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Abstract: Many mathematical models developed through differential equations to describe the age dependent infectiousness 

of diseases, face the complexity of modelling heterogenic behavior of transmission. There, many of the cases assume the host 

to stay in the same risk class regardless of the age of the hosts. The proposed model mimics the infectiousness according to the 

age-scale of an individual via integral equation approach. This model indicates the applicability of Fredholm type integral 

equations with degenerated kernel. Introducing biological, behavioral and environmental influences provokes to address the 

accumulating nature of different factors in modelling the risk of getting infected. The risk of getting infected is modeled by the 

inability of responding with acquired immunity and the accumulated risk given from the other individuals in each age group 

via the mobility patterns. Within this approach environmental stimulus are modeled via periodic functions in order to describe 

the stochastic behavior of the spreading capabilities. In this study, the behavioral analysis evaluates the maximum risk of 

getting infectious in the considered parsimonious approach. And the sensitivity analysis describes the contribution of the 

mobility risk and stochastic nature on the overall risk. Further the model guides to formulate hypotheses and data collection 

strategies to measure the risk of a disease. 

Keywords: Age Dependent, Degenerated Kernel, Infectiousness, Integral Equations 

 

1. Introduction 

In an epidemiological and public health standpoint, risk-

structured susceptible-infected–recovered (SIR) models 

provide many insights into the dynamics of infections. But it 

generally assumes the host to stay in the same risk class 

irrespective of their age. However, the formalism of age-

structured models accommodates the dynamics of individual 

aging process. These age-structured models are useful in 

providing an insight into the future epidemic behavior and to 

determine the proper control measures. In assessing the 

spread and morbidity of infectious diseases, infectiousness of 

the infected host and the susceptibility of uninfected 

individuals are main factors. Here the infectiousness refers to 

the ability of infecting another susceptible by already 

infected person. In biological perspective it is critical to 

assess this ability but primarily the percentage of infected 

individuals in each age group can be considered as a fair 

indicator. The biological influences, behavioral influences 

and environmental influences are three major components 

that can influence the infectiousness [1]. The biological and 

behavioral influences differ with the age of individuals. The 

environmental influences may have different interpretations 

according to the context addressed, as it could describe all 

the external stimuli effect on the transmission of the disease. 

Mathematical models can be used to link these influences 

to observe the dynamics of infection. This study focuses to 

mimic the infectiousness according to the age-scale. In public 

health perspective, the individuals in their late teenage to 
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twenties tends to be more vulnerable in getting into 

infections due to day-to-day mobilization [2-4]. It is a key 

factor in behavioral influence. Therefore the contact patterns 

of susceptible with infected hosts and susceptible with 

disease carrying agents relates with the mobility patterns of 

individuals which depends on the age [1]. As a biological 

influence, the dynamics of the disease in the body depend on 

the features of an individual immune system is also relies on 

the age of individuals. Depending on the disease, the 

environmental influence may describe the impact of climatic 

variation, impact of vector breeding and stochastic behavior 

of many natural phenomenon. Environmental influences 

cater the dynamics of disease causing pathogens such as 

virus, bacteria, parasites not only in host but also in vectors. 

For an instance vector mosquito involve in diseases like 

Malaria, Filariasis and Dengue. 

Many approaches to capture these heterogeneities in 

transmission has been proposed via systems of differential 

equations [5]. More advanced models are with partial 

differential equations catering both time and age as 

independent variables [6-8]. It remains a considerable 

challenge to determine the parameters to model disease 

transmission in different age groups. In addition, systems with 

integro-differential equations have also been developed [9]. 

However, the proposed integral equation approach differs from 

usual SIR models due to the sequential progression through 

age. It simply requires only one type of equation to incorporate 

acquired immunity and mobility along with some external 

stimuli behavior. It would easily illustrate general behavior of 

infectiousness occurring as an accumulated process. 

2. Model Formulation 

The model proposed here describes the risk of being 

infectious in different age groups. It is first observed that the 

risk is related with inability to respond with acquired 

immunity and the risk accumulated due to mobility of hosts. 

Thus, a model can be established by considering that the 

excessive risk is proportional to accumulated experience of 

the risk due to other individuals of each age group. Here in 

expression (1), �(�)	 is considered as a function of age � 

representing the inability of responding with acquired 

immunity and �(�)  represents the overall risk level. Then 

�(�) − 	�(�)  is the excessive risk at the age � . Here the 

accumulation is governed by �(�, 
) later called the kernel of 

integral equation. The integration is taken over all ages, thus 

it is considered the average life span � as the upper limit. 

�(�) − 	�(�) 	∝ 	
 �(�, 
)�(
)�
��� �
            (1) 

where �(�, 
) = ∑ ��(�)��(
)����  

By introducing a proportional constant � > 0 , model 

equation becomes; 

�(�) = 	�(�) + 	� 
 �(�, 
)�(
)�
� �
          (2) 

The proportional constant shows the incorporation of the 

accumulation given by the integral over the lifespan to the 

excessive risk �(�) − 	�(�). 
One composition of the kernel	�(�, 
) can be proposed as 

∑ ��(�)���� ��(
).	This describe the infectiousness in terms 

of who infected who and how by age-dependent behavioral 

influences via �� ’s and external stimuli via �� ’s. As a 

parsimonious approach, the number of terms needed to 

describe the infectiousness is reduced to one factor in each 

category as in Eq. (3). 

�(�) = 	�(�) + 	� 
 ��(�)��(
)�(
)�
�
�           (3) 

The risk of infectiousness can be described by the above 

model in Eq. (3) where the overall risk is derived by risk due to 

the mobility of each individual weighted by the accumulated 

infectiousness of the other individuals. As, SIR models assume a 

constant rate of infectivity and a constant rate of recovery, here 

in this model ��(
)�(
) describes the infectiousness of the other 

individuals where the individuals who got certain risk of getting 

infected may show the certain capability of infecting others [10, 

11]. Hence summing over the lifespan provides the total 

infectiousness of the population, as an individual may interact 

with individuals in all the age groups. 

In the process of assessing the applicability of this model, 

several hypothetical curves for biological, behavioral and 

environmental influences have been introduced. As described 

earlier, �(�)  represents the inability to respond with the 

acquired immunity at a particular age �. 

�(�) = 1 − 0.9 ∗ "#($%&)
�'"#($%&)                         (4) 

where (	and 	)  are parameters which represent the boosting 

age and the boosting duration of general immunity level in the 

body. It is observable that the immunological response is low 

at lower ages due to the lack of experience with the diseases, 

but it may boost and attain a certain level with the maturity as 

a result of the exposure to different pathogens. The behavioral 

influence is described as the risk level due to mobility. In many 

host populations it is evident that the mobility carrying higher 

risk in middle ages and declined with aging process [2-4]. That 

nature of mobility is modeled by 

��(�) = *+",%
$
-.

/0%+1+
                                  (5) 

where 2  is a parameter that represents the peak age of 

mobility. The function 

��(
) = sin(67
) ; 	6 ∈ ℤ                           (6) 

is merged to the model as a periodic function to allow the 

stochastic behavior due to environmental influences. In this 

approach ��(
)  is utilized to vary the capability of 

spreading the infection. There is a possibility of choosing a 

suitable stochasticity by considering a central measure for 

the randomness described by different periodicities in 

sin(67
). Thus, the model output �(�) adequately describes 

the general dynamics of the age-dependency of 

infectiousness. 
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3. Model Solution 

As Eq. (2) falls under the classification of the Fredholm 

integral equations, it owes several attributes in solving 

according to the characteristics of kernel �(�, 
)	[12]. The 

structure of �(�, 
)  used in Eq. (2) is called degenerated 

kernel in which the solving technique is based on 

transforming the equation into a system of linear equations. 

In the proposed model, as �(�, 
) = ��(�)��(
) , the 

solving technique converts it in to Eq. (7) 

�(�) = 	�(�) + ���(�);�                       (7) 

where ;� = 
 ��(
)�(
)�
�
�  

The solution to the original equation counts on ;� value. It 

can be figured out by converting Eq. (7) into a linear 

equation given below. 

;� 	= 	 �� + ����;�                             (8) 

where �� = 
 ��(
)�(
)�
�
�  and ��� = 
 ��(
)��(
)�
�

� . 

Finally, the solution for �(�)	is obtained as follows. 

�(�) = 	�(�) + �;���(�)	where	;� = <=
�>?@==       (9) 

Now the solution implies that the excessive risk is a 

weighted function of behavioral influence in which � <=
�>?@== 

provides the weighing coefficient. 

In the following illustration in Figure 1, �(�)  depicts a 

situation of high risk in younger ages and later saturated in 

lower risk with maturity. Setting the lifespan into 80 years 

and hypothetical curves for �(�) and ��(�)	within the range 

[0, 1] allows an easier base for comparison with �(�). 

 

Figure 1. Age-dependent overall risk of infectiousness due to mobility, 

acquired immunity and environmental stimuli. | Black dashed line: inability 

of responding with acquired immunity when ) = 0.4, ( = 25. | Blue dashed: 

risk due to mobility when 2 = 11.5 | ��(
) = DEF(27
) | Red solid line: 

overall risk of infectiousness. 

Figure 1 shows a general validity as overall risk level 

indicated by �(�)  is higher than �(�) , indicating the 

influence due to mobility. Moreover, overall �(�)  has 

approached a peak between 10 and 20 years and latter part 

settles with a saturation. These two attributes are not 

observable simultaneously in either �(�) or ��(�). The two 

influential functions �(�)  or 	��(�)  carry either a peak (in 

��(�)) or a saturation (in �(�)), but not both phenomena. 

It is evident from Eq. (9), the overall risk is subjected to 

be changed by varying weighing coefficient ;� . The 

following illustration in Figure 2, emphasizes that if 

positive ��� occurs, then this overall risk no longer holds 

for every �	 value. Further, if negative ��  together with 

negative ��� appears, the overall risk can wane even with 

high mobility patterns. This shows unreliability in 

biological viewpoint. 

 

Figure 2. Contribution of weighing coefficient 	G1 = ��1
1−��11  in different 

functional behaviors. 

These types of different situations imply the importance of 

identifying proper and reliable influences for 

�(�), 	��(�), ��(
). 

4. Sensitivity Analysis 

As the model solution implies that the excessive risk is a 

weighted function of behavioral influence, it indicates effect 

of � and 6	parameters over the sensitivity of �(�). 
Case 1: Sensitivity analysis for different �. 

This model acquaints that there is a possible maximum of 

overall risk which can be addressed with proper control 

measures such as vaccination, restricting mobility patterns 

etc. The simulation of overall risk with different proportional 

constant � , reaches to a maximum for positive ��  and 

negative ���  as the contribution (� ) increases. Hence the 

maximum overall risk or upper bound of the overall risk at 

different ages can be illustrated by 

lim?→K 	�(�) + � <=
�>?@== ��(�)                   (10) 
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Figure 3. Sensitivity analysis on age-dependent risk of infectiousness | 

inability of responding with acquired immunity when ) = 0.4, ( � 25 and 

risk due to mobility when 2 � 11.5 with ���
� � DEF�27
� 

Figure 3 on sensitivity analysis of ���� with different �, 

clearly visualizes the contribution of the accumulation of 

behavioral and environmental influences over the lifespan to 

the overall risk. What readily observable is that peaks slightly 

move towards higher ages and saturation may vanish with 

higher �. The analysis on Figure 3 indirectly paves the way 

to estimate suitable �  for a host population by comparing 

with another population. In that purpose, the risk level can be 

modeled via the prevalence of the disease by age. Such 

observational and experimental findings are available for 

some diseases in literature supporting this claim [13]. Further 

the excessive risk of proposed hypothetical curves may not 

drastically increase with � , since the weighing coefficient 

� <=
�>?@==

 in Eq. (10) is bounded as � increases. This illustrates 

that the possibility of identifying the required biological 

influence in order to not to get infected even with the 

maximum behavioral influence. 

Case 2: Sensitivity Analysis for Different 6  of 

Environmental Influence 

 

Figure 4. Weighing coefficient behavior L� <=
�>?@==

M at varying 6	and	�	|	�� �

 DEF�67���
� ������	and ��� � 
 DEF�67����������

� . 

It is important to have an insight of the behavior of overall 

risk, at different environmental influence which infuse a 

stochastic nature in the proposed model. A mathematical 

analysis can be easily carried out to see the dynamical 

features by varying the periodicity of the stochastic process. 

As Eq. (10) indicates the behavior depends on the 

contribution of the weighing factor. The Figure 4 indicates 

that the maximum contribution of the weighing factor is 

obtained at minimum 6	values. Together with the observation 

of sensitivity analysis of proportional constant, higher � 

values and lower 6	values (i.e. 6 ∈ : ), specifies that, the 

higher contribution of the accumulation at lower periodicity 

provides high risk of getting infected. 

Figure 5 indicates the sensitivity of overall risk at different 

environmental influences controlled by varying periodicity. 

Again, it is readily observable that peaks slightly move 

towards higher ages with low periodicity. 

 

Figure 5. Sensitivity analysis on age-dependent risk of infectiousness at 

� � 10	and varying environmental influence | risk lessen from the acquired 

immunity when ) � 0.4, ( � 25  and risk due to mobility when 2 � 11.5 

with ���
� � DEF�67
�; 	6 ∈ : 

5. Discussion 

When the parsimonious modeling perspective is 

concerned, the proposed integral equation approach has a 

reasonable ability of incorporating biological, behavioral and 

environmental influences on age-dependent infectiousness of 

a disease. The model accuracy is a matter of choosing 

suitable curves for each influencing function. 

This model can be used as a guide to formulate hypotheses 

and data collection strategies to measure the risk of a disease. 

For instance, when different immunity mechanisms play in 

different ages, ����  curve can be tested with different 

options. One motivation towards this is the fact that some 

diseases accountable with innate immunity in early ages and 

subsequently with acquired immunity. Different options on 

mobility related influences can be brought via ��	functions. 

The degenerated kernel facilitates any finite number of such 

functions as it is easily solvable through a system of linear 
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equations which provides a unique solution if the inequality 
|O − ��| ≠ 0  holds. Here 	� = Q�R�S�×�  where 	�R� =

 ��(
)�R(
)�
.�
�  

The environmental influence which is not involved with 

age may vary due to the context addressed. Therefore, in this 

parsimonious modelling also there is a possibility of 

choosing a suitable stochasticity simply by averaging the 

range of randomness. 

Here in this model, the proportional constant	�	is the only 

visible parameter to be estimated as all the other evaluations 

can be incorporated with functions proposed for any 

influential factor. As depicted in sensitivity analysis, model-

based experiments can be carried out to estimate �	according 

to a selected set of influential functions with available 

prevalence data. Next, reliable predictions can be made using 

those models. 

6. Conclusion 

In this parsimonious approach, it is observed that the 

integral equations with degenerated kernel has a potential in 

modelling the behavior of infectious disease transmission. 

This approach shows the ability of collectively considering 

different factors relevant to age. The sensitivity analysis for � 

and 6, indicates the behavior of the overall risk. It is observed 

that the risk may increase and saturation may vanish with 

higher �  and 6  values. Further the peaks slightly move 

towards higher ages with higher �  and 6  values. This 

illustrates that the possibility of identifying the required 

biological influence in order to not to get infected even with 

the maximum behavioral influence and different periodicity 

in environmental influences. 
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