
𝐺 and 𝑔 is adjacent to 𝑔𝑠 for all 𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆. 

A Hamiltonian cycle in a spanning subgraph is also a 
Hamiltonian cycle in the ambient graph. Hence, the 
identification of Hamilton paths/cycles in Cayley graphs 
with respect to irredundant generating sets is adequate. 

Definition 2.3. An irredundant generating set for a Cayley 
graph 𝑋 is a generating set 𝑆 such that no proper subset of 
𝑆 generates 𝑋. 

Let 𝐻  and 𝐾  be finite groups and 𝐺 ൌ 𝐻 ⋊ఓ 𝐾  be a 
semidirect product, where 𝐻  is the normal subgroup. 
Assume that the group operations are efficiently 
computable. 

The elements of any two groups, say 𝐺ଵ ൌ 𝐻 ⋊థ 𝐾 
and 𝐺ଶ ൌ 𝐻 ⋊ఏ 𝐾, are the same, viz. the elements of 𝐻 ൈ
𝐾 . But the Cayley graphs of each with respect to their 
corresponding generating sets will be dissimilar. If a 
communication is to take place, where two communicating 
parties use two such groups chosen by each, both of them 
will perform calculations under the same 𝑚𝑜𝑑 𝑝, 𝑚𝑜𝑑 𝑞 
etc., using the same elements, whereas the product of any 
two elements has to be computed using the two different 
homomorphisms 𝜙 and 𝜃 by each party. 

When two groups like 𝐺ଵ, 𝐺ଶ are chosen by the 
communicating parties, both of them as well as any third 
party is aware of 𝐻, 𝐾 etc. and the elements of the group. 
But 𝜙, 𝜃 defining the semidirect products, the generating 
sets chosen are only known by the respective party. 

3. Cryptographic protocols using semidirect 
products 

In this section, first we present the proof of the 
intractable problem which we consider as the basis for the 
proposed protocols.  

Lemma 3.1. Determining 𝜙  or a set of generating 
elements of a semidirect product 𝐻 ⋊థ 𝐾   used by a 
communicating party (when only 𝐻, 𝐾 , a sequence of 
elements of the form 𝜙௦ೕ

ೖሺℎሻ, where ℎ ∈ 𝐻 is known), is a 

mathematically intractable problem.   

Proof. 

Premise 3.2. In a semidirect product 𝐻 ⋊థ 𝐾 , 𝜙: 𝐾 →
Autሺ𝐻ሻ. Suppose 𝐾 ൌ ⟨𝑠⟩. Then, 𝜙ሺ𝑒௄ሻ ൌ 𝜙௘಼ ∈ Autሺ𝐻ሻ, 
𝜙ሺ𝑠ሻ ൌ 𝜙௦ ∈ Autሺ𝐻ሻ , 𝜙ሺ𝑠ଶሻ ൌ 𝜙௦మ ∈ Autሺ𝐻ሻ , ⋯ , 
𝜙ሺ𝑠|௦|ିଵሻ ൌ 𝜙௦|ೞ|షభ ∈ Autሺ𝐻ሻ. Since 𝜙௦ ∘ 𝜙௦   ൌ   𝜙௦

ଶ   ൌ   𝜙௦మ, 
𝜙௦మ ∘ 𝜙௦   ൌ   𝜙௦

ଷ   ൌ   𝜙௦య  etc., the entire homomorphism 𝜙 
can be determined if 𝜙௦  is known (similar arguments 
follow for other generating sets of 𝐾 , such as 𝐾 ൌ
⟨𝑠ଵ, 𝑠ଶ, ⋯ , 𝑠௡⟩). 

Let 𝐻 ൌ ⟨ℎଵ, ℎଶ, ⋯ , ℎ௜⟩ . For 𝜙௦ೖ ∈ Autሺ𝐻ሻ , 𝜙௦ೖ: 𝐻 →
𝐻 , 1 ൑ 𝑘 ൑ |𝑠| . If 𝜙௦ೖሺℎଵሻ, 𝜙௦ೖሺℎଶሻ, ⋯ , 𝜙௦ೖሺℎ௜ሻ  are 
known, the entire automorphism can be determined (once 
it is known where the generating elements are mapped, it 
is possible to determine the mapping of any element under 
any homomorphism or automorphism considered). If 
generating elements and their mappings are not known the 
entire homomorphism or automorphism can’t be 
determined. 

Example 3.3. Consider the group ሺℤହ ൈ ℤହሻ ⋊థ ℤଷ. 

𝜙: ℤଷ → Autሺℤହ ൈ ℤହሻ. Let 𝜙൫0൯ ൌ 𝜙଴, 𝜙൫1൯ ൌ 𝜙ଵ, 𝜙ሺ2ሻ     
ൌ 𝜙ଶ, and let any 𝑚 ∈ ℤ௡, where 𝑛 is a prime, be denoted 
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by 𝑚. Suppose 𝜙ଵሺሺሺ1,0ሻ,0ሻሻ ൌ ሺሺ𝑎, 𝑏ሻ,0ሻ and 
𝜙ଵሺሺሺ0,1ሻ,0ሻሻ ൌ ሺሺ𝑐, 𝑑ሻ,0ሻ. 

Here, 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤହ,   𝜙଴, 𝜙ଵ, 𝜙ଶ ∈ 𝐴𝑢𝑡ሺℤହ ൈ ℤହሻ  and 
ሺሺ0,0ሻ,0ሻ  denote the additive identity. ሺℤହ ൈ ℤହሻ  is the 
normal subgroup of ሺℤହ ൈ ℤହሻ ⋊థ ℤଷ . Since 
ሼሺሺ1,0ሻ,0ሻ, ሺሺ0,1ሻ,0ሻሽ  are generating elements of ሺℤହ ൈ
ℤହሻ , once we know ሺሺ𝑎, 𝑏ሻ,0ሻ  and ሺሺ𝑐, 𝑑ሻ,0ሻ , the entire 
automorphism 𝜙ଵ  can be determined. Also, 1  is a 
generating element of ℤଷ. Thus, once we know 𝜙ሺ1ሻ ൌ 𝜙ଵ, 
the entire homomorphism 𝜙 can be determined. 

Premise 3.4. Since 𝜙௦ೖ’s are automorphisms, there exists 
some 𝑔ଵ, 𝑔ଶ, ⋯ , 𝑔௜ ∈ 𝐻  such that, 𝜙௦ೖሺ𝑔ଵሻ ൌ
ℎଵ, 𝜙௦ೖሺ𝑔ଶሻ ൌ ℎଶ, ⋯ , 𝜙௦ೖሺ𝑔௜ሻ ൌ ℎ௜, for all 𝜙௦ೖ ∈ Autሺ𝐻ሻ. 
Hence, for any 𝑔 ∈ 𝐻, and 𝜙௦ ∈ Autሺ𝐻ሻ, there exists some 
𝑓௞ ∈ 𝐻 such that, 𝜙௦ሺ𝑔ሻ ൌ 𝜙௦ೖሺ𝑓௞ሻ, for all 𝜙௦ೖ. 

Moreover, for any 𝜙: 𝐾 → Autሺ𝐻ሻ , and 𝜃: 𝐾 →
Autሺ𝐻ሻ , there exists automorphisms of 𝐻  such that, 
𝜙௦ೖሺ𝑔ሻ ൌ 𝜃𝔰೗ሺ𝑔௟ሻ, for all 𝑔 ∈ 𝐻 and 1 ൑ 𝑘, 𝑙 ൑ |𝑠|. Here, 
𝑔௟ ∈ 𝐻 and 𝑠, 𝔰 ∈ 𝐾. 

Example 3.5. When considering the automorphism 𝜙ଵ in 
above Example 3.3., for any ሺሺ𝑔ଵ, 𝑔ଶሻ,0ሻ ∈ ሺℤହ ൈ
ℤହሻ, 𝜙ଵሺሺሺ𝑔ଵ, 𝑔ଶሻ,0ሻሻ ൌ ሺሺሺ𝑔ଷ, 𝑔ସሻ,0ሻሻ  for some 
ሺሺ𝑔ଷ, 𝑔ସሻ,0ሻ ∈ ሺℤହ ൈ ℤହሻ. Also, there exists ሺሺ𝑔ହ, 𝑔଺ሻ,0ሻ ∈
ሺℤହ ൈ ℤହሻ  such that 𝜙ଵሺሺሺ𝑔ଷ, 𝑔ସሻ,0ሻሻ ൌ ሺሺ𝑔ହ, 𝑔଺ሻ,0ሻ  as 
well. Therefore, for all the ordered pairs ሺሺ𝑔௫, 𝑔௬ሻ,0ሻ ∈
ሺℤହ ൈ ℤହሻ , there is some ordered pair ሺሺ𝑔௫

ᇱ , 𝑔௬
ᇱ ሻ,0ሻ ∈

ሺℤହ ൈ ℤହሻ, such that, 𝜙ଵሺሺሺ𝑔௫, 𝑔௬ሻ,0ሻሻ ൌ ሺሺ𝑔௫
ᇱ , 𝑔௬

ᇱ ሻ,0ሻ.  
In 𝜙ଵሺ𝑋ሻ ൌ 𝑌, since 𝜙ଵ is an automorphism, the set of 

values taken by 𝑋 is same set as the set of values taken by 
𝑌. When considering, 𝜙ଶሺ𝑋ଵሻ ൌ 𝑌ଵ, again the set of values 
for 𝑋ଵ as well as for 𝑌ଵ, is same as the set of values for 𝑋 
and 𝑌 . i.e. the set of elements of ሺℤହ ൈ ℤହሻ . It follows 
similarly for 𝜙଴ as well. 

Therefore, it is clear that, for any ሺሺℎ, 𝑘ሻ,0ሻ ∈ ሺℤହ ൈ
ℤହሻ , there are three elements, ሺሺℎ଴, 𝑘଴ሻ,0ሻ, ሺሺℎଵ, 𝑘ଵሻ,0ሻ 
and ሺሺℎଶ, 𝑘ଶሻ,0ሻ ∈ ሺℤହ ൈ ℤହሻ  such that, 
𝜙଴ሺሺሺℎ଴, 𝑘଴ሻ,0ሻሻ ൌ ሺሺℎ, 𝑘ሻ,0ሻ, 𝜙ଵሺሺሺℎଵ, 𝑘ଵሻ,0ሻሻ ൌ
ሺሺℎ, 𝑘ሻ,0ሻ and 𝜙ଶሺሺሺℎଶ, 𝑘ଶሻ,0ሻሻ ൌ ሺሺℎ, 𝑘ሻ,0ሻ. 

Furthermore, if there are several semidirect products 
defined by different homomorphisms, say,     
ሺℤ௣ ൈ ℤ௣ሻ ⋊థ ℤ௤ defined by 𝜙: ℤ௤ → Autሺℤ௣ ൈ ℤ௣ሻ,   
ሺℤ௣ ൈ ℤ௣ሻ ⋊థᇲ ℤ௤ defined by 𝜙ᇱ: ℤ௤ → Autሺℤ௣ ൈ ℤ௣ሻ, 
ሺℤ௣ ൈ ℤ௣ሻ ⋊థᇲᇲ ℤ௤  defined by 𝜙ᇱᇱ: ℤ௤ → Autሺℤ௣ ൈ ℤ௣ሻ , 
etc., where 𝑝 and 𝑞 are distinct primes, the above property 
is satisfied by each and every homomorphism. That is, the 
set of values for 𝑋, 𝑌, 𝑋ᇱ, 𝑌ᇱ, 𝑋ᇱᇱ, 𝑌ᇱᇱ  in, 𝜙௦ሺ𝑋ሻ ൌ
𝑌, 𝜙௦ᇲ

ᇱ ሺ𝑋ᇱሻ ൌ 𝑌ᇱ, 𝜙௦ᇲᇲ
ᇱᇱ ሺ𝑋ᇱᇱሻ ൌ 𝑌ᇱᇱ  is equal to the set of 

elements of ሺℤ௣ ൈ ℤ௣ሻ . Here, 𝑠, 𝑠ᇱ, 𝑠ᇱᇱ  are elements 
generating ℤ௤ in each case. 

Premise 3.6. Suppose 𝐻 has different sets of generating 
elements. For an example, 𝐻 ൌ ⟨ℎଵ, ℎଶ, ⋯ , ℎ௜⟩  or 𝐻 ൌ
⟨ℎଵ

ᇱ , ℎଶ
ᇱ , ⋯ , ℎ௜

ᇱ⟩ or 𝐻 ൌ ⟨ℎଵ
ᇱᇱ, ℎଶ

ᇱᇱ, ⋯ , ℎ௜
ᇱᇱ⟩ etc. (the number of 

elements in any arbitrary generating set might be ൒ the 
number of elements in an irredundant generating set for 𝐻. 
That is, the number of elements in each generating set can 
be different). Let 𝜙௦ be defined for 𝑎ଵ

௞, 𝑎ଶ
௞, ⋯ , 𝑎௜

௞ ∈ ℤ, 1 ൑
𝑘 ൑ 𝑖 as, 𝜙௦ሺℎଵ

௫భℎଶ
௫మ ⋯ ℎ௜

௫೔ሻ ൌ 𝑠ିଵሺℎଵ
௫భℎଶ

௫మ ⋯ ℎ௜
௫೔ሻ𝑠  

ൌ ℎଵ
௔భ

భ௫భା௔భ
మ௫మା⋯ା௔భ

೔ ௫೔     ℎଶ
௔మ

భ௫భା௔మ
మ௫మା⋯ା௔మ

೔ ௫೔     ⋯     ℎ௜
௔೔

భ௫భା௔೔
మ௫మା⋯ା௔೔

೔௫೔ 

That is, 𝜙௦ሺ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௜ሻ 
ൌ ሺ𝑎ଵ

ଵ𝑥ଵ ൅ 𝑎ଵ
ଶ𝑥ଶ ൅ ⋯ ൅ 𝑎ଵ

௜ 𝑥௜,     𝑎ଶ
ଵ𝑥ଵ ൅ 𝑎ଶ

ଶ𝑥ଶ ൅ ⋯
൅ 𝑎ଶ

௜ 𝑥௜,     ⋯ ,     𝑎௜
ଵ𝑥ଵ ൅ 𝑎௜

ଶ𝑥ଶ ൅ ⋯ ൅ 𝑎௜
௜𝑥௜ሻ 

(compare with the definition of 𝑇 in Example 4.1.). 
Considering the generating elements in, ሼℎଵ, ℎଶ, ⋯ , ℎ௜ሽ 

or ሼℎଵ
ᇱ , ℎଶ

ᇱ , ⋯ , ℎ௜
ᇱሽ  or ሼℎଵ

ᇱᇱ, ℎଶ
ᇱᇱ, ⋯ , ℎ௜

ᇱᇱሽ  etc. whichever the 
elements chosen to be in the generating set for a group 
𝐻 ⋊థ 𝐾, the entire group can be generated following the 
above definition of 𝜙௦. 

And whichever the elements chosen to be in the 
generating set for the Cayley graph of a group 𝐻 ⋊థ 𝐾, a 
Cayley graph having a similar structure is generated, 
following the above definition of 𝜙௦. 

Example 3.7. An irredundant generating set for ℤ௣ ൈ ℤ௣ 
is ሼሺ1,0ሻ, ሺ0,1ሻሽ . Nevertheless, sets such as 
ሼሺ1,0ሻ, ሺ0,3ሻሽ, ሼሺ1,1ሻ, ሺ0,2ሻሽ  etc. also generate ℤ௣ ൈ ℤ௣ 
(always generating a torus structured Cayley graph), and 
so it is clear that the subgroup ℤ௣ ൈ ℤ௣ of ሺℤ௣ ൈ ℤ௣ሻ ⋊ ℤ௤ 
has many generating sets. That is, sets like 
ሼሺሺ1,0ሻ,0ሻ, ሺሺ0,1ሻ,0ሻሽ, ሼሺሺ1,0ሻ,0ሻ, ሺሺ0,3ሻ,0ሻሽ, ሼሺሺ1,1ሻ,0ሻ,  
ሺሺ0,2ሻ,0ሻሽ  etc.. Out of the elements such as 
ሼሺሺ1,0ሻ,0ሻ, ሺሺ0,1ሻ,0ሻሽ, ሼሺሺ1,0ሻ,0ሻ, ሺሺ0,3ሻ,0ሻሽ, ሼሺሺ1,1ሻ,0ሻ,  
ሺሺ0,2ሻ,0ሻሽ  etc. whatever the suitable pair chosen as 
ሼℎଵ, ℎଶሽ for ℤ௣ ൈ ℤ௣, under the particular 𝜙, the vertices 
get mapped following the same definition 𝜙௦ሺ𝑥ଵ, 𝑥ଶሻ ൌ
ሺെ𝑥ଶ, 𝑥ଵ െ 𝑥ଶሻ (see definition of 𝑇ሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝜙௦ሺ𝑥ଵ, 𝑥ଶሻ in 
Example 4.1.). Thus, a Cayley graph having a similar 
structure will be generated independent of the choice of 
the generating elements (if the vertex labels are ignored). 

 If a random pair of generating elements was used, for 
defining 𝜙௦ as in Premise 3.6. (by Premise 3.6. it is clear 
that random generating elements can be used for the same 
𝜙), as an example, instead of ሼሺሺ1,0ሻ,0ሻ, ሺሺ0,1ሻ,0ሻሽ, if one 
of the other pairs of generating elements was chosen such 
as, ሼሺሺ1,0ሻ,0ሻ, ሺሺ0,3ሻ,0ሻሽ, ሼሺሺ1,1ሻ,0ሻ, ሺሺ0,2ሻ,0ሻሽ  etc. in 
ሺℤ௣ ൈ ℤ௣ሻ ⋊థ ℤ௤ , then, the determination of 𝜙௦  nor the 
generating elements chosen, by using only values of the 
form 𝜙௦ೖሺℎሻ, where ℎ ∈ 𝐻 (which will be made public in 
the proposed  cryptographic protocols: e.g. see the 
sequences of elements made public in steps 1,2 of the 
protocols in subsections 3.1., 3.2.), is difficult.  

The reasons are, the impossibility of determining a 
homomorphism or an automorphism without the 
knowledge on which generating elements have resulted in 
the corresponding values in the public-key sequence and 
the presence of many choices for 𝑔௟ ∈ 𝐻,  𝑙  and 𝜃: 𝐾 →
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Autሺ𝐻ሻ  such that, 𝜃𝔰೗ሺ𝑔௟ሻ ൌ 𝜙௦ೖሺℎሻ  (as shown by 
Premises 3.2. – 3.4.).  

 But if the protocols were designed to use a fixed and 
obvious set of generating elements like 
ሼሺሺ1,0ሻ,0ሻ, ሺሺ0,1ሻ,0ሻሽ , and an eavesdropper also gets 
knowledgeable regarding it, he can check all the possible 
𝜙’s and choose the 𝜙 which gives the values of the public-
keys under the respective generating elements.  

Then, even the presence of a sequence of public-key 
values will not help to maintain security, since the 
eavesdropper can attempt on assuming the values in the 
sequence by choosing a pair of values as corresponding to 
𝜙௦ೖሺሺሺ1,0ሻ,0ሻሻ  and 𝜙௦ೖሺሺሺ0,1ሻ,0ሻሻ  and thereby identify 
possible set of private-keys.  

 Hence, it is proven that, not using an irredundant 
generating set like ሼሺሺ1,0ሻ,0ሻ, ሺሺ0,1ሻ,0ሻሽ but rather using a 
random generating set, makes it impossible to make any 
identification using only the public-key values of the form 
𝜙௦ೕ

ೖሺℎሻ, where ℎ ∈ 𝐻, 𝐻 and 𝐾, even if a third party try to 

check all the possible values defining each 𝜙௦ೕ
’s (a third 

party can check for all the possible homomorphisms 
corresponding to 𝐻 ⋊థ 𝐾, if he knows 𝐻 and 𝐾). And this 
mathematical hardness is due to the presence of many 
elements getting mapped to the same value (by Premises 
3.2. – 3.4.). 

 Moreover, determining whether the communicating party 
has used exactly 𝜙௦ೕ

’s or any other 𝜙௦ೕ
ೖ’s for some 𝑘, to 

compute the public-key sequences they make public, 
becomes a very difficult problem, if the communicating 
parties make use of an automorphism like 𝜙௦ೕ

ೖ for random 

𝑘  to compute the public-keys instead of utilizing 𝜙௦ೕ
’s 

only. Then the robustness of the protocol is further 
increased. 

      Therefore, determining ሺℎ, 0ሻ  or 𝜙௦ೕ
ೖ , by only using 

values like ሺℎᇱ, 0ሻ such that, 𝜙௦ೕ
ೖሺሺℎ, 0ሻሻ ൌ ሺℎᇱ, 0ሻ, 𝐻 and 

𝐾, is a very difficult problem/mathematically intractable, 
for any 𝑠௝, 𝑘, 𝜙 and ሺℎ, 0ሻ, ሺℎᇱ, 0ሻ ∈ 𝐻. 

∎ 

Let the communicating parties be Bob and Alice. 
Suppose Bob communicate using 𝐻 ⋊ఏ 𝐾  whereas Alice 
uses 𝐻 ⋊థ 𝐾 . Both parties choose an irredundant 
generating set for 𝐻 , say, 𝐻 ൌ ⟨ℎଵ, ⋯ , ℎ௜್

⟩ , 𝐻 ൌ
⟨ℎଵ

ᇱ , ⋯ , ℎ௜ೌ
ᇱ ⟩ respectively.  

Let 𝑆௕  be an irredundant generating set for 𝐻 ⋊ఏ 𝐾 
chosen by Bob and 𝑆௔ be an irredundant generating set for 
𝐻 ⋊థ 𝐾  chosen by Alice. Suppose, 𝑆௕ ൌ
ሼ𝑡ଵ, ⋯ , 𝑡௠್

, 𝑠ଵ, ⋯ , 𝑠௡್
ሽ;  𝑡ଵ, ⋯ , 𝑡௠್

∈ 𝐻   and 𝑠ଵ, ⋯ , 𝑠௡್
∈

𝐾. Some (or all) of the elements in ሼ𝑡ଵ, ⋯ , 𝑡௠್
ሽ might be 

equal to some (or all) elements in ሼℎଵ, ⋯ , ℎ௜್
ሽ or could be 

expressed in terms of the product of several elements in 
ሼℎଵ, ⋯ , ℎ௜್

ሽ. Let the homomorphism 𝜃 be defined by the 
action of the elements 𝑠ଵ, ⋯ , 𝑠௡್

∈ 𝐾 on 𝐻 . For 𝑠௝್
∈ 𝐾 , 

1 ൑ 𝑗௕ ൑ 𝑛௕ , let 𝜃ሺ𝑠௝್
ሻ be denoted by 𝜃௦ೕ್

. Similarly, let 

𝑆௔ ൌ ሼ𝑡ଵ
ᇱ , ⋯ , 𝑡௠ೌ

ᇱ , 𝑠ଵ
ᇱ , ⋯ , 𝑠௡ೌ

ᇱ ሽ ;   𝑡ଵ
ᇱ , ⋯ , 𝑡௠ೌ

ᇱ ∈ 𝐻   and 
𝑠ଵ

ᇱ , ⋯ , 𝑠௡ೌ
ᇱ ∈ 𝐾. 

Suppose Bob needs to sign his message 𝑀. First he has 
to compute a hash of the message using a suitable hash 
function. 

Assumption 3.8. Assume that the messages are from a 
suitable domain, where they can be mapped to a hash 
value which is an element of 𝐻 , using a suitable hash 
function. 

Let ℎ𝑎𝑠ℎሺ𝑀ሻ ൌ ℎ such that ℎ ∈ 𝐻. 

3.1 Signature protocol 1 

1. Bob chooses an element, say ሺℎு, 𝑠ுሻ and makes it 
public together with the sequence, 
ሼ𝜃௦ೕ್

ሺℎଵሻ, 𝜃௦ೕ್
ሺℎ௜್ାଵሻ, ⋯ , 𝜃௦ೕ್

ሺℎ௜್ାଷሻ, ⋯ , 𝜃௦ೕ್
ሺℎ௜್

ሻሽ௝್ୀଵ
௡್ , 

where 𝜃௦ೕ್
ሺℎ௜್ାଵሻ, 𝜃௦ೕ್

ሺℎ௜್ାଶሻ, 𝜃௦ೕ್
ሺℎ௜್ାଷሻ, ⋯  are 

additions of some random elements at random places 
known only by Bob. 

2. Alice sends Bob, ሼ𝜙௭ሺ𝜃௦ೕ್
ሺℎଵሻሻ, 𝜙௭ሺ𝜃௦ೕ್

ሺℎ௜್ାଵሻሻ, ⋯, 

 𝜙௭ሺ𝜃௦ೕ್
ሺℎ௜್ାଷሻሻ, ⋯ , 𝜙௭ሺ𝜃௦ೕ್

ሺℎ௜್
ሻሻሽ௝್ୀଵ

௡್ , for an 

arbitrary 𝜙௭ secretly chosen by her. 

(𝑧 ൌ ሺ𝑠ଵ
ᇱ ሻ௭భሺ𝑠ଶ

ᇱ ሻ௭మ ⋯ ሺ𝑠௡ೌ
ᇱ ሻ௭೙ೌ  for some 𝑧ଵ, 𝑧ଶ, ⋯ , 𝑧௡ೌ ∈ ℤ). 

3. Bob first compute, ሼ𝜙௭ሺℎଵሻ, ⋯ , 𝜙௭ሺℎ௜್
ሻሽ , by 

discarding the random additions and utilizing only the 
mapped values of the generating elements, 
ሼℎଵ, ⋯ , ℎ௜್

ሽ.  

    Then, 𝜙௭ሺ𝑤ିଵሻ ൌ 𝑆𝑖𝑔 is computed, where ℎ ൉ 𝑤 ൌ
ℎு and he attach it to the message as the signature. 

4. Alice multiplies, 𝜙௭ሺℎுሻ ൉ 𝑆𝑖𝑔 ൌ 𝜙௭ሺℎுሻ ൉ 𝜙௭ሺ𝑤ିଵሻ 
ൌ ℎ, utilizing Bob’s public-key.  

Together with the signature, Alice receives an 
encrypted message from Bob. She can decrypt the message, 
obtain 𝑀 and apply the same hash function to it. If it is 
equal to the above ℎ value, then the signature is verified. 

In step 3 of the protocol, Bob identify 𝑔௬ ∈ 𝐻  such 
that 𝜃௦ೕ್

ሺ𝑔௬ሻ ൌ ℎ௬ , for all 𝑗௕, 𝑦  in order to obtain 

𝜙௭ሺ𝜃௦ೕ್
ሺ𝑔௬ሻሻ ൌ 𝜙௭ሺℎ௬ሻ; 1 ൑ 𝑦 ൑ 𝑖௕.  

The Lemma 3.1., shows that the public-key sequence 
of Bob doesn’t compromise security. By Premises 3.2. – 
3.6., it is proven that an eavesdropper can not identify the 
generating elements nor the 𝜃௦ೕ

’s, even if he attempts to 
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check all possible 𝜃 ’s and generating elements. There 
exists a 𝜙: 𝐾 → 𝐴𝑢𝑡ሺ𝐻ሻ, such that, 𝜙𝔰೗ሺ𝑓௟ሻ ൌ ℎ௬ , for any 
𝜃௦ሺ𝑔ሻ ൌ ℎ௬ , making it a mathematically intractable 
problem to determine 𝜃 . This is satisfied by all the 
possible homomorphisms, 𝜙 ’s, for each automorphism 
represented by each value of 𝑙 . Furthermore, for any 
𝜃௦ሺ𝑔ሻ ൌ ℎ௬ , there exists 𝜃௦ೖሺ𝑓௞ሻ ൌ ℎ௬ , for all 𝑘 , which 
creates further hardness in determining which generating 
elements, and 𝜃 might have been chosen by Bob. 

In obtaining the public-key sequence, Bob can use 
𝜃௦ೕ್

ೖ ’s for some random 𝑘, instead of 𝜃௦ೕ್
’s to make the 

protocol more secure. However, the above protocol is 
practical only if it is not possible to distinguish between 
the extra additions 𝜃௦ೕ್

ሺℎ௜್ାଵሻ, 𝜃௦ೕ್
ሺℎ௜್ାଶሻ, 𝜃௦ೕ್

ሺℎ௜್ାଷሻ, ⋯ 

and the values obtained from the generating elements, i.e. 
𝜃௦ೕ್

ሺℎଵሻ, ⋯ , 𝜃௦ೕ್
ሺℎ௜್

ሻ.  

The reason is that, since ℎଵ, ⋯ , ℎ௜್
 are generating 

elements, 𝜃௦ೕ್
ሺℎଵሻ, ⋯ , 𝜃௦ೕ್

ሺℎ௜್
ሻ  are also generating 

elements of 𝐻 . Then, once an eavesdropper finds 
ሼ𝜙௭ሺ𝜃௦ೕ್

ሺℎଵሻሻ, ⋯ , 𝜙௭ሺ𝜃௦ೕ್
ሺℎ௜್

ሻሻሽ , he can use it to 

determine 𝜙௭. Furthermore, if an eavesdropper attempt to 
guess values corresponding to generating elements, by 
thinking of all possible generating sets and perform 
different trials to identify a correct choice, the protocol is 
still vulnerable even if additional random elements are 
added to the sequence. The following suggestion proposes 
a method which can overcome this restriction as well. 

3.2 Signature protocol 2 

1. Bob selects a public element, say ሺℎு, 𝑠ுሻ. Suppose  

ℎ ൉ 𝑤 ൌ ℎு and, 𝑤   ൌ    ℎଵ
௫భℎଶ

௫మ ⋯ ℎ௜್

௫೔್ ൌ ሺℎଵ
஺భℎଶ

஻భ 

⋯ ℎ௜್

ூభሻ ൉ ሺℎଵ
஺మℎଶ

஻మ ൉ ⋯ ℎ௜್

ூమ ሻ ⋯ ሺℎଵ
஺ಽℎଶ

஻ಽ ⋯ ℎ௜್

ூಽሻ, for some 

𝐴௝, 𝐵௝, ⋯ , 𝐼௝ ∈ ℕ, 1 ൑ 𝑗 ൑ 𝐿. 

      Let ℎଵ
஺భℎଶ

஻భ ⋯ ℎ௜್

ூభ ൌ 𝑒𝑙𝑡ଵ
௥భ,   ℎଵ

஺మℎଶ
஻మ ⋯ ℎ௜್

ூమ ൌ

𝑒𝑙𝑡ଶ
௥మ ,   ⋯,   ℎଵ

஺ಽℎଶ
஻ಽ ⋯ ℎ௜್

ூಽ ൌ 𝑒𝑙𝑡௅
௥ಽ. 

2. He makes ሺℎு, 𝑠ுሻ and,  
   ሼ𝑒𝑙𝑡ଵ, 𝑒𝑙𝑡ଶ, 𝑒𝑙𝑡௅ାଵ, 𝑒𝑙𝑡ଷ, ⋯ , 𝑒𝑙𝑡଺, 𝑒𝑙𝑡௅ାଷ, ⋯ , 𝑒𝑙𝑡௅ሽ 
public, where 𝑒𝑙𝑡௅ାଵ, 𝑒𝑙𝑡௅ାଶ, 𝑒𝑙𝑡௅ାଷ, ⋯ are extra 
additions at random positions, to the sequence 
ሼ𝑒𝑙𝑡ଵ, ⋯ , 𝑒𝑙𝑡௅ሽ, which includes the elements whose 
product contribute in forming 𝑤. 

3. Alice sends Bob, ሼ𝜙௭ሺ𝑒𝑙𝑡ଵሻ, 𝜙௭ሺ𝑒𝑙𝑡ଶሻ, 𝜙௭ሺ𝑒𝑙𝑡௅ାଵሻ, 
𝜙௭ሺ𝑒𝑙𝑡ଷሻ, ⋯ , 𝜙௭ሺ𝑒𝑙𝑡଺ሻ, 𝜙௭ሺ𝑒𝑙𝑡௅ାଷሻ, ⋯ , 𝜙௭ሺ𝑒𝑙𝑡௅ሻሽ for an 
arbitrary 𝜙௭ keeping the  same order of elements as 
Bob has given. 

 (𝑧 ൌ ሺ𝑠ଵ
ᇱ ሻ௭భሺ𝑠ଶ

ᇱ ሻ௭మ ⋯ ሺ𝑠௡ೌ
ᇱ ሻ௭೙ೌ  for some 𝑧ଵ, 𝑧ଶ, ⋯ 𝑧௡ೌ ∈ ℤ). 

4. Bob first compute, 𝜙௭ሺ𝑤ሻ.  

𝜙௭ሺ𝑒𝑙𝑡ଵሻ ∙ 𝜙௭ሺ𝑒𝑙𝑡ଵሻ ⋯ 𝜙௭ሺ𝑒𝑙𝑡ଵሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௥భି௧௜௠௘௦

⋯

∙ 𝜙௭ሺ𝑒𝑙𝑡௅ሻ ∙ 𝜙௭ሺ𝑒𝑙𝑡௅ሻ ⋯ 𝜙௭ሺ𝑒𝑙𝑡௅ሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௥ಽି௧௜௠௘௦

 

  ൌ 𝜙௭ሺ𝑒𝑙𝑡ଵ
௥భሻ ⋯ 𝜙௭ሺ𝑒𝑙𝑡௅

௥ಽሻ   ൌ 𝜙௭ሺ𝑒𝑙𝑡ଵ
௥భ ⋯ 𝑒𝑙𝑡௅

௥ಽሻ 
  ൌ 𝜙௭ሺ𝑤ሻ 
5. Then, 𝜙௭ሺ𝑤ିଵሻ ൌ 𝑆𝑖𝑔 is computed, and he attach it to 

the message as the signature.      
6. Alice multiplies, 𝜙௭ሺℎுሻ ൉ 𝑆𝑖𝑔 ൌ 𝜙௭ሺℎுሻ ൉ 𝜙௭ሺ𝑤ିଵሻ ൌ

ℎ, utilizing Bob’s public-key.      

Since a signature will be sent along with an encrypted 
message, Alice will have the decrypted message 𝑀. She 
can obtain the hash of the decrypted message using the 
same hash function and compare with the above ℎ value. If 
they are equal, the signature is verified. 

In the sequence, ሼ𝑒𝑙𝑡ଵ, ⋯ , 𝑒𝑙𝑡௅ሽ , some elements 𝑒𝑙𝑡௝ 
might represent elements of the set ሼℎଵ, ⋯ , ℎ௜್

ሽ . It is 

necessary to choose 𝑒𝑙𝑡௝ ’s such that ൛𝑒𝑙𝑡௝ൟ
௝ୀଵ

௅
 will not 

include all the elements in ሼℎଵ, ⋯ , ℎ௜್
ሽ because if it does, 

since they are generating elements, 𝜙௭ሺ𝑒𝑙𝑡௝ሻ’s will also be 
generating 𝐻 , this will facilitate an eavesdropper to 
identify the generating elements from the public sequence 
and their mappings 𝜙௭ሺ𝑒𝑙𝑡௝ሻ ’s under 𝜙௭ . Then, the 
eavesdropper can determine 𝜙௭  (recreating the weakness 
mentioned under protocol 1 again).  

In step 4, Bob can choose to compute 𝜙௭ሺ𝑤ିଵሻ 

directly by choosing 𝑒𝑙𝑡௝
௥ೕ ’s to be elements whose 

products will form 𝑤ିଵ. 

Using 𝜙௭ሺ𝑒𝑙𝑡௝
௥ೕሻ values to compute 𝑤 , while making 

only 𝑒𝑙𝑡௝’s public gives additional security since the 𝑟௝’s 
are known only by Bob. Moreover, the presence of 
additional elements such as 𝑒𝑙𝑡௅ାଵ, 𝑒𝑙𝑡௅ାଶ, 𝑒𝑙𝑡௅ାଷ, ⋯ in the 
public-key sequence assist in hiding which values will be 
used by Bob in his computation. By Lemma 3.1., it is not 
possible to determine 𝜙௭, using only 𝑒𝑙𝑡௝’s and 𝜙௭ሺ𝑒𝑙𝑡௝ሻ’s, 
even if an eavesdropper tries to check all possible 
homomorphisms and generating sets, since the generating 
sets are chosen secretly by Alice and Bob, unless the 
platform group allows efficient and faithful matrix 
representations and are vulnerable to cryptanalyses such as 
the algebraic span cryptanalysis. 

3.3 Security Analysis and Discussion 

This section includes further analysis on the security 
aspects and discussions in addition to the explanations 
given above under each protocol suggestions. 

The automorphisms 𝜙௓, 𝜃௓ᇲ , where 𝑍, 𝑍ᇱ ∈ 𝐾  are 
applicable on elements of 𝐻 . Thus, we have chosen to 
utilize the 𝑥 -coordinates in illustrating the signature 
protocols. 
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Consider the following attacks commonly applicable 
for digital signature schemes. 

a) Key-only attack: the eavesdropper has only the 
public-key of  message sender.   

b) Known message attack: the eavesdropper possesses a 
set of valid signatures for some known messages, 
which were not chosen by him. 

c) Adaptive chosen message attack: the eavesdropper has 
the ability to obtain the signatures for arbitrary 
messages chosen by him. 

It is evident that the proposed signature scheme offers 
thorough security against the Key-only attack (if the 
values transmitted by Alice after application of 𝜙௭ are not 
taken in to account when considering the information 
known by the eavesdropper, since, then only the public-
keys of the sender of the message are known to any third 
party). To prevent impacts from the Known message 
attack and the Adaptive chosen message attack, we suggest 
that for each communication between two parties, groups 
and keys should be generated each time and discarded 
after the communication as one-time keys. This also 
eliminates the insecurity created by the fact that Alice also 
can generate Bob’s signatures using 𝜙௭ and ℎு.  

The groups ሺℤ௣ ൈ ℤ௣ሻ ⋊థ ℤ௤ , where 𝑝, 𝑞  are distinct 
primes are not suitable platforms for our proposals even 
though they were used in examples to explain the ideas 
clearly, because they offer efficient representations as 
matrix groups. Since 𝜙௭ is an action by conjugation, when 
matrix representations are feasible, an eavesdropper can 
form a system of linear equations using 𝑧ିଵ𝑒𝑙𝑡௝𝑧 ൌ 𝑓௝ (or 
𝑧ିଵℎ௬𝑧 ൌ 𝑓௬) which can be solved since 𝑒𝑙𝑡௝’s and 𝑓௝’s (or 
ℎ௬’s and 𝑓௬’s) are known (by algebraic span cryptanalysis). 

We will also note another weakness with respect to 
protocol 1 as it will facilitate analysis when checking for 
suitable platform groups in future studies. These groups 
are especially not suitable when considering protocol 1,  
since all the elements except the identity in ℤ௣ ൈ ℤ௣ can be 
used as generating elements. Then, in 
ሼ𝜃௦ೕ್

ሺℎଵሻ, 𝜃௦ೕ್
ሺℎ௜್ାଵሻ, ⋯ , 𝜃௦ೕ್

ሺℎ௜್ାଷሻ, ⋯ , 𝜃௦ೕ್
ሺℎ௜್

ሻሽ , an 

eavesdropper can attempt to arbitrarily choose a suitable 
set as a generating set and use it to determine 𝜙௭.  

4. Using Hamiltonian paths or any random 
path in Cayley graphs 

The above schemes can also be implemented by taking 
ሺℎு, 𝑠ுሻ to be the ending vertex of a Hamiltonian path or 
any random path in a Cayley graph of the corresponding 
group. Although the use of paths and cycles in Cayley 
graphs do not indicate a specific advantage for the above 
protocols, we illustrate the concept below with the 
expectation that it will be useful for any scholar where the 

utilization of paths and cycles has advantages and an 
inception for further research.  

In Cayley graphs which are proven to have 
Hamiltonian cycles or paths, usually the cycles or paths 
can be written using mathematical formulae.   

Example 4.1. Consider ሺℤ௣ ൈ ℤ௣ሻ ⋊థ ℤଷ . A set ሼ𝑠, ℎଵሽ , 
with |𝑠| ൌ 3, |ℎଵ| ൌ 𝑝 is an irredundant generating set for 
the group, where the action of 𝑠  on ℤ௣ ൈ ℤ௣  can be 
defined as below [2]. 

Let a linear transformation 𝑇 on ℤ௣ ൈ ℤ௣ be defined by 
𝑇ሺℎሻ ൌ 𝑠ିଵℎ𝑠. Let 𝑚ሺ𝑥ሻ be the minimal polynomial of 𝑇 
and ℎଶ ൌ 𝑇ሺℎଵሻ ൌ 𝑠ିଵℎଵ𝑠 . As, |𝑠| ൌ 3, 𝑇ଷ ൌ 𝐼 , so 𝑚ሺ𝑥ሻ 
divides 𝑥ଷ െ 1 ൌ ሺ𝑥 െ 1ሻሺ𝑥ଶ ൅ 𝑥 ൅ 1ሻ  (Refer [2], for a 
complete argument on determining that 𝑚ሺ𝑥ሻ ൌ 𝑥ଶ ൅ 𝑥 ൅
1). 𝑇  can be defined with respect to a basis ሼℎଵ, ℎଶሽ  of 
ℤ௣ ൈ ℤ௣  as, 𝑇ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺെ𝑥ଶ, 𝑥ଵ െ 𝑥ଶሻ . That is, 
𝑇ሺℎଵ

௫భℎଶ
௫మሻ ൌ 𝑠ିଵሺℎଵ

௫భℎଶ
௫మሻ𝑠 ൌ ℎଵ

ି௫మℎଶ
௫భି௫మ  

(considering the rational cannonical form, using 𝑚ሺ𝑥ሻ). 
Using 𝑇 corresponds to using 𝜙௦  for computations, since 
Autሺℤ௣ ൈ ℤ௣ሻ ≅ 𝐺𝐿ଶሺℤ௣ሻ, where  𝐺𝐿ଶሺℤ௣ሻ is the general 
linear group of 2 ൈ 2  matrices over ℤ௣ . Identify by 
comparing the coefficients 𝑎௬

௞ ’s in Premise 3.6. in the 
proof of Lemma 3.1., with the coefficients of 𝑥ଵ and 𝑥ଶ in 
𝑇ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺെ𝑥ଶ, 𝑥ଵ െ 𝑥ଶሻ  (that is, 𝜙௦ሺ𝑥ଵ, 𝑥ଶሻ ൌ
ሺെ𝑥ଶ, 𝑥ଵ െ 𝑥ଶሻ ). In particular, 𝑎ଵ

ଵ ൌ 0, 𝑎ଵ
ଶ ൌ െ1, 𝑎ଶ

ଵ ൌ
1, 𝑎ଶ

ଶ ൌ െ1 . A Hamiltonian cycle in the corresponding 
Cayley graph of ሺℤ௣ ൈ ℤ௣ሻ ⋊థ ℤଷ is [2], 

ሺሾሺℎଵ
ିଵሻଷ௝ିଵ,  𝑠,  ሺℎଵሻିଷ௝ିଵ,  𝑠ିଵሿ௝ୀଵ

ሺ௣ିଵሻ
ଶ ,    ሾሺℎଵሻ

ሺ௣ିହሻ
ଶ ,  𝑠ିଵ,  ℎଵ

ሺ௣ାଵሻ
ଶ  

  ,  𝑠ሿ, ሾℎଵ
௣ିଵ,  𝑠ିଵሿ,    ሾℎଵ

ଷ௝ିଵ,  𝑠,  ሺℎଵ
ିଵሻିଷ௝ିଵ, 𝑠∗ሿ

௝ୀ
ିሺ௣ିଵሻ

ଶ

ି௞ିଵ ,   

ሾሺℎଵ
ିଵሻଷ௝ିଵ,  𝑠ିଵ,  ℎଵ

ିଷ௝ିଵ,  𝑠ିଵሿ௝ୀି௞
ିଶ ,    ሾሺℎଵ

ିଵሻ௣ିସ,  𝑠ିଵ,  𝑡ଶ,  𝑠ሿሻ , 
where 𝑝 ൌ 3𝑘 ൅ 1 or 𝑝 ൌ 3𝑘 ൅ 2, and 𝑠∗ ൌ 𝑠 or 𝑠∗ ൌ 𝑠ିଵ 
based on the value of 𝑗. 

It is clear that the Hamiltonian cycle can be written 
using 𝜙, 𝑝, 𝑞, 𝑠 and ℎଵ via the mathematical proof, without 
generating the graph. Also, any random cycle or path of 
any length can be mathematically written once 𝜙, 𝑝, 𝑞, 𝑠 
and ℎଵ  are known. Therefore, for the cryptographic 
protocols, we are proposing to obtain the Hamiltonian 
paths (or any random path) using the mathematical proofs 
without generating the Cayley graphs. 

The difficulty of determining the Hamiltonian paths or 
cycles (and any random paths or cycles) chosen by the 
communicating parties corresponds to the difficulty of 
determining 𝜙  and the generating set chosen by each 
individual party. 

Premise 4.2. When obtaining Hamiltonian paths using the 
mathematical proofs as we have suggested, it is clear that a 
person need to know 𝜙 and suitable generating elements 
used in defining 𝜙௦ (or 𝜙௦ೕ

ೖ’s). The vertex obtained as the 
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ending vertex of a Hamiltonian path is different for 
different choices of the generating elements.  

Therefore, by arguments in Lemma 3.1. and Premise 
4.2., it is proven that making the ending vertex public does 
not compromise the security of the protocol and reveal the 
Hamiltonian path chosen, if 𝜃 and the generating elements 
are kept as secrets. If any random path was used in the 
protocol, the same argument follows. In fact, the 
determination of a random path is even harder, due to the 
presence of many random paths in a graph ending at the 
same vertex (more than Hamiltonian paths). 

Let 𝑋௔ ൌ 𝐶𝑎𝑦ሺ𝐻 ⋊థ 𝐾, 𝑆௔ሻ and 𝑋௕ ൌ 𝐶𝑎𝑦ሺ𝐻 ⋊ఏ 𝐾, 
𝑆௕ሻ  be the Cayley graphs of Alice and Bob, with respect 
to the generating sets 𝑆௔, 𝑆௕ defined above. As the public 
element Bob chooses the ending vertex of a Hamiltonian 
path or any random path in the Cayley graph, ሺℎு, 𝑠ுሻ 
(starting at the identity vertex) and the remaining steps of 
the protocols; both under protocol 1 and protocol 2, can be 
followed similarly (if the path doesn’t start at the identity 
vertex, the product of the generating elements representing 
the path will not be equal to ሺℎு, 𝑠ுሻ and it will have to be 
taken in to account when performing computations).   

The generation of Hamiltonian paths and cycles using 
mathematical proofs (as in Example 4.1.) is possible once 
𝐻, 𝐾  and 𝜙  are known, instead of generating the graph. 
This is an advantage, for both efficiency and security of 
the protocol (if paths in graphs are to be used). However, a 
naıሷve attack is possible, which is, checking all possible 
homomorphisms (𝜙’s) for known 𝐻, 𝐾, and attempting to 
identify the ending vertices of all possible Hamiltonian 
paths in Cayley graphs. The ending vertices will be unique 
and identifiable if there is to be only one generating set, 
rather than a randomly chosen one. Thus, the random 
choice of the generating sets and keeping the generating 
elements and automorphisms as secrets makes the 
cryptographic scheme secure against this attack. 

5. Applications to Generalized DLP 

In this section, we propose operation of variants of the 
Generalized Diffie-Hellman key exchange and the El-
Gamal encryption schemes introduced in [21], using 
Hamiltonian paths (or any random path) in Cayley graphs 
of finite groups. 

5.1 Discrete Logarithm Problem and Generalized 
Discrete Logarithm Problem 

The traditional DLP has been the foundation of many 
practical public-key cryptosystems used up to date. For a 
finite cyclic group 𝐺, generated by an element 𝛼, the DLP 
is to find a non-negative integer 𝑥 , such that 𝛼௫ ൌ 𝛽 , 
where 𝛽 ∈ 𝐺. 

The authors of [22], had generalized the concept of 
DLP to a problem over non-abelian groups. They had 
named it as the GDLP, which can be identified as one of 

the numerous attempts to extend the notion of the 
traditional DLP to a problem over non-abelian groups.    

Definition 5.1. [22] Let G be a finite group generated by 
𝛼ଵ, ⋯ , 𝛼௧. i.e. 𝐺 ൌ ⟨𝛼ଵ, ⋯ , 𝛼௧⟩. Denote by 𝛼 ൌ ሺ𝛼ଵ, ⋯ , 𝛼௧ሻ, 
the ordered tuple of generators of the group 𝐺 . For a 
given 𝛽 ∈ 𝐺 , the GDLP of 𝛽  with respect to 𝛼  is to 
determine a positive integer 𝑘 and a ሺ𝑘𝑡ሻ- tuple of non-
negative integers 𝑥 ൌ ሺ𝑥ଵଵ, ⋯ , 𝑥ଵ௧, ⋯ , 𝑥௞ଵ, ⋯ , 𝑥௞௧ሻ  such 

that, 𝛽 ൌ ැ ሺ𝛼ଵ
௫೔భ ⋯ 𝛼௧

௫೔೟ሻ
௞

௜ୀଵ
. 

This can be expressed using the notation 𝛽 ൌ 𝛼௫. The 
ሺ𝑘𝑡ሻ-tuples ሺ𝑥ଵଵ, ⋯ , 𝑥ଵ௧, ⋯ , 𝑥௞ଵ, ⋯ , 𝑥௞௧ሻ are known as the 
generalized discrete logarithms of 𝛽 with respect to 𝛼 ൌ
ሺ𝛼ଵ, ⋯ , 𝛼௧ሻ. In 2010, I. Ili𝑐́ [21] (see [23] for a detailed 
description) had conducted further studies on this GDLP, 
and had proposed generalized versions of the Diffie-
Hellman key exchange and the El-Gamal encryption 
schemes based on it. In order to overcome the inequality, 
ሺ𝛼௫ሻ௬ ് ሺ𝛼௬ሻ௫ associated with the non-abelian elements, 
the operation of conjugation by elements was introduced 
to commute with the exponentiation by integers.  

Theorem 5.2. [23] Let 𝐺 ൌ ⟨𝛼ଵ, ⋯ , 𝛼௡⟩ be a finite  non-
abelian group. Let ሺ𝛼ଵ, ⋯ , 𝛼௡ሻ௫  denote the operation of 
exponentiation by  integer 𝑥  and for 𝑔 ∈ 𝐺  let 
ሺ𝛼ଵ, ⋯ , 𝛼௡ሻ௚  denote the operation of conjugation: 
ሺ𝛼ଵ, ⋯ , 𝛼௡ሻ௚ ൌ ሺ𝛼ଵ

௚, ⋯ , 𝛼௡
௚ሻ ൌ ሺ𝑔ିଵ𝛼ଵ𝑔, ⋯ , 𝑔ିଵ𝛼௡𝑔ሻ . 

Then, ሺሺ𝛼ଵ, ⋯ , 𝛼௡ሻ௫ሻ௚ ൌ ሺሺ𝛼ଵ, ⋯ , 𝛼௡ሻ௚ሻ௫. 

Let ሺℎ, 𝑘ሻ, ሺℎᇱ, 𝑘ᇱሻ ∈ 𝐻 ⋊థ 𝐾 . Let us consider the 
conjugate of an element in this group: 
ሺℎ, 𝑘ሻିଵሺℎᇱ, 𝑘ᇱሻሺℎ, 𝑘ሻ ൌ ሺ𝜙௞

ିଵሺℎିଵሻ, 𝑘ିଵሻሺℎᇱ, 𝑘ᇱሻሺℎ, 𝑘ሻ ൌ
ሺ𝜙௞

ିଵሺℎିଵሻ ൉ 𝜙௞షభሺℎᇱሻ, 𝑘ିଵ ൉ 𝑘ᇱሻሺℎ, 𝑘ሻ ൌ ሺ𝜙௞
ିଵሺℎିଵሻ ൉

𝜙௞షభሺℎᇱሻ ൉ 𝜙௞షభ൉௞ᇲሺℎሻ, 𝑘ିଵ ൉ 𝑘ᇱ ൉ 𝑘ሻ ൌ ሺ𝜙௞
ିଵሺℎିଵሻ ൉

𝜙௞షభሺℎᇱሻ ൉ 𝜙௞షభ൉௞ᇲሺℎሻ, 𝑘ᇱሻ. 

If the platform group used is a group which doesn’t 
have an efficient and a faithful representation as a matrix 
group (algebraic span method is easily applicable if it has 
matrix representations) , then following the explanations in 
Lemma 3.1. it is clear, that conjugacy search problem is a 
difficult problem in most of these semidirect products, 
even if ሺℎᇱ, 𝑘ᇱሻ is known, since there are many triplets of 
values possible to be occupied by 𝜙௞

ିଵሺℎିଵሻ, 𝜙௞షభሺℎᇱሻ and 
𝜙௞షభ൉௞ᇲሺℎሻ, which can simplify to give the same result, 
making it impossible to determine exact ℎ and 𝑘 values.  

5.2 A Generalized Diffie-Hellman key exchange protocol 
using paths in Cayley graphs 

Let Alice and Bob be communicating using 𝐺 ൌ
𝐻 ⋊థ 𝐾 (the same group instead of using different groups). 
With respect to a Hamiltonian path (starting at the identity 
vertex), or any random path in a Cayley graph of 𝐺, let the 
secret value 𝑥 denote a tuple of elements representing the 
exponents of each generating element along the path. 
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1. Let 𝑋௔ ൌ 𝐶𝑎𝑦ሺ𝐻 ⋊థ 𝐾, 𝑆௔ሻ, where 𝑆௔ ൌ ሼ𝑠, 𝑡ሽ chosen 

by Alice.  

     Let 𝛼 ൌ ቆ𝑠, 𝑡, 𝑠, 𝑡, ⋯ , 𝑠, 𝑡ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௡ି௧௘௥௠௦

ቇ be the sequence of elements 

falling along the Hamilton path (or any random path), 
𝑠௫భ, 𝑡௫మ, 𝑠௫య, 𝑡௫ర, ⋯ , 𝑠௫೙షభ, 𝑡௫೙ be the Hamiltonian path (or 
any random path) represented in terms of the generating 
elements of the Cayley graph and, 𝛽 ൌ
𝑠௫భ𝑡௫మ𝑠௫య𝑡௫ర ⋯ 𝑠௫೙షభ𝑡௫೙. Then, 𝑥 ൌ ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 
⋯ , 𝑥௡ሻ.    

     Alice’s secret keys are ሼ𝑠, 𝑡ሽ and 𝑥. Public-keys are, 
ሺሼ𝑔ଵ, 𝑔ଶ, ⋯ , 𝑔௝, 𝑠, 𝑡, 𝑔௝ାଵ, ⋯ , 𝑔௜ሽ, 𝛽ሻ for some 𝑔ଵ, 𝑔ଶ, ⋯, 

𝑔௜ ∈ 𝐻 ⋊థ 𝐾, placed at arbitrary positions in the sequence 

ሼ𝑔ଵ, 𝑔ଶ, ⋯ , 𝑔௝, 𝑠, 𝑡, 𝑔௝ାଵ, ⋯ , 𝑔௜ሽ (positions of the generating 

elements 𝑠, 𝑡 are to be known only by Alice and the same 
arguments follow for |𝑆௔| ൐ 2). 

2. Bob chooses a secret key, 𝑔 ൌ ሺℎ, 𝑘ሻ ∈ 𝐻 ⋊థ 𝐾, and 

compute, 𝛽ᇱ ൌ ሺ𝑔ିଵ𝑔ଵ𝑔,  𝑔ିଵ𝑔ଶ𝑔,  ⋯ ,  𝑔ିଵ𝑔௝𝑔,  𝑔ିଵ 

𝑠𝑔,  𝑔ିଵ𝑡𝑔, 𝑔ିଵ𝑔௝ାଵ𝑔, ⋯ , 𝑔ିଵ𝑔௜𝑔ሻ, keeping the same 

order of elements as in Alice’s public-key sequence. 
The public-key of Bob is 𝛽ᇱ.    

3. Alice identify 𝑔ିଵ𝑠𝑔, 𝑔ିଵ𝑡𝑔, by their positions in 𝛽ᇱ 
(which is known by her only) and compute, 

ሺ𝛽ᇱሻ௫ ൌ ሺ𝑔ିଵ𝑠𝑔ሻ௫భሺ𝑔ିଵ𝑡𝑔ሻ௫మሺ𝑔ିଵ𝑠𝑔ሻ௫యሺ𝑔ିଵ𝑡𝑔ሻ௫ర 
                                                ⋯ ሺ𝑔ିଵ𝑠𝑔ሻ௫೙ିଵሺ𝑔ିଵ𝑡𝑔ሻ௫೙  

ൌ ሺ𝑔ିଵ𝑠௫భ𝑔ሻሺ𝑔ିଵ𝑡௫మ𝑔ሻሺ𝑔ିଵ𝑠௫య𝑔ሻሺ𝑔ିଵ𝑡௫ర𝑔ሻ ⋯ 

            ሺ𝑔ିଵ𝑠௫೙ିଵ𝑔ሻሺ𝑔ିଵ𝑡௫೙𝑔ሻ 

    ൌ 𝑔ିଵ𝑠௫భ𝑡௫మ𝑠௫య𝑡௫ర ⋯ 𝑠௫೙ିଵ𝑡௫೙𝑔, and Bob computes, 

 𝛽௚ ൌ 𝑔ିଵሺ𝑠௫భ𝑡௫మ𝑠௫య𝑡௫ర ⋯ 𝑠௫೙ିଵ𝑡௫೙ሻ𝑔 , establishing a 
shared secret key  between the two communicating parties. 

5.3 Security Analysis and Discussions 

 Based on the choice for 𝑆௔, the order of vertices visited 
and the ending vertex of the Hamiltonian path (or any 
random path) changes. This enhances the security of 
the scheme.      

      It is mentioned to place the elements 𝑔ଵ, 𝑔ଶ, ⋯ , 𝑔௜ 
at arbitrary positions in the sequence 
ሼ𝑔ଵ, 𝑔ଶ, ⋯ , 𝑔௝, 𝑠, 𝑡, 𝑔௝ାଵ, ⋯ , 𝑔௜ሽ, in order to hide which 
elements were chosen as ሼ𝑠, 𝑡ሽ. Even the placement of 
𝑠, 𝑡 can be consecutive or apart from each other.     

 As 𝑥 , if Alice chose a sequence of exponents 
corresponding to a random path rather than a 
Hamiltonian path, 𝛽 will represent the ending vertex of 
the particular path, and it amplifies the security of the 
protocol through creation of further ambiguity to an 
eavesdropper in tracing the secret key 𝑥. 

 The proposed scheme is more secure if there are 
several Hamiltonian paths which end at the same 
vertex (since this gives several possibilities for 𝑥 and 
uncertainty in determining ሼ𝑠, 𝑡ሽ  and 𝑥  based on the 
ending vertex if a Hamiltonian path is to be used). 

      In fact, in the proposed protocol, if the ending 
vertex of the Hamiltonian path is to be chosen as 𝛽, it 
is necessary to assume that,   

Assumption 5.3. There exists several Hamiltonian paths 
ending at the same vertex either for a fixed choice of 𝑆௔ or 
randomized different choices of 𝑆௔ or both cases. 

5.4 A Generalized El-Gamal encryption scheme using 
paths in Cayley graphs  

1. Key generation: Let 𝐻 ⋊థ 𝐾 be the non-abelian group 

over which the communication processes. Let the 
Cayley graph 𝑋௔, the choice of the generating set 
𝑆௔, 𝛼 and all public and private-keys of Alice and Bob 
be same as in the preceding protocol (the same 
arguments follow for |𝑆௔| ൐ 2).     

2. Encryption: To send a message 𝑚 ∈ 𝐻 ⋊థ 𝐾 to Alice, 

Bob computes, 𝐶 ൌ 𝑚𝛽௚ and send the encrypted 
message 𝐶 to her.     

3. Decryption: To decrypt the message from Bob, Alice 
uses her secret key 𝑥 to compute, 

ሺ𝛽ᇱሻ௫ ൌ ሺ𝑔ିଵ𝑠𝑔ሻ௫భሺ𝑔ିଵ𝑡𝑔ሻ௫మሺ𝑔ିଵ𝑠𝑔ሻ௫యሺ𝑔ିଵ𝑡𝑔ሻ௫ర 
                    ⋯ ሺ𝑔ିଵ𝑠𝑔ሻ௫೙ିଵሺ𝑔ିଵ𝑡𝑔ሻ௫೙ 

     ൌ 𝑔ିଵ𝑠௫భ𝑡௫మ𝑠௫య𝑡௫ర ⋯ 𝑠௫೙ିଵ𝑡௫೙𝑔 ൌ ሺ𝛼௚ሻ௫, and ሺሺ𝛽ᇱሻ௫ሻିଵ, 
    and multiplies on the right by 𝐶 she received from Bob. 
       𝐶 ൉ ሺ𝛽ᇱሻି௫ ൌ 𝑚𝛽௚ሺ𝛼௚ሻି௫ ൌ 𝑚ሺ𝛼௫ሻ௚ሺ𝛼௚ሻି௫ ൌ 𝑚. 

The discussions on security for the previous scheme 
also apply to this protocol as well. Alice’s secret key can 
be chosen to represent a Hamiltonian path or any random 
path. The schemes are secure only if 𝑠, 𝑡  are 
indistinguishable from the other elements of the public 
sequence. Both the protocols can be evaluated by choosing 
any element of the group directly, even though use of 
paths from a Cayley graph is illustrated due to the 
academic interest and novelty.   

6. Resistance to Algebraic span cryptanalysis 

In [19], B. Tsaban et al. introduced a method to obtain 
provable polynomial time solutions of problems in non-
abelian group based Cryptography. Known as the 
“algebraic span cryptanalysis”, this technique had evolved 
founded upon previously proposed methods such as 
Cheon-Jun method [24] and the Tsaban’s linear centralizer 
method [25]. Tsaban’s span method is applicable to 
problems where a system of linear equations can be 
obtained from matrix pairs 𝑔 and 𝑓 ൌ 𝑔௭ , when 𝑔 and 𝑓 
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are known (notation: 𝑔௭ ൌ 𝑧ିଵ𝑔𝑧 for a matrix 𝑧). Thus, it 
can be easily used on non-abelian groups that have 
efficient and faithful representations as matrix groups and 
is a very influential attack.  

By integrating a notion of marginal sets, V. 
Roman’kov [20] has suggested the creation of a system 
with the matrix pairs 𝑔  and 𝑓 ൌ ሺ𝑐𝑔ሻ௭ , where a linear 
system of equations can’t be obtained, hence making it 
resistant against this attack (ሺ𝑐𝑔ሻ௭ ൌ 𝑧ିଵሺ𝑐𝑔ሻ𝑧). The use 
of a “salt” 𝛾 , in the system 𝑋ିଵ𝐴𝑋 ൌ 𝛾𝐵 , to create 
resistance against conjugacy search in [26] also quite 
resembles this approach in the way of using a product of 
elements 𝑐𝑔, 𝛾𝐵 to hide the original 𝑔 and 𝐵.  

Let 𝐹  be a free group on a countably infinite set 
ሼ𝑥ଵ, 𝑥ଶ, ⋯ ሽ and 𝑊 be a non-empty subset of 𝐹. The value 
of the word 𝑤 at ሺ𝑔ଵ, ⋯ , 𝑔௡ሻ is defined to be 𝑤ሺ𝑔ଵ, ⋯ , 𝑔௡ሻ, 
for 𝑤 ൌ 𝑤ሺ𝑥ଵ, ⋯ , 𝑥௡ሻ ∈ 𝑊 , and 𝑔ଵ, ⋯ , 𝑔௡ ∈ 𝐺 ; 𝐺  is a 
group. 

Definition 6.1. [20] For 𝑛 ∈ ℕ, let 𝑤 ൌ 𝑤ሺ𝑥ଵ, ⋯ , 𝑥௡ሻ be a 
group word, 𝐺 be a group and 𝑔 ൌ ሺ𝑔ଵ, ⋯ , 𝑔௡ሻ be a tuple 
of elements of 𝐺. A tuple 𝑐 ൌ ሺ𝑐ଵ, ⋯ , 𝑐௡ሻ ∈ 𝐺௡  is said to 
be a “marginal tuple” determined by 𝑤  and 𝑔  if, 
𝑤ሺ𝑐ଵ𝑔ଵ, ⋯ , 𝑐௡𝑔௡ሻ ൌ 𝑤ሺ𝑔ଵ, ⋯ , 𝑔௡ሻ. This is denoted by 𝑐 ⊥
𝑤ሺ𝑔ሻ. 

Likewise, a set 𝐶 ⊆ 𝐺௡  is said to be marginal with 
respect to 𝑤 and 𝑔, denoted by 𝐶 ⊥ 𝑤ሺ𝑔ሻ, if 𝑐 ⊥ 𝑤ሺ𝑔ሻ for 
every 𝑐 ∈ 𝐶. The author also indicates a universal method 
of obtaining a marginal set 𝐶 by a word 𝑤 in [20]: 

Let 𝑤 ൌ 𝑤ሺ𝑎ଵ, ⋯ , 𝑎௞ሻ ൌ 𝑎ଵ𝑎ଶ ⋯ 𝑎௞,  𝑎௜ ∈ 𝐺 , 1 ൑ 𝑖 ൑
𝑘, be any expression in straight form of a fixed element 
𝑓 ∈ 𝐺 . The values, 𝑎௜ ൌ 𝑎௝  or 𝑎௜ ൌ 𝑎௝

ିଵ  for 𝑖 ് 𝑗  are 
viable and this word is non-reducible.  
     Consider  𝑥ଵ𝑎ଵ𝑥ଶ𝑎ଶ ⋯ 𝑥௞𝑎௞ ൌ 𝑓   → ሺ1ሻ                                

Every solution of ሺ1ሻ can be included in a marginal set 
𝐶. We can fix 𝑖 and choose any value 𝑥௝ ൌ 𝑐௝, 𝑗 ് 𝑖, 𝑐௝ ∈ 𝐺. 
Then the solution of ሺ1ሻ is, 
   𝑥௜ ൌ 𝑎௜ିଵ

ିଵ 𝑐௜ିଵ
ିଵ ⋯ 𝑎ଵ

ିଵ𝑐ଵ
ିଵ𝑓𝑎௞

ିଵ𝑐௞
ିଵ ⋯ 𝑎௜ାଵ

ିଵ 𝑐௜ାଵ
ିଵ   → ሺ2ሻ 

Also a solution of ሺ1ሻ can be generated by a sequence 
of the following random elementary insertions. Suppose 
we have a solution, ሺ𝑐ଵ, ⋯ , 𝑐௞ሻ of ሺ1ሻ. For any 𝑖 and any 
random element 𝑑 ∈ 𝐺 , we can change 𝑐௜  to 𝑐௜

ᇱ ൌ
𝑐௜𝑎௜𝑑𝑎௜

ିଵ and 𝑐௜ାଵ  to 𝑐௜ାଵ
ᇱ ൌ 𝑑𝑐௜ାଵ. Then, a new solution 

of ሺ1ሻ is obtained. Continuing this process with random 𝑑 
and 𝑖, a series of new solutions of ሺ1ሻ can be computed.   

Since 𝑤ሺ𝑐ଵ𝑎ଵ, ⋯ , 𝑐௞𝑎௞ሻ ൌ 𝑤ሺ𝑎ଵ, ⋯ , 𝑎௞ሻ, ሺ𝑐ଵ𝑎ଵ, ⋯ , 𝑐௞ 
𝑎௞ሻ could be used instead of ሺ𝑎ଵ, ⋯ , 𝑎௞ሻ in an algorithm to 
make it secure, while not having the slightest change to the 
results of computations.  

We have made all the above proposals independently 
before reading and understanding the literature [19], [20]. 
But if the platform group utilized for the implementation 
of the protocols has an efficient matrix representation they 

are vulnerable to the algebraic span cryptanalysis. Hence, 
we suggest the following modified steps integrating the 
proposal in [20] to overcome this attack. Let all the 
notations and variables be same as in the initial proposals 
in sections 3 and 5. 

6.1 Modified signature protocol 1 

1. To use the method under protocol 1, Bob first write 𝑤 
in terms of ℎଵ, ⋯ , ℎ௜್

.   

𝑤 ൌ ℎଵ
௫భ ⋯ ℎ௜್

௫೔್ ൌ ℎଵ ൉ ℎଵ ⋯ ℎଵᇣᇧᇧᇤᇧᇧᇥ
௫భି௧௜௠௘௦

⋯ ℎ௜್
൉ ℎ௜್

⋯ ℎ௜್ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௫೔್

ି௧௜௠௘௦

 

and determines all marginal tuples, 𝑐 ൌ
ሺ𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௫భ, ⋯ , 𝑐௫ିሺ௫೔್

ିଵሻ, 𝑐௫ିሺ௫೔್
ିଶሻ, ⋯ , 𝑐௫ሻ  

such that,   𝑤 ൌ 𝑐ଵ ൉ ℎଵ ൉  𝑐ଶ ൉ ℎଵ  ⋯ 𝑐௫భ ൉ ℎଵ ⋯  

        𝑐௫ିሺ௫೔್
ିଵሻ ൉ ℎ௜್

 ൉ 𝑐௫ିሺ௫೔್
ିଶሻ ൉ ℎ௜್

 ⋯ 𝑐௫ ൉ ℎ௜್
 

2. Then, he obtain a sequence, ሼℎଵ, ℎଵ, ℎ௜್ାଵ, ⋯ , ℎ௜್ାଷ, 

⋯ , ℎ௜್
ሽ , where ℎ௜್ାଵ, ℎ௜್ାଶ, ℎ௜್ାଷ, ⋯  are extra 

additions at random positions known only by him. 

Bob also modifies the set 𝐷 consisting of the marginal 
tuples, so that each marginal tuple will have extra 
elements added at the same positions. 

That is, 𝑐ᇱ ൌ ሺ𝑐ଵ, 𝑐ଶ, 𝑐௫ାଵ, ⋯ , 𝑐௫ାଷ, ⋯ , 𝑐௫ሻ  for all 𝑐ᇱ ∈ 𝐷
ᇱ
, 

where 𝐷
ᇱ

 is the modified marginal set and 
𝑐௫ାଵ, 𝑐௫ାଶ, 𝑐௫ାଷ, ⋯ are extra elements added. 

3. Bob make ሺℎு, 𝑠ுሻ, the sequence 

ሼℎଵ, ℎଵ, ℎ௜್ାଵ, ⋯ , ℎ௜್ାଷ, ⋯ , ℎ௜್
ሽ, and 𝐷

ᇱ
, public. 

4. Alice chooses a random 𝑐ᇱ ∈ 𝐷
ᇱ
, a secretly chosen 

arbitrary 𝜙௭, compute, ሼ𝜙௭ሺ𝑐ଵ ൉ ℎଵሻ, 𝜙௭ሺ𝑐ଶ ൉ ℎଵሻ, 𝜙௭ 

ሺ𝑐௫ାଵ ൉ ℎ௜್ାଵሻ, ⋯ , 𝜙௭ሺ𝑐௫ାଷ ൉ ℎ௜್ାଷሻ, ⋯ , 𝜙௭ሺ𝑐௫ ൉ ℎ௜್
ሻሽ and 

send the sequence to Bob in the same order. 

5. Bob compute, 𝜙௭ሺ𝑐ଵ ൉ ℎଵሻ ൉ 𝜙௭ሺ𝑐ଶ ൉ ℎଵሻ ⋯ 𝜙௭ሺ𝑐௫ ൉ ℎ௜್
ሻ    ൌ

𝜙௭ሺ𝑐ଵ ൉ ℎଵ ൉ 𝑐ଶ ൉ ℎଵ ⋯ 𝑐௫ ൉ ℎ௜್
ሻ ൌ 𝜙௭ሺ𝑤ሻ, using the 

correct (hidden) values from the sequence. 
Then, 𝜙௭ሺ𝑤ିଵሻ ൌ 𝑆𝑖𝑔 is computed and he 

attaches it to the message as the signature. 
6. Alice multiplies, 𝜙௭ሺℎுሻ ൉ 𝑆𝑖𝑔 ൌ ℎ, and compare with 

the hash value obtained from the decrypted message 
same as in the original proposal.  

If 𝑐௬’s obtained are equal for each ℎ௬ , for particular 
𝑦’s Bob may include ℎ௬  and 𝑐௬  only once in the public 
sequences. Once he acquire the mapping under 𝜙௭, he can 
take it’s product with itself, 𝑥௬ െ  times to obtain the 
relevant value (1 ൑ 𝑦 ൑ 𝑖௕).  

Example 6.2. Suppose a marginal tuple is 𝑐 ൌ ሺ𝑐ଵ, 𝑐ଵ, ⋯ , 𝑐ଵᇣᇧᇧᇤᇧᇧᇥ
௫భି௧௜௠௘௦

, 
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⋯ , 𝑐௫೔್
, 𝑐௫೔್

, ⋯ , 𝑐௫೔್ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
௫೔್

ି௧௜௠௘௦

ሻ. Then, Bob can make  ሼℎ1, ℎ2, ℎ𝑖𝑏൅1, ⋯, 

ℎ௜್ାଷ, ⋯ , ℎ௜್
ሽ, public together with the modified marginal 

tuples, 𝑐ᇱ ൌ ሺ𝑐ଵ, 𝑐ଶ, 𝑐௫೔್
ାଵ, ⋯ , 𝑐௫೔್

ାଷ, ⋯ , 𝑐௫೔್
ሻ ∈ 𝐷

ᇱ
, where 

ℎ௜್ାଵ, ℎ௜್ାଶ, ℎ௜್ାଷ, ⋯  and 𝑐௫೔್
ାଵ, 𝑐௫೔್

ାଶ, 𝑐௫೔್
ାଷ, ⋯  are extra 

elements added. The equal elements are not repeatedly 
mentioned in the sequence nor the modified marginal 
tuples. After Alice sends, ሼ𝜙௭ሺ𝑐ଵ ൉ ℎଵሻ, 𝜙௭ሺ𝑐ଶ ൉ ℎଶሻ, 𝜙௭ሺ𝑐௫೔್

ାଵ ൉

ℎ௜್ାଵሻ, ⋯ , 𝜙௭ሺ𝑐௫೔್
ାଷ ൉ ℎ௜್ାଷሻ, ⋯ , 𝜙௭ሺ𝑐௫೔್

൉ ℎ௜್
ሻሽ , Bob can  

identify 𝜙௭ሺ𝑐௬ ∙ ℎ௬ሻ ’s and obtain the products of each 
element with itself 𝑥௬ െ  times to compute any 
𝜙௭ሺሺ𝑐௬ ∙ ℎ௬ሻ ∙ ሺ𝑐௬ ∙ ℎ௬ሻ ⋯ ሺ𝑐௬ ∙ ℎ௬ሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ

௫೤ି௧௜௠௘௦

ሻ. 

6.2 Modified signature protocol 2 

1. Recall that, 𝑤 ൌ 𝑒𝑙𝑡ଵ
௥భ ൉ 𝑒𝑙𝑡ଶ

௥మ ⋯ 𝑒𝑙𝑡௅
௥ಽ. Bob compute 

marginal tuples 𝑐 ∈ 𝐷 such that, 
𝑤 ൌ 𝑐ଵ ൉ 𝑒𝑙𝑡ଵ  ൉  𝑐ଶ ൉ 𝑒𝑙𝑡ଵ   ⋯ 𝑐௅ᇲ ൉ 𝑒𝑙𝑡௅. 

2. He modifies the sequence of public elements as well 
as each marginal tuple in the marginal set by 
including extra elements, at the same positions and 
make them public together with ሺℎு, 𝑠ுሻ. 

      The modified public sequence would be like, 
ሼ𝑒𝑙𝑡ଵ, 𝑒𝑙𝑡ଵ, 𝑒𝑙𝑡௅ାଵ, ⋯ , 𝑒𝑙𝑡௅ାଷ, ⋯ , 𝑒𝑙𝑡௅ሽ, where 𝑒𝑙𝑡௅ାଵ, 
𝑒𝑙𝑡௅ାଶ, 𝑒𝑙𝑡௅ାଷ, ⋯  are extra elements and a modified  
tuple 𝑐ᇱ would be, 𝑐ᇱ ൌ ሺ𝑐ଵ, 𝑐ଶ, 𝑐௅ᇲାଵ, ⋯ , 𝑐௅ᇲାଷ, ⋯ , 𝑐௅ᇲሻ 

∈ 𝐷
ᇱ
, where 𝑐௅ᇲାଵ, 𝑐௅ᇲାଶ, 𝑐௅ᇲାଷ, ⋯ are extra additions. 

3. Alice chooses a tuple 𝑐ᇱ ∈ 𝐷
ᇱ
 and shares the sequence, 

ሼ𝜙௭ሺ𝑐ଵ ൉ 𝑒𝑙𝑡ଵሻ, 𝜙௭ሺ𝑐ଶ ൉ 𝑒𝑙𝑡ଵሻ, 𝜙௭ሺ𝑐௅ᇲାଵ ൉ 𝑒𝑙𝑡௅ାଵሻ, ⋯, 

  𝜙௭ሺ𝑐௅ᇲାଷ ൉ 𝑒𝑙𝑡௅ାଷሻ, ⋯ , 𝜙௭ሺ𝑐௅ᇲ ൉ 𝑒𝑙𝑡௅ሻሽ 

4. Bob identify the necessary elements by their positions 
in the sequence and compute, 

         𝜙௭ሺ𝑐ଵ ൉ 𝑒𝑙𝑡ଵሻ ൉ 𝜙௭ሺ𝑐ଶ ൉ 𝑒𝑙𝑡ଵሻ ⋯ 𝜙௭ሺ𝑐௅ᇲ ൉ 𝑒𝑙𝑡௅ሻ     
          ൌ 𝜙௭ሺ𝑐ଵ ൉ 𝑒𝑙𝑡ଵ ൉ 𝑐ଶ ൉ 𝑒𝑙𝑡ଵ ⋯ 𝑐௅ᇲ ൉ 𝑒𝑙𝑡௅  ൌ 𝜙௭ሺ𝑤ሻ. 

    Then he obtains, 𝜙௭ሺ𝑤ିଵሻ ൌ 𝑆𝑖𝑔  and attach it to the 
message, which can be verified by Alice following the 
same steps mentioned before.  

 As discussed under the protocol 1’s modification 
above, if 𝑐௝’s obtained corresponding to 𝑒𝑙𝑡௝ for particular 
𝑗’s are equal, Bob may include 𝑒𝑙𝑡௝ and 𝑐௝ only once in the 
public sequences. Once he acquire the mapping under 𝜙௭, 
he can obtain it’s product with itself, 𝑟௝ െ times to obtain 
the relevant value (1 ൑ 𝑗 ൑ 𝐿).   

6.3 Modified Generalized Diffie-Hellman protocol 

1. Alice compute a marginal set 𝐶 ⊥ 𝛽ሺ𝑔ሻ, where 𝑔 is 
the tuple 𝑔 ൌ ሺ𝑠, 𝑡ሻ. Then her public-keys are 

ሺሼ𝑔ଵ, 𝑔ଶ, ⋯ , 𝑔௝, 𝑠, 𝑡, 𝑔௝ାଵ, ⋯ , 𝑔௜ሽ, 𝛽, 𝐶
ᇱ
ሻ and the 

private-keys are same as before, where 𝐶
ᇱ
 is the 

modified marginal set with additional elements 

𝑐ଵ, ⋯ , 𝑐௜ added to each tuple 𝑐 ∈ 𝐶 at same positions 
occupied by the additions ሼ𝑔ଵ, ⋯ , 𝑔௜ሽ. 

2. Bob chooses a random marginal tuple 𝑐 ൌ

ሺ𝑐ଵ, ⋯ , 𝑐௝, 𝑐ᇱ, 𝑐ᇱᇱ, 𝑐௝ାଵ, ⋯ , 𝑐௜ሻ ∈ 𝐶  and compute 𝛽ᇱ ൌ

ሺ𝑔ିଵ  𝑐ଵ𝑔ଵ  𝑔,    𝑔ିଵ  𝑐ଶ𝑔ଶ  𝑔,    ⋯ , 𝑔ିଵ  𝑐௝𝑔௝   𝑔,    𝑔ିଵ   𝑐ᇱ𝑠   

  𝑔,      𝑔ିଵ  𝑐ᇱᇱ𝑡𝑔,    𝑔ିଵ  𝑐௝ାଵ𝑔௝ାଵ  𝑔,    ⋯ ,    𝑔ିଵ  𝑐௜𝑔௜   𝑔ሻ ,keeping 

the same order of elements as in Alice’s public-key 
sequence. The public-key of Bob is now 𝛽ᇱ. 

3. Alice identify 𝑔ିଵ𝑐ᇱ𝑠𝑔, 𝑔ିଵ𝑐ᇱᇱ𝑡𝑔, by their positions in 
𝛽ᇱ (which is known by her only) and compute, 

ሺ𝛽ᇱሻ௫ ൌ ሺ𝑔ିଵ𝑐ᇱ𝑠𝑔ሻ௫భሺ𝑔ିଵ𝑐ᇱᇱ𝑡𝑔ሻ௫మሺ𝑔ିଵ𝑐ᇱ𝑠𝑔ሻ௫య 

         ሺ𝑔ିଵ𝑐ᇱᇱ𝑡𝑔ሻ௫ర ⋯ ሺ𝑔ିଵ𝑐ᇱ𝑠𝑔ሻ௫೙ିଵሺ𝑔ିଵ𝑐ᇱᇱ𝑡𝑔ሻ௫೙  

     ൌ ሺ𝑔ିଵሺ𝑐ᇱ𝑠ሻ௫భ𝑔ሻሺ𝑔ିଵሺ𝑐ᇱᇱ𝑡ሻ௫మ𝑔ሻሺ𝑔ିଵሺ𝑐ᇱ𝑠ሻ௫య𝑔ሻ 

          ሺ𝑔ିଵሺ𝑐ᇱᇱ𝑡ሻ௫ర𝑔ሻ ⋯ ሺ𝑔ିଵሺ𝑐ᇱ𝑠ሻ௫೙ିଵ𝑔ሻሺ𝑔ିଵሺ𝑐ᇱᇱ𝑡ሻ௫೙𝑔ሻ 

    ൌ 𝑔ିଵሺ𝑐ᇱ𝑠ሻ௫భሺ𝑐ᇱᇱ𝑡ሻ௫మሺ𝑐ᇱ𝑠ሻ௫యሺ𝑐ᇱᇱ𝑡ሻ௫ర ⋯ ሺ𝑐ᇱ𝑠ሻ௫೙ିଵ 

        ሺ𝑐ᇱᇱ𝑡ሻ௫೙𝑔, and Bob computes,𝛽௚ ൌ 𝑔ିଵሺ𝑠௫భ𝑡௫మ𝑠௫య  

    𝑡௫ర ⋯ 𝑠௫೙ିଵ𝑡௫೙ሻ𝑔, establishing a shared secret key. 

    This is applicable, if the component of the marginal 
tuple multiplying each 𝑠  in the element 𝛽  are equal and 
that multiplying each 𝑡 are also equal. That is, equal to 𝑐ᇱ 
and 𝑐ᇱᇱ  respectively. Otherwise, suppose, 𝛽 ൌ 𝑠𝑡𝑠𝑠𝑡 ⋯ 𝑡 . 
Then, marginal tuples ሺ𝑐ଵ, ⋯ , 𝑐௬೙

ሻ can be computed such 

that, 𝛽 ൌ ሺ𝑐ଵ𝑠ሻሺ𝑐ଶ𝑡ሻሺ𝑐ଷ𝑠ሻሺ𝑐ସ𝑠ሻሺ𝑐ହ𝑡ሻ ⋯ ሺ𝑐௬೙𝑡ሻ . Let 𝐶  be 

the set with all such marginal tuples, and 𝐶
ᇱ
 be the set 

including modified marginal tuples 𝑐ᇱ ൌ
ሺ𝑐ଵ, 𝑑ଵ, 𝑐ଶ, ⋯ , 𝑐௬೙ሻ  with additional elements 𝑑ଵ, 𝑑ଶ, ⋯   at 

random positions. The set 𝐶
ᇱ
 can then be used as a public-

key in the protocol. 

6.4 Modified Generalized El-Gamal scheme 

The computation of marginal sets can be done as 
explained in the above scheme and the rest of the steps 
could be implemented following the original statement in 
section 5.   

The presentation of elements in the public sequences, 
by taking permutations of the elements or adding extra 
elements, to hide the true elements which will be used in 
computations and the length of the words, could be further 
followed as proposed in [20] to achieve better security, 
which resembles our proposals as well to a certain extent.  
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7. Conclusion and Future studies 

This research presents another novel approach to 
cryptography using an intractable problem of determining 
automorphisms and generating elements of a finite group. 
While on the contrary many of the previous cryptographic 
schemes using non-abelian groups have been proven to be 
vulnerable, this could be a suggestion of a pathway on new 
further studies leading to stronger schemes. The 
applicability of paths in Cayley graphs in these protocols 
imply that the HPP and HCP in Cayley graphs of non-
abelian groups, and in fact the difficulty of determining 
random paths and cycles in Cayley graphs can also be 
considered in developing public-key cryptographic 
protocols. This study can be regarded as the first, where 
the paths in Cayley graphs were obtained for 
cryptosystems by utilizing the abstract properties of the 
graphs through mathematical proofs rather than suggesting 
to generate the graphs and a useful inception for further 
such researches. Exploring suitable platform groups for the 
implementation of the protocols, investigating novel 
algorithms where the use of paths and cycles in Cayley 
graphs is essential and beneficial, determination of 
improvements to enhance the security of the protocols, 
investigation of protocols which can employ the 𝑦 -
coordinates of the elements of the semidirect products we 
have mentioned are some of the related future research 
directions. 
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