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Abstract
The ongoing COVID-19 pandemic has become a major threat to the
entire globe. In order to properly place controlling strategies on each
level of transmission, researchers, scientists and mathematicians use
different approaches to model it. Compartment models such as SIR,
SEIR are the center of attention in many models. General concern
on integral equation models in disease transmission is considerably
low due to the intuitive temptation of modeling in terms of rate of
change of a phenomenon. This study expresses possibilities of modeling
COVID-19 context in terms of integrals since accumulation effect can
be observed in several influencing factors. Both Volterra and Fredholm
integral equations can be used to model this, since these influences
can accumulate within constant, variable or fixed intervals. While
causative factors which consist of cross-references in different platforms
can be modeled by degenerated kernels, difference kernels accommodate
causative factors with time delay.
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1 Introduction

The outbreak of coronavirus has attracted extensive attention of many scien-
tists and mathematicians since March 2020. At the present time, there are
many mathematical models used to describe this situation in more general per-
spective as well as regional perspective [1, 2, 3]. As differential equations are
always popular in the applications of disease transmission, here also we could
observe many models related to differential equations. Compartment models
are the center of attention in many models in which system of ordinary differ-
ential equations are used to describe the rate of change in each compartment
[4]. Thus, the well-known SIR compartmental model was extended according
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to their topic of interest by introducing novel compartments such as asymp-
tomatic, reported symptomatic infectious, unreported symptomatic infectious
etc[3, 5, 6].

This paper focuses on integral equation approach which is not much famil-
iar among applied mathematicians compared to differential models. Even
though differential calculus and integral calculus are two opposite operations
tied together by the Fundamental Theorem of Calculus, many mathematical
treatments via integral equations are not motivated in applications of disease
transmission. The emphasis of this study is to widen the scope by seizing the
attention of scientists and mathematicians towards the integral equations in
modeling disease transmission.

2 Integral Equation

The general form of an integral equation in u(x) of second kind is defined by

u(x) = f(x) +

∫ b(x)

a
K(x, t)u(t)dt (1)

Here f and b are functions of independent variable x. The function K(x, t)
appears within the integral is called the Kernel, which is the main structural
entity in both modeling and solving process of integral equations [7]. The most
frequently used integral equations fall under two main categories: those with
variable limit (eg. b(x) = x) of integration is called as Volterra integral
equation and those with fixed limit (eg. b(x) = b) of integration is called
as Fredholm integral equation. This variable limit integration or Volterra
integral equation is twofold, where it can be described either for variable in-
terval or a constant interval.

The solving process holds upon the characteristics of accumulation which is de-
scribed by the kernel function. Among different types of kernels, difference ker-
nel is prominent as it could introduce the causative factors with time lag. This
is formulated by the difference of the arguments K(x, t) = K(x − t). Differ-
ence kernel is easily solved by Laplace transforms when it is applied in Volterra
integral equations. The degenerated kernel is another commonly observable
kernel type which is the easiest way of expressing cross-references of factors in
different platforms. This is formulated by K(x, t) =

∑n
i=0Ai(t)Bi(x). Accord-

ing to this structure of degenerated kernel, it is easily solvable by separation
of variables when it is applied in Fredholm integral equations.

2.1 Variable Interval Integration

Amongst plenty of mathematical models, Hammerstein Volterra integral equa-
tion (2), Lotka’s Integral model (3) are famous in formulating time-dependent
accumulation scenarios accompanied by the time deferment effect.
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n(t) = n0f(t) + k

∫ t

0
f(t− τ)n(τ)dτ (2)

n(t) = k

∫ t

0
f(t)n(t− τ)dτ (3)

Jerri in his studies on integral equations, use (2) to describe a population
dynamic where the survivability is the governing factor [7]. Sequel to that
population model, parameters can be redefined to observe the behaviour in
epidemiological situation. Under normal circumstance, there is a continuous
addition to infected population through the competency of already infected
incidences. n(τi) the incidences in a time τi have t − τi age of infection by
the time t. Thus at the time t, those who infected at τi, have the f(t − τi)
competency of spreading the disease.

As any other infectious disease, COVID-19 shows a general competency of
spreading, that triggers with being infected irrespective of the day they have
encountered it. As a matter of course, those infected and close-contacts are
quarantined for a certain period. The applicability of the proposed model
is examined by applying fundamental exponential behavior (f(t) = λe−at) of
competency in the early COVID pandemic situation in Australia. The reliabil-
ity of the above proposed model is clearly visualized by figure 1 where growing
spread and declining spread are considered separately by an exponential model
of order 2. The influences of different mitigation strategies implemented by
Australia can be revealed by closely examining on fi(t)s depicted on figure 2.

Figure 1: The model applied for growing spread and declining spread of active
cases of COVID-19 in Australia
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Figure 2: Competency functions of each basis function in inclining and declin-
ing stages

2.2 Constant Interval Integration

In the recent outbreak of COVID-19, infectious period is identified as a impor-
tant factor, in which a proper controlling strategy could diminish the spread.
For every infective, the infectious period is a constant interval irrespective of
when they are exposed to the disease. Thus in terms of epidemics, following
delayed-Volterra integral equation can be interpreted as a model for the spread
of certain infectious diseases.

x(t) =

∫ t

t−L
g(t, s, x(s))ds (4)

Assuming x(t) represents the proportion of infected in population at the time
t, g(t, s, x(s)) represents the proportion of new infected in population per unit
time and L is the duration of infectious period. Accordingly, the number of
infectious individuals at time t is equal to the sum of all individuals infected
between t − L and t. In the early stage of COVID-19 pandemic before a
community spread, infected cases are recognized in cluster wise and the con-
trolling strategies are laid cluster wise. In consequence, the model (5) indicates
a potential in introducing this cluster wise transmission. In the parsimonious
approach g(t, s, x(s)) can be defined as g(t, s, x(s)) = f(t− s)x(s) where f(t)
illustrates the competency of spreading.
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x(t) =

∫ t

t−L
f(t− s)x(s)ds where t ∈ [0, t]

x(t) = ψ(t) where t ∈ [−L, 0]

(5)

Primarily one could consider the impact of quarantine effect, government regu-
lations, health care facility, mobility records to proper quantification of cluster
wise transmission.

2.3 Fixed Interval Integration

The fixed interval integration concept widens the applicability of describing
different perspectives of disease transmission such as spatial distribution, age-
specific distribution, etc. It will pave the way to introduce factors in different
platforms which shows vulnerability as an amalgamated effect. Such factors
can be elucidate as follows by using variable separable functions (f(t), g(x)) if
they can be expressed as the sum of a finite number of terms, each of which
is the product of functions of two platforms [7].

K(t, a) =
n∑

i=1

fi(t)gi(a)ds (6)

In COVID-19 transmission also, we observed the mortality and morbidity de-
pends on chronological age as the youngest and the eldest are having a great
deal of attention [8]. The standard formalism of age-structured differential
models is to subdivide the population into a number of discrete compartments,
classified by the age groups which is appeared as a system of differential equa-
tions [4]. This compartmental approach seems more realistic when only the
age range within each compartment is priorly determined.

In contrast to that, integral equations can consider chronological age as a con-
tinuous variable that enables to formulate the risk of being infectious (u(a))
in different ages as follows,

u(a)− h(a) = λ

∫ L

0
K(a, t)u(t)dt (7)

Here h(a) can be used as the biological ability to respond the disease and
K(a, t) introduce the amalgamated effect by the behavioral influence (g(a))
which depends on age and environmental impact (f(t)) which depends on
time.

3 Discussion

It is possible to model most of the general phenomena in COVID-19 transmis-
sion via integral equations. Since lockdown and quarantine interval shows a
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control in the spread, it is evident that the transmission can be formulated as
an accumulated impact of certain factors in that period in which concerning
of rate of change would be rather difficult. These contribution of accumu-
lated impacts can be tenderly managed in their governing period. Thus inte-
gral equation formulation is more elegant than differential equations, as fixed
intervals, constant intervals and variable intervals can be easily considered.
Further in the COVID context as there exist a continuously observed dataset,
integral equation modeling is not cumbersome.

In spite of that, the kernel, main modelling entity of integral equations paves
a way to address different behaviours in transmission. Degenerated kernel
could address when factors in different platforms evoke as an amalgamated
effect.Thus both age and time or spatial and time related influences can be
easily formulated. In the point of view of accumulation behaviors, there are
some cases where the causative factors may not affect immediately, but with
a time-lapse as time lag is a general phenomenon in epidemiology. In the
COVID pandemic, we observed the similar serious consequences due to the
time delay in awareness campaigns and policy decisions.

Conversion of IVP to Volterra integral indicates a significant advantage in
modelling in terms of integrals, as Volterra integrals with difference kernel
converts to a second order differential equation. Thus modeling a real world
phenomena in terms of second order differential equation is burdensome. Not
only in the modelling perspective, but also in the solving perspective, integral
representations are more appropriate when there is no closed form solutions.
One of the reasons is that the truncation error of the numerical solution of
integral equation tend to be averaged by the process of quadrature while the
error tends to accumulate in the process of numerical differentiation[9].

This is not a comparative study of modelling COVID pandemic using dif-
ferential models and integral models, but aims on disclosing the applicability
of integral equation models in the above context.
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