
978-1-7281-1363-0/19/$31.00 ©2019 IEEE

Design for Portability of
Reconfigurable Virtual Instrumentation

Kasun S. Mannatunga
Department of Physics

University of Sri Jayewardenepura
Nugegoda, Sri Lanka
Email: ksm@sjp.ac.lk

Luis G.G. Ordóñez, Marie B. Amador,
Maria Liz Crespo, Andres Cicuttin

Multidisciplinary Laboratory
International Centre for Theoretical Physics

Trieste, Italy

Stefano Levorato
Istituto Nazionale di Fisica Nucleare

Trieste, Italy

Rodrigo Melo, Bruno Valinoti
Instituto Nacional de Tecnología Industrial

Buenos Aires, Argentina

Abstract— A portable architectural design strategy is
described for the implementation of reconfigurable virtual
instrumentation based on programmable Systems-on-Chip
integrating microprocessors and FPGA in the same physical
device. The key role is played by a general purpose communication
block as a means to efficiently separate the activities carried out in
the microprocessor and in the FPGA. Both parts interact
according to simple logic protocols by reading and writing data on
the common memory resources of the communication block. The
architecture of the proposed communication system can be easily
implemented in practically any modern programmable System-on-
Chip. With the proposed strategy, the porting of embedded
software programs and associated FPGA designs among different
device families and vendors is facilitated. A structured
methodology is proposed for handling complex real-time systems
based on these programmable Systems-on-Chip. We described a
concrete communication block that has been successfully
implemented and utilized for a quick implementation of a data
acquisition system based on a Xilinx Zynq-7030 FPGA Mezzanine
Card (FMC) and a custom FMC module with an 8-bit 500 MSPS
ADC.

Keywords— Hardware-Software Codesign, System-on-Chip,
Embedded Software, FPGA Design, Real-Time Systems,
Reconfigurable Virtual Instrumentation, Data Acquisition Systems

I. INTRODUCTION
The availability of electronic devices which integrate

tightly interconnected microprocessors (uP) and Field
Programmable Gate Array (FPGA) fabrics in the same chip is
creating new possibilities in the area of advanced
instrumentation and high-performance reconfigurable
computing. These versatile hybrid devices offer many extra
resources and can be considered as true fully programmable
Systems-on-Chip (SoC). Notwithstanding the rather obvious
advantages of this important technological opportunity, its
associated complexity poses several challenges to those
developers who want to benefit from these devices fully
exploiting its capacities and peculiarities [1][2].

The high circuit integration allows a level of
interconnectivity between the uP and the FPGA cores that
cannot be normally reached in printed circuit boards with
equivalent discrete devices. Increased connectivity not only
means more physical lines to exchange information but also
an increment of the operation frequencies with reduced
dynamic power consumption due to the characteristic much
lower parasitic capacitances of the interconnecting traces in an

integrated circuit. The high level of interconnectivity between
an FPGA fabric and an embedded microprocessor is perhaps
the main distinctive aspect of these hybrid devices.

It is very important to be able to easily retarget
implemented systems to profit from newer or more powerful
devices for upgrading or reutilization purposes. However, the
intrinsic complexity of these devices limits the portability
determining an important issue if we consider that in most
cases, significant designing and programming efforts are
necessary to come up with a satisfactory working system. It is
widely recognized nowadays that the complexity of these
kinds of hybrid devices makes quite difficult to port entire
designs or even recycle functional blocks as it has reported by
Kevin Morris in [3] when he states that “It is extremely
challenging to develop “generic” IP for processors and
FPGAs working together that is independent of the particulars
of the processor, the FPGA, and the interconnect schema”.
The aim of this work is that of proposing a simple and
effective design strategy to speed up the implementation of
new reconfigurable instruments and to facilitate the porting of
the corresponding embedded software programs and associated
FPGA designs among different programmable SoC families and
vendors.

The uP provides a streamlined connection with standard
external hardware such as DRAM and Ethernet ports freeing
the FPGA designer from implementing specific hardware
controllers, which typically consume precious logic resources
and are difficult to implement and debug. Since these and
other external hardware are directly connected to the uP, it is
possible to handle these resources by software. On another
side, there is also an FPGA fabric where it is possible to
implement custom digital circuits to perform time-critical
tasks that cannot be executed by the uP when there are
stringent requirements on latencies or throughputs. Since
FPGAs typically have a great capacity for interconnection
with the external world by means of numerous reconfigurable
input/output ports, it is usually utilized to connect to non
standard or custom external hardware. The most modern
FPGAs integrate specialized hardware resources beside its
reconfigurable and interconnectable logic elements. Among
these special circuits, there are True Dual-Port RAM
(TDPRAM) and digital signal processing units allowing the
implementation of multiple channels for processing large
amount of data at high rates. These characteristics make this
kind of devices the ideal choice for the implementation of

45

modern Reconfigurable Virtual Instrumentation (RVI) [4]
where the whole instrument can be naturally divided into four
main concatenated subsystems: (i) Instrument Specific
Hardware (ISH), (ii) FPGA, (iii) uP1 and (iv) Personal
Computer (PC). On one extreme of the RVI chain, the ISH is
typically a separate hardware that handles the external
electrical signals of the instrument on one hand, and on the
other hand, it is connected to the FPGA by mean of digital
signals. The connection with the FPGA can be either on the
same PCB or by mean of especial connectors (e.g. FMC,
HSMC, PMOD, etc.). On the other extreme of the chain, there
is the host PC running a Graphical User Interface (GUI) for
the emulation of virtual consoles from which it is possible to
control and operate the instrument [5]. The PC can also offer
other services such as data storage, offline data processing,
networking, and in general any other non time-critical
activities. To implement a reconfigurable instrument based on
a programmable SoC, an efficient software program is
necessary for the embedded uP and a suitable hardware design
for the associated FPGA such that these two central
subsystems can effectively interact and cooperate to obtain the
highest possible performance [6][7].

In the following sections, we present a simple architectural
design strategy for the implementation of reconfigurable
virtual instrumentation based on programmable SoC to
facilitate reutilization and porting among devices of different
families and vendors. A central role in the proposed
architecture is played by a general purpose Communication
Block (CB) which efficiently separates the activities carried
out in the microprocessor and in the FPGA, and facilitates the
interaction and exchange of data between these two
subsystems.

We describe the CB and explain how it can be used for
practically any kind of cooperative interaction between the uP
and FPGA. We also describe a concrete implementation of a
configurable CB, and its application to a high-speed data
acquisition system based on Xilinx Zynq-7000 FMC carrier
hosting a custom FPGA Mezzanine Card (FMC) [8] with an 8-
bit 500 MSPS ADC. Some preliminary results are also
presented as well as a discussion about the impact on
portability in the implementation of reconfigurable virtual
instrumentation based on modern Systems on Chip.

II. FPGA AND UP INTERACTION
The central idea for implementing complex real-time

systems for reconfigurable virtual instrumentation is that of
efficiently split the complexity among the three main
subsystems: FPGA, uP and control PC. An important aspect is
that of understanding the typical time granularity of activities
carried out in each subsystem. For example, we could quite
approximately say that nanoseconds, microseconds and

1 In the Xilinx terminology the subsystems are normally referred as
Processing System (PS) for the uP and Programmable Logic (PL) for the
FPGA. In Intel-Altera terminology the uP subsystem is called Hard Processor
System (HPS) and in that of Microsemi-Actel is called Microcontroller
Subsystem (MSS). Unless further clarification is needed, we will simply use
the terms FPGA and uP to refer, respectively, to what is implemented in the
FPGA fabric and the software programmed in the uP.

milliseconds are typical reaction times for FPGA, uP and PC,
respectively. A balanced distribution of activities will
definitely determine an efficient allocation of resources with
maximum impact on the overall performance and efficiency of
the implemented system. In many cases, fast reaction times
and high throughputs are required; it comes as no surprise then
that the FPGA subsystem and its tight interaction with an
embedded microprocessor are crucial for the ultimate
performance of reconfigurable instruments based on a
programmable SoC.

Once a complex functionality is properly partitioned and
decided which part will be accomplished by the uP and which
by the FPGA, it remains the problem of deciding how both
subsystems will interact to ensure an effective cooperation.
Different programmable Systems-on-Chips have specialized
buses to interconnect the uP and FPGA subsystems. These
buses include AXI, Avalon or AMBA [9] depending on FPGA
vendor and device family. These buses are complex and
despite a high level of automation of the electronic design
tools, the designer usually needs to go through extensive
documentation in order to get all necessary details for its
correct utilization. Since the activity of these interconnecting
buses involves both the uP and the FPGA, any debugging or
refining processes will inevitably imply dealing
simultaneously with the embedded program of the uP and the
FPGA design making these important processes lengthy and
laborious. The peculiarities of each bus standard will
determine in most cases that both the uP software and the
FPGA design will not, in general, be portable among different
device families and vendors.

To facilitate the porting of complex designs implemented
in hybrid devices integrating microprocessors and FPGA
fabrics, we propose a Communication Block (CB) in such a
way to offer a standardized interface towards the FPGA
design that abstracts the uP and its specific SoC bus. The
peculiarities and complexity of the bus will be hidden inside
the CB as with any functional module interacting with the
external world through its ports. With this CB, it will be
possible to port a complex design by essentially porting the
CB only. That is, the corresponding CB in the new device will
preserve the interface towards the rest of the FPGA design
while manages the new bus on the uP side. Along with this
interface, a simple logic protocol can be implemented to
provide a generic mechanism of interaction between the
FPGA and the uP.

One of the main purposes of the proposed communication
block is that of providing an effective abstraction of the
interacting agents. This is, at the lowest level, the uP does not
deal directly with the FPGA subsystem but with the CB
independently of the FPGA or whatever is on the other side.
Similarly, the FPGA subsystem only deals with the CB
ignoring the uP or any other interacting agent on the other side
of the CB. In this way, the use of the proposed communication
block renders much more independent the programming of the
uP and the digital design on the FPGA.

Besides portability, the use of the CB along with a simple
protocol for its utilization naturally imposes a structured
design methodology which shortens developing times and

46

facilitates debugging, maintenance and possible optimizations
of the implemented reconfigurable systems.

III. THE PROPOSED COMMUNICATION BLOCK
In a typical programmable SoC, the interaction between

the uP and the FPGA subsystems is essentially accomplished
by exchange of data, whereby data we mean any kind of
digital information including numeric data, commands, error
messages, system status, etc. Since the data produced by these
subsystems are in general generated with unrelated clocks it is
then necessary to count on memory elements that can be
independently written and read from two mutually
asynchronous domains. Typical elements with this
characteristic are the TDPRAMs. These specialized blocks are
now present in almost every modern FPGA and can be
combined in many ways in order to produce memories of
different widths and lengths. TDPRAMs can also be managed
with special additional logic circuits to implement
asynchronous First-In First-Out memories (FIFO). Another
way of communication is by mean of registers implemented in
the FPGA. All these registers can be read by both the uP and
the FPGA, and can be implemented in such a way that some
of them can only be written by the FPGA while the others can
only be written by the uP. The proposed CB contains these
three essential types of memory elements:

• True Dual Port RAM

• Asynchronous FIFO

• Register

The TDPRAM can be independently read and written from
two different ports. These two ports can be mapped in two
different memory maps, one for the uP and the other for the
FPGA. While both agents, uP and FPGA, can independently
read at any time any memory position, it should be avoided
possible conflicting situations in case of writing operations.
To prevent potential errors it must be avoided (i) trying to read
a position from one port while that position is being written
from the other port, an (ii) trying to write the same position
from both ports simultaneously.

The asynchronous FIFO simplifies the transmission of
sequential data. The two ports of the FIFO are mapped to
single memory addresses. Who writes into the FIFO must only
check that a full-flag is not asserted to prevent false writings,
and similarly, who reads must only check that the empty-flag
is not asserted to prevent false readings.

Finally, registers can be used to statically pass information,
which is not time critical. Since the outputs of the registers are
updated with an independent clock, care must be taken to
avoid reading corrupted data from a circuit that operates with
a different unrelated clock.

Each one of the three kinds of memory elements described
above has advantages and disadvantages, and can be
complementary used to efficiently allow any type of complex
interaction between the uP and the FPGA. For example, all
data stored in registers have the advantage that can be
simultaneously accessed from the FPGA side, a feature not
available in RAMs, which only allow access to its data one

word at a time. However, RAM structures are more efficient
than registers in terms of hardware resources to achieve larger
and denser data storage. Also reading and writing sequential
data is easier with FIFOs than with RAMs, but its
disadvantage is that when we read a word from a FIFO, it is
lost if not stored somewhere else, that is, while we can read
infinite times the same data from a RAM, the data from a
FIFO can be read only once. These three memory elements are
combined to create a CB with two independent interfaces. The
Fig.1 shows a block view of the CB with its two interfaces,
one for the uP and the other for the FPGA, where prefix F2M
stands for “from FPGA to Microprocessor” and similarly M2F
stands for “from Microprocessor to FPGA”. The ports of the
interface towards the uP are mapped in the general memory
map of the uP and will be managed following the
specifications of the corresponding SoC bus.

The interface towards the FPGA subsystem is constituted by
the native ports of the memory elements. The interface
towards the FPGA can be easily assimilated or adapted to be
compliant with the Wishbone bus interface standard [10]
benefiting in this way from the compatibility with large open
repositories of IP functional modules such as those of
opencores.org.

The design of the FPGA starts structurally by instantiating
the CB, and the rest of the design will be done considering
that the interaction with the uP will be effectuated by dealing
with the corresponding interface of the CB. The
communication activity is then reduced to reading and writing
the memory elements of the CB ignoring how the same
operations occur on the same memory elements from the uP
side. Similarly, the part of the program running in the uP and
dealing with the resources of the FPGA will also be reduced to
writing and reading the memory elements of the CB ignoring
how the same operations occur on the same memory locations
from the FPGA side. The proposed CB consequently provides
a concrete mean to abstractly represent the interacting agents
being these uP, FPGA, or whatever is capable of reading and
writing the CB.

Fig. 1. A block view of the communication block.

47

Some memory resources of the CB can be reserved for an
effective and safe communication. For example, let us suppose
that we want to pass some data from the FPGA to the uP, and
we want to safely use the TDPRAM for that purpose, then we
can implement a simple logic protocol based on flags as
described by the following steps:

1) FPGA checks if the TDPRAM is not taken by the uP
by checking the flag “uP-TDPRAM-busy” (a
predefined bit of a reserved register which can only be
written by the uP). If it is set to ‘0’ then:

2) FPGA sets to ‘1’ the flag “FPGA-TDPRAM-busy” (a
predefined bit of a reserved register which can only be
written by the FPGA) to take the TDPRAM.

3) FPGA writes data in a non-reserved area of TDPRAM.
4) FPGA writes initial data address in a predefined

reserved position of TDPRAM called
F2M_DMA_ADDRESS.

5) FPGA writes the numbers of words of the transmitted
data in a predefined reserved position of TDPRAM
called F2M_DMA_N.

6) FPGA sets to ‘1’ the flag “data-ready-for-uP” (a
predefined bit of a reserved register which can only be
written by the FPGA) to notify the uP that new data is
ready in TDPRAM to be read by uP.

7) FPGA sets to ‘0’ the bit “FPGA-TDPRAM-busy” to
release the TDPRAM.

The uP simultaneously executes the following steps:

1) The uP checks the bit “data-ready-for-uP”. If it is set to
‘1’ then:

2) The uP checks the bit “FPGA-TDPRAM-busy”. If it is
set to ‘0’ then:

3) The uP takes the TDPRAM by setting “uP-TDPRAM-
Busy” to ‘1’.

4) The uP reads initial address in F2M_DMA_ADDRESS
and number of words in F2M_DMA_N (both
parameters in predefined positions of the reserved area
of TDPRAM).

5) The uP reads F2M_DMA_N words starting from
F2M_DMA_ADDRESS.

6) The uP sets “uP-TDPRAM-Busy” to ‘0’ to release the
TDPRAM concluding the transmission cycle.

A similar logic procedure is followed to pass data from uP
to FPGA. With simple logic protocols, it is possible to avoid
conflicting situations in dealing with the TDPRAM. The Fig.
2 shows the asynchronous timing diagrams of the flags-based
protocol to transmit data through the TDPRAM of the CB.

Classical uP interrupts can be used by connecting some
bits of the uP read-only registers to interrupt signals of the uP
leaving intact the interface of the FPGA side. Whether the
flags will be checked by the uP by polling or through interrupt
mechanisms, it will not affect the behaviours of the FPGA
preserving the global architecture. From the portability point
of view, it is advisable to implement mechanisms based on
polling instead of on interrupts. While polling mechanisms are
independently decided by software, the availability of
interrupts and the ways these interrupts are handled will

depend on the specific uP and eventually on the specific
installed operating system.

The Fig. 3 shows a possible memory mapping of the CB
ports from the FPGA and uP sides. These two different
memory maps could be part of a much larger one into which it
could be mapped many other resources of the whole system
such as additional external memories or other external
hardware resources physically connected to the FPGA. The
ports on the FPGA side can be simply the corresponding
native ports or could also be compliant with the Wishbone
interface standard, and in both cases, the FPGA designer has
total freedom in deciding how to connect and use them. In the
FPGA side, it could be implemented several point-to-point
connections and multiple buses for concurrent activities, or
just a single simple bus for sequential access to all resources

Fig. 2. The asynchronous timing diagram of the flags-based protocol to
transmit data through the TDPRAM of the CB.

Fig. 3. A possible memory mapping of the CB ports.

48

of the CB.

The CB has been implemented as a configurable IP block
to provide memory elements with simple interfaces for a
typical FPGA designer avoiding the complexity of the SoC
bus provided by the uP System, such as AXI in the Zynq-7000
family.

A first version of the CB has been implemented in Vivado
Integrated Design Environment (IDE) using available IPs
from Xilinx. To obtain a portable and configurable CB, a
second version has been developed using VHDL 93 and
memories of the FPGALIB [11] project (Asynchronous FIFO
and TDPRAM, both of them tested with Xilinx, Intel/Altera,
and Microsemi devices). Fig. 4 shows the wizard window to
configure the Communication Block. The implemented CB
provides:

• 16 input and 16 output registers (configurable up to 32
bits).

• One TDPRAM, which provides a simple RAM
interface available on the FPGA side. Its inclusion, the
data width, the address width and the memory depth can
be configured.

• Two asynchronous FIFOs, one from uP to FPGA and
another from FPGA to uP, with indication of
empty/full, almost empty/full and underflow/overflow
conditions. Their individual inclusion, the data width,
and the memory depth can be configured.

An AXI Lite interface has been used for the registers, and
AXI Full interfaces for the RAM and FIFOs to take advantage
of burst operations.

TABLE I. and TABLE II. Show the resource utilization of
the CM with the configuration shown in the Fig. 4, for some

of FPGAs in the Xilinx’s FPGA families and the Intel FPGA
families.

IV. APPLICATION TO A HIGH-SPEED DATA ACQUISITION
SYSTEM BASED ON PROGRAMMABLE SOC

In order to test and expose the proposed architectural
design approach, a configurable communication block has
been designed and used for the implementation of high-
performance data acquisition instrumentation2.

The modular hardware system is mainly composed by a
Xilinx Zynq-7030 FMC carrier hosting a custom FMC ADC
board with an 8-bit, 500 MSPS ADC (ADC08500, Texas
Instruments).

The implemented system acquires a continuous data
stream from the external ADC and performs oversampling and
decimation by accumulating a variable number of input
samples for every output value. In this way, it is produced a
slower output data stream with a reduced effective sampling
frequency but with increased amplitude resolution. This
simple oversampling scheme allows gaining 𝑛 bits of
additional data amplitude resolution depending on the number
R of accumulated samples used to generate one output sample
according to the relation 𝑅 ൌ 2ଶ್. Thus, oversampling by a
factor of R, will consequently produce an output data stream
with a frequency decimated by the same factor. The decimated
data will be analyzed to produce a histogram of the amplitudes
during a predefined acquisition time, and at the same time, a
continuous segment of the decimated data is transferred to the
PC to be displayed along with the corresponding histogram.

2 This system is being developed in the framework of R&D projects in
collaboration between the International Centre for Theoretical Physics (ICTP,
UNESCO-IAEA) and the Italian National Institute of Nuclear Physics
(INFN).

Fig. 4. Configuration wizard window for the Communication Block.

TABLE II. RESOURCE UTILIZATION OF THE CB IN
ALTERA/INTEL FPGAS

Family Name ALMs Logic
Registers

Block RAM
(kBytes)

Cyclone V 5CSEMA5F31C6 764 563 290.25
Cyclone 10

LP 10CL006YU256A7G 1170 559 290.25

Cyclone IV
GX EP4CGX15BF14A7 1171 559 290.25

Cyclone IV
E

EP4CE6E22A7 1170 559 290.25

TABLE I. RESOURCE UTILIZATION OF THE CB IN XILINX FPGAS

Family Name Slice
LUTs

Slice
Registers

F7
Muxes

F8
Muxes

Block RAM
(kBytes)

Zynq-7000 xc7z020 726 816 128 64 290.25
Spartan-7 xc7s100 726 816 128 64 290.25
Artix-7 xc7a200 726 816 128 64 290.25
Kintex

UltraScale+ xcku15p 854 816 128 64 290.25

Virtex
UltraScale+ xcvu13p 854 816 128 64 290.25

49

As explained before, the whole activity of the
reconfigurable data acquisition system is divided among the
four main subsystems: dedicated hardware, FPGA, uP and
control PC. While the FPGA subsystem is in charge of time-
critical tasks, the uP subsystem is responsible for handling the
communication between the PC and the FPGA, and other no
time-critical tasks. The complete system comprises sensors of
pressure and temperature, which are directly managed by the
uP without the intervention of the FPGA. The temperature and
pressure values are periodically read and processed by the uP
for monitoring and slow control purposes. A GUI has also
been developed in Python (PyQT) for a remote control of the
system from a PC. The uP and the PC are interconnected
through a dedicated point-to-point Gigabit Ethernet link.

A. Custom FMC Data Acquisition Board and SoC-based
FMC Carrier
The hardware of the data acquisition systems is essentially

constituted by a custom FMC ADC board coupled to an FMC
carrier based on a programmable SoC.

The custom FMC ADC card is based on single channel 8-
bits 500 MSPS ADC and has been designed for high time-
resolution measurements. The ADC demultiplexes its digital
data output to diminish the reading frequency by a factor of
two. This board fully exploits all features of the ADC
including self-calibration, fine adjustment of input full-scale
range and offset, and multiple ADCs synchronization. The
digital output data are driven by 32 physical lines
implementing 16 Low-Voltage Differential Signaling (LVDS)
pairs at 250 MHz. There are other three LVDS signals: an
input clock, an output clock, and a fast “out-of-range” signal.
There are also other 7 digital control signals that complete the
digital interface of the ADC. These 45 digital signals are
connected to a Low-Pin-Count FMC connector.

 The adopted FMC Carrier is the CIAA-ACC3 [12] based

3 This open hardware FMC carrier has been developed by the Center of Micro
and Nanoelectronics of the National Institute of Industrial Technology (INTI,
Argentina)

on a Xilinx Zynq-7030 device. This carrier has been designed
for high-performance computing and advanced industrial
applications and includes one FMC-HPC Connector, DDR3
(1GB) memory, and one Gigabit Ethernet connector. Fig. 5
shows the ADC card mounted on the FMC carrier.

B. System Design and Implementation in the Programmable
SoC

A top description of the design of the programmable SoC
device is structured in three main blocks: the uP, the CB, and
the specific FPGA design. The uP interacts directly with the
CB by mean of AXI bus connections, while the specific FPGA
directly interacts with the CB by mean of the native ports of
the memory resources of the CB. Fig. 6 shows the top level
schematic entry that is a block diagram of the three main
components and its logical interconnections. In red are the
connections of the uP (left), in blue the connections between
the CB (center) and the specific FPGA design (right), and in
brown the connections of the FPGA with the external
hardware (the FMC ADC card).

The corresponding logical representations of these

interconnections are depicted in Fig. 7 where it is shown the
addresses assignment of the memory resources of the CB to be

Fig. 5. ADC card mounted on the CIAA-ACC FMC carrier.

Fig. 6. Top level schematic of the Communication Block (centre) and its connections (red) with the uP-subsystem (left) through the AXI bus, and the connections

(blue) with the FPGA-subsystem (right) through the native interfaces of the CB components. The connections to the dedicated external hardware are in brown.

PL_BlocksCOMMBLOCK
PS_Blocks

+

rst_out[0:0]

M00_AXI1
M01_AXI1
M02_AXI1

DDR_0
FIXED_IO_0

FCLK_CLK0

+
+

+
+

S01_AXI
S02_AXI

Reg1_i[31:0]
Reg2_i[31:0]

Reg0_o[31:0]
Reg1_o[31:0]
Reg2_o[31:0]
Reg3_o[31:0]
Reg4_o[31:0]
Reg5_o[31:0]

fifo_clk_i
fifo_clear_i
fifo_we_i
fifo_data_i[15:0]

S00_AXI

ram_we_i
ram_addr_i[15:0]
ram_data_i[31:0]

s01_axi_aclk

ram_data_o[31:0]
fifo_full_o

Reg0_i[1:0]

rst_out

PL_reset

+
+
+ PL_to_ADC_o[11:0]

curr_cycles[31:0]
Ctrl_reg1_out[1:0]

addb[15:0]
dinb[31:0]

ADC_clk4PL

FIFO_WE
FIFO_CLR

D_sum[15:0]

web[0:0]

dout[31:0]

Ctrl_reg0_in[31:0]

rst_out

N[31:0]
ctrl_reg[31:0]

scount[31:0]

doutb[31:0]
FIFO_FULL[31:0]

max_cycles[31:0]

ADC_to_PL_i[7:0]

nsamples[31:0]DDR_0

FIXED_IO_0

PL_to_ADC_o[11:0]

ADC_to_PL_i[37:0]

50

accessed by the uP through the AXI bus, and the direct
connections with some specific functional blocks of the FPGA
design through native ports of the CB on the FPGA side.

Once instantiated the CB, the rest of the FPGA design can be
done practically ignoring the AXI bus and the uP can be
programmed practically ignoring the implementation details of
the specific FPGA design. We can see, for example, that
functional blocks such as the ADC Controller or the
Decimator can receive configuration parameters directly from
the registers of the CB. Thus the uP can configure these
modules by simply writing to the memory addresses of the
corresponding registers. We can also see that the output of the
decimator can be dumped into a FIFO through a native port
disregarding how the uP reads that FIFO through its AXI port
on the other side. The Histogrammer block also uses the
TDPRAM of the CB through its native port on the FPGA side
to store and build the histogram in real time.

The histogram can be read by the uP at the end of the
accumulation period or at any time during its accumulation by
mean of an AXI access from the uP side of the TDPRAM
mapped in a certain range of the uP memory map.

The FPGA subsystem handles the external ADC and
process the input data stream, and stores the results in the CB
from where the uP retrieves the corresponding data. The uP
prepare custom packets and send them to the control PC
through the Ethernet port. The uP runs a real-time operating

system (FreeRTOS) to grant predictable timing responses and
to facilitate the executions of concurrent tasks including data
transmission through the TCP/IP protocol. The control PC
hosts resident software that receives the custom data packets,
inspects the contents and displays the data in a GUI. From the
GUI, it is also possible to send parameters and commands to
the uP which in time may pass them to the FPGA by mean of
the CB. A special functional block implemented in the FPGA
takes the decimated data stream and generates a histogram of
amplitudes in real time by accumulating the amplitudes falling
in bins of predefined size during a variable acquisition time. A
segment of the decimated data stream is also captured by the
FPGA and transmitted to the microprocessor for transmission
to a personal computer for visualization and eventual further
elaboration.

The uP retrieves the trace from the CB and temporary
stores it in the external RAM of the uP. A different task of the
uP retrieves that trace from the RAM and sends it to the PC as
a special data packet through an Ethernet port.

For a comparison, the same system implemented with IPs
in the Vivado IP integrator instead of the communication
block. Since the Vivado IP integrator does not have registers
with AXI bus, AXI GPIOs were configured to use as registers
and, an AXI BRAM controller had to use with the Block
Memory Generator in order to use FPGA true dual port RAM.
Obviously, there are few places that can be improved which
need quite extensive knowledge of the Vivado tools and
Xilinx methodology. FPGA resource utilization of the high-
speed data acquisition system is shown in TABLE III. along
with the resource usage without the communication block.

It has been identified that percentage usage of slice LUTs
and slice registers in the system without CB is considerably
larger than the values of the system with CM.

V. DISCUSSION AND CONCLUSIONS
An FPGA configurable communication block has been

proposed and described to facilitate design portability of
reconfigurable instruments based on programmable SoC
integrating microprocessors and FPGAs. The main purpose of
the CB is that of offering a simple standardized logic interface
in such a way that the FPGA and uP subsystems can smoothly
interact independently of their respective implementation
details. This by itself not only increases the portability of the
system across multiple device families and vendors, but at the
same time, it imposes a structured design methodology by
mean of an explicit separation of the work in the uP and

TABLE III. SUMMERY OF RESOURCE USAGE OF THE HIGH-SPEED DATA ACQUISITION SYSTEM WITHOUT AND WITH THE
COMMUNICATION BLOCK

Name
Without Communication Block With Communication Block

FPGA_
Subsystem

uP_
Subsystem Others Total FPGA_

Subsystem
uP_
Subsystem

Communication
_Block Total

Slice LUTs 187 960 6691 7838 (14.73%) 186 1466 834 2486 (4.67%)
Slice Registers 264 1244 12696 14204 (13.35%) 264 1957 884 3105 (2.92%)
F7 Muxes 0 62 0 62 (0.23%) 0 62 128 190 (0.71%)
F8 Muxes 0 0 0 0 (0%) 0 0 64 64 (0.48%)
Block RAM
Tile 0 0 66.5 66.5 (47.5%) 0 0 65 65 (46.43%)

Fig. 7. The resources of the communication block and the memory mapping

on the uP side, and its connections with the functional blocks implemented in
the FPGA.

51

FPGA domains. Most of the complexity related to the
specificities of the SoC bus is hidden inside a general purpose
and reusable communication block. The definitions of the
interfaces are simple and independent of the internal structure
of the block which can be implemented in a variety of
functionally equivalent versions.

By maintaining the interfaces of the CB it is possible to
reuse or port the rest of the FPGA design retargeting a
different SoC device. In this case, it will be necessary to port
the CB taking into account the specific characteristics of the
new processor, and its corresponding SoC interconnect bus.
The porting effort is then mainly limited to work inside the
communication block granting the compatibility with the
software program of the uP, and the logical design
implemented in the FPGA.

The communication between the FPGA and the uP
subsystems can be implemented following the main ideas of
the OSI reference model [13] and can be done at three
different hierarchical levels, where each level corresponds to a
communication layer. Each layer relays on the services
offered by the immediate layer below, and provides services
that can be used by the layer immediately above. These three
layers are:

• Physical: Allows a simple utilization of the resources of
the CB as storage elements.

• Logical: Includes a basic asynchronous logic protocol for
a safe utilization of the CB. It requires some reserved areas
in the TDPRAM and some reserved registers.

• Systemic: Implements a high-level protocol based on a set
of complex instructions for Direct Memory Access
(DMA). It provides transparent access from any domain to
all resources mapped in a global memory mapping,
including those that are not immediately accessible but that
are directly accessible from the other domain. It requires a
DMA machine in the FPGA, and a corresponding software
routine in the uP.

Since each subsystem deals with the other subsystem by
reading and writing in the memory locations of the
communication block, this block provides an abstract view of
one subsystem to the other interacting subsystem.

Typical buses of programmable SoCs are mainly
conceived to grant communication to the uP, and hence it may
be a bottleneck when a great amount of data must be
simultaneously moved among interacting functional blocks
implemented in the FPGA independently of the uP. By
restricting the use of SoC bus to handle the CB only, it is
avoided any suboptimal design that utilizes the SoC bus to
interconnect cooperative functional blocks implemented in the
FPGA. The FPGA designer will then have plenty of freedom
to interconnect all functional blocks with any interconnection
topology and strategy according to what is needed
independently of the SoC bus. For strict communication
purposes between uP and FPGA it makes no sense to provide
more resources than what is necessary for the maximum data
exchange rate that the processor can handle since, in general,
even a small FPGA can host designs, which can easily

produce huge data rates compared to what a normal processor
can handle. The proposed communication block and related
utilization mechanisms should not constitute a restriction on
the maximum achievable data throughput between FPGA and
uP, and should neither increase latency, which in most cases is
determined by the uP and its SoC bus. The implicit design
approach associated with the use of a CB makes quite
independent the programming of the uP and the design works
on the FPGA, since these two subsystems only need to agree
on the logical utilization of the CB.

VI. ACKNOWLEDGMENTS
Support from the OFID Postgraduate Fellowship and TRIL

Programmes at ICTP and from the ICTP/IAEA Sandwich
Training Educational Programme is gratefully acknowledged.

REFERENCES
[1] Dondo Gazzano J., Crespo M.L., Cicuttin A., Rincon Calle F. (eds).

2016. Field-Programmable Gate Array (FPGA) Technologies for High
Performance Instrumentation. A volume in the Advances in Computer
and Electrical Engineering (ACEE) book series, ISBN: 9781522502999,
ISSN: 2327-039X, IGI Global.

[2] Crespo M.L., Cicuttin A., Dondo Gazzano J., Rincon Calle F. 2016.
Reconfigurable Virtual Instrumentation based on FPGA for Science and
High-Education. Field-Programmable Gate Array (FPGA) Technologies
for High Performance Instrumentation, Section 3, Chapter 5, pp. 99-123,
DOI: 10.4018/978-1-5225-0299-9.ch005.

[3] Kevin Morris, Intel Delivers Xeon Scalable Processor 6138P with Arria
10 GX 1150 FPG. Ratchets Up FPGAs in Data Center. Electronic
Engineering Journal, May 29, 2018. [Online]. Available:
http://www.eejournal.com/article/intel-delivers-xeon-scalable-processor-
6138p-with-arria-10-gx-1150-fpga

[4] Jeevitha L., Sangeetha S., Arun pandiyan S., Design and Implementation
of Reconfigurable Virtual Instruments with User Defined Functionality,
International Journal of Computer Sciences and Engineering, Vol.2,
Issue.5, pp.57-60, 2014.

[5] A.Cicuttin, M.L.Crespo, A.Shapiro, N.Abdallah, Building an Evolvable
LowCost HW/SW Educational Platform--Application to Virtual
Instrumentation, Proceedings of International Conference on
Microelectronic Systems Education, San Diego, USA, pp.77-78, 2007.
IEEE Xplore Digital Library 10.1109/MSE.2007.26.

[6] Cicuttin A., Crespo M.L., Abdallah N., Bazargan P., Mannatunga K.,
Samarawickrama J. (2016). HyperFPGA: A possible general purpose
reconfigurable hardware for custom supercomputing. Proceedings of
ICAEESE 2016, 14-16 November 2016, Putrajaya, Malaysia; IEEE
Xplore Digital Library.

[7] Crespo M.L., Cicuttin A., Mannatunga K et al. (2016). A Programmable
System-on-Chip Based Digital Pulse Processing for High Resolution X-
Ray Spectroscopy. Proceedings of ICAEESE 2016, 14-16 November
2016, Putrajaya, Malaysia; IEEE Xplore Digital Library.

[8] Xilinx Zynq-7000 All Programmable SoC. Technical Reference Manual
UG585 (v1.12.1), 2017.

[9] AXI Reference Guide UG1037 (v4.0), 2017 - AVALON Interface
Specifications, Intel Quartus Prime Design Suite: 17.1, 2018 - AMBA
Specification, Rev. 2.0, 1999.

[10] Specification for WISHBONE System-on-Chip (SoC) Interconnection
Architecture for Portable IP Cores, Revision: B.3, 2002.

[11] INTI CMNB. FPGA Lib. [Online]. Available: https://github.com/INTI-
CMNB-FPGA/fpga_lib.

[12] CIAA-ACC, Open Hardware Card for HPC and Industrial Applications.
INTI-CMNB and others. [Online]. Available: http://www.proyecto-
ciaa.com.ar/devwiki/doku.php?id=desarrollo:ciaa_acc:ciaa_acc_inicio.

[13] Paul Simoneau, The OSI Model: Understanding the Seven Layers of
Computer Networks, 2006 Global Knowledge Training LLC.

52

