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Seaweed proteins as a novel protein alternative: Types, extractions, 
and functional food applications
Jayani Samarathunga , Isuru Wijesekara, and Madhura Jayasinghe

Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 
Sri Lanka

ABSTRACT
Seaweeds, as a dietary protein source originated in Asian countries and later 
expanded towards France, Chile, etc. Food applications have been narrowed 
down due to complications in extraction. Therefore, products are not yet 
available in the market. Extraction of other phytochemicals along with sea
weed proteins provides value addition in food products. Therefore, a trend has 
emerged to extract protein from edible seaweeds with many health beneficial 
applications. Also, consumption of many animal proteins like meat are now 
becoming a threat on humans due to infectious viral diseases. Hence, seaweed 
proteins are emerging as a global alternative source of protein.
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Introduction

Generally, seaweeds are used as human or animal foods to gain nutrients like vitamins, minerals and 
polysaccharides or for their functional properties.[1] Their protein value is rarely discussed due to 
lack of awareness. But seaweeds are excellent source of proteins. Today, seaweeds have become an 
eminent protein source.[2] According to Zemke-White and Ohno,[3] it has been predicted that 
2,000,000 t dry weight of seaweeds arriving from China, France, Korea, Japan and Chile had covered 
90% of global seaweed production per year. The geographical distribution of algae indicates 
substantial differences in degree of endemism and species richness in different regions. The study 
evaluated by Liuzzi et al.[4] shows that biodiversity is getting diminished when moving towards 
lower latitudes with the highest species richness in Tierra del Fuego and southern Patagonia (54– 
45S), and the lowest species richness along the coasts of Rı´o Negro and Buenos Aires provinces (41– 
36S) in Argentina. Fortunately, greatest diversity of algae were observed in both temperate and 
tropical seas in the world.[4,5] Pigments in marine algae create a huge diversity among different 
species of algae.[6–8] For example, Brotosudarmo et al.[9] had identified chlorophyll a, β-carotene, 
fucoxanthin, zeaxanthin and 35 other pigments from the protein extracts of Kappaphyccus alvarezii 
and Padina australis. These pigments have shown antioxidant potential that provide ever-increasing 
demand for utilization of marine pigments in human health and nutrition. Soy beans and legumi
nous plants exhibit higher protein contents among plant protein sources. Similarly, some seaweeds 
have exhibited significant amount of proteins compared to other protein sources.[10,11]The study 
evaluated by Gorissen et al.[12] revealed that some commercially available plant protein sources like 
hemp, lupin, oat, corn, brown rice, pea, potato, wheat and soy beans had crude protein contents of 
51%, 61%, 64%, 65%, 79%, 80%, 80%, 81% and 61–91% (dw) respectively. Also, animal protein 
sources like egg, whey protein and casein have shown protein content of 51%, 72–84% and 67–78% 
(dw) respectively.[12] Morgan et al.[13] has been reported that Palmaria palmata, an edible red 
seaweed can hold 35% of proteins (dry mass). Previous studies revealed that the two red algae; 
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Macrocystis pyrifera (crude protein; 62%dw) and Chondracanthus chamissoi (crude protein; 45%dw) 
have demonstrated higher protein contents than some terrestrial plant sources.[14]Seaweeds have 
shown excellent amino acid composition than leguminous plant. For example, Palmaria palmata 
had contained higher amount of essential amino acids like methionine (2.7–4.5 g amino acid/100 g 
protein) than leguminous plant (1.2–1.4 g amino acid/100 g protein).[1,15,16] Also, Lourenço et al.[17] 

reported that algae like Ulva, Undaria or Entormorpha have been demonstrated protein contents 
corresponding with common vegetables. Crude protein content and amino acid profile of seaweeds 
provide more evidences on advantageous effects of consuming seaweed proteins as a protein source 
in human diet.[18] The widely used technique to measure the true protein content is the “Nitrogen to 
protein conversion factor of 6.25” which is formulated upon total amino acids content.[18]According 
to Heidelbaugh et al.,[18] N- protein conversion factor technique is the most precise method for 
protein determination which all nitrogen in the sample are considered to be in the form of protein. 
Interpretation of seaweeds’ nitrogen and protein has run across diverse disciplines ranging from 
human and animal health to plant growth.[19–21]Therefore, nitrogen to protein conversion factor 
justifies the quantity and quality of protein.[22]According to the analysis of previous literature, this 
universal factor has overestimated the true protein content by 43%.[23]Considerable amounts of 
non-protein nitrogenous substances, such as nucleic acids, pigments, ammonia and other inorganic 
nitrogen are found in seaweeds.[24] Therefore, the nitrogen to protein conversion factor used in 
determining the protein content probably occupies a lower value than the traditional conversion 
factor of 6.25.[23] According to previous reports, the estimated conversion factors that give more 
justifiable protein content have been determined.[25] As suggested by Lourenço et al.[17] conversion 
factors for red, green and brown algae were 4.59, 5.13 and 5.38 respectively. According to analysis of 
103 algae species by Angell et al.,[23] an overall “mean N-protein factors” has been estimated as 4.76. 
This factor used for various seaweed varieties have not been depend on geographic regions 
(temperate, tropical and polar), three phyla and whether the seaweed was wild harvested or 
cultivated.[23] All these results demonstrate that there should be specific conversion factors for 
different seaweeds separately to quantify the protein content accurately. Thereby, it could obviously 
reduce the economic loss in seaweed industry since quality products could be produced. The 
capability of seaweeds as a promising protein source can also be dropped down by its high water 
activity since it reduces the yield. Fresh seaweeds are highly susceptible to damages due to high 
moisture content (70–90%).[26,27] Abdollahi et al.[27] suggested that application of proper preserva
tive methods is a deciding factor that determines final quality of the product specially when 
processing in large industries. Drying is the commonly used method to prevent fresh seaweeds 
from deterioration. But it has been reported that drying at high temperature can also leads to 
negative impacts on nutritional value of the seaweeds.[27,28] Generally, drying at 60°C or above 
reduces total phenol content and antioxidant activity of plant leaves.[26,29] However, total phenol 
content of Himanthalia elongata has been reduced when drying at 25° for long time.[30] Therefore, 
appropriate processing temperatures have to be used to reserve the protein quality and quantity.

Generally, proteins perform techno functional properties of food products providing emulsifying 
properties, texture modification, and whipping properties generated by the ability to absorb both fat 
and water (Amphoteric).[31]Moreover, these features contributed to the sensory properties of the final 
food product.[31–33] The functional properties of a protein concentrate depend on its physicochemical 
characteristics, which include molecular weight, amino acid composition, net charge, and surface 
hydrophobicity. Extraction conditions like pH, temperature, physical treatments (osmotic shock, 
microwaves, pulsed electric field, etc.) and enzymatic treatments also affect the physicochemical 
properties of a protein extract since these influenced on protein solubility, yield, and purity of the 
extract.[31,34] Previous studies have reported that drying conditions affect the properties of proteins 
differently. A study has reported the effect of two drying methods (oven and freeze-drying) on three 
Sargassum species. Accordingly, the ability of protein extraction and digestibility have been facilitated 
by oven-drying method (60°C, 15 hours) while freeze-drying(−70°C, 5 days) had manifested good 
physico-chemical properties.[35] Also, stabilization methods used in postharvest period had greatly 
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influenced on solubility and precipitation yield of proteins extracted from S. latissima using alkaline 
treatment/isoelectric focusing.[27] Higher protein solubilization and total protein yields have been 
observed under freeze dried (−80°C, 4 days) and oven dried(40°C,overnight) postharvest methods due 
to inactivation of protein inhibiting agents like phenol.[27] Sun drying and freezing at −80°C methods 
have elicited lower protein yields.[27] These results indicate how important to study about the 
behaviour of properties of algal protein during processing. Kazir et al.[25] stated that due to increasing 
population and lack of land and fresh water resources, the oceans furnish an irresistible sourcing for 
nutrients. Most of algae species have high protein content which accompanied with their seasonal 
growth throughout the year providing high yield protein.[25] Products prepared using seaweed 
proteins have become limited mainly due to the absence of feasible extraction methods which give 
higher yields. Also, it is essential to evaluate their digestibility under human gastric and intestinal 
conditions.[25]

It has been revealed that bioavailability can be inhibited by the seaweed cell wall due to its complex 
matrix structure. Internal factors like high fibre content also entrap the absorbability of plant proteins 
into the human intestine.[36] Previous data assessments show that the content of soluble fibre is higher 
than the insoluble fibre content of seaweed. For example, diets containing Porphyra tenera and 
Undaria pinnatifida had reduced the bioavailability in rats.[37] This implies that dietary fibre inhibits 
the protein digestion by blocking the access of proteolytic enzymes.[38] Polysaccharides which mainly 
in the algal cell wall interact with proteins also reduces proteolysis of seaweed proteins.[39] The relative 
digestibility of Palmaria palmata (Dulse) was reported as 56% with reference to the hydrolysis 
(digestibility) of casein as 100%.[39]Presence of carbohydrates like xylan may have restricted the 
hydrolization of Dulse proteins.[40] According to previous studies, physical and enzymatic treatments 
have resulted with increased bioavailability of protein. Among different algal protein extraction 
methods, enzymatic hydrolysis of proteins generates precursors of bioactive peptides which can be 
produced during in vitro hydrolysis of proteins by relevant proteolytic enzymes like pepsin, protease, 
bromelain, alkalase etc.[41,42] The seaweed proteins were hydrolysed by the enzymes to form amino 
acids which were readily absorbed by human body. Proteins from Ulva sp. and Gracilaria sp. that have 
been extracted using different solutions have reached at least 89% of proteolysis when undergoes with 
gastro-intestinal digestion.[25]It has been reported that physical treatments like oven dying increases 
the In vitro protein digestibility than freeze drying.[26] Microalgae protein can be hydrolysed by pepsin 
to obtain bioactive peptides.[43] Many studies have reported that marine bioactive peptides have been 
applied in food, nutraceutical and pharmaceutical industries because of their therapeutic potential in 
treatments or prevention of diseases using antihypertensive, antioxidative, anticoagulant, and anti
microbial components.[44,45]

Types of seaweed proteins

The amount of proteins in seaweeds differs according to the species, maturity, and geographical 
location.[46] Generally, brown, green, and red algae have shown 3–15%, 9–26%, and 10–47% of crude 
protein, respectively.[39,47] Since we rarely discover documented history on algal proteins’ structure 
and biological properties, producers find difficulties in producing novel products. Seaweed proteins 
can be identified mainly as phycolectins, glycoproteins, enzymes, phycolythrins, and mycosporine-like 
amino acids. Glycoproteins in the cell wall perform physiological function as the major protein type in 
most of the seaweeds.[11]

Glycoproteins

According to Spiro[48] “Glycoproteins (GP) can be simply defined as proteins to which carbohy
drate is covalently attached” through glycosylation. Usually, these two were linked using N-glycosyl 
linkages or O-glycosyl linkages, while some glycoproteins contain both links.[14,49]Glycoproteins 
are embedded in the seaweed cell wall matrix and supported in adhesion.[2] Arabinogalactan 
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proteins (AGPs) and hydroxyproline-rich glycoproteins (HRGPs) are two types of cell wall 
attached glycoproteins.[50] Previous studies have revealed that the cell walls of green seaweed 
contains AGPs and hydroxyproline-rich glycoproteins.[50] AGPs have been compromised by 
terrestrial plant development with the evolution from algae to flowering plants.[51] Previous studies 
have shown the amount of AGPs and HRGP in Codium fragile was low.[52,53] It is important to 
study the structure of these proteins. AGPs have a carbohydrate component and a protein 
fraction.[54] Accounts for around 90% (dry weight basis) that carbohydrate fraction mainly con
tains arabinose and galactose residues (90% dry weight basis), while protein fraction is composed 
of hydroxyproline residues (approximately 10% dry weight basis).[54] Furthermore, glycoprotein 
that has been isolated from Codium decorticatum contains 36.24% carbohydrate. The carbohydrate 
portion is formed by monosaccharides: rhamnose, galactose, glucose, and mannose with a mole 
ratio of 38:30:26:6.[49] This has been formed by protein and carbohydrate with (1→4)-linked β- 
galactose and β-linked glucose residues.[49] Glycoproteins function well in both algal cells itself and 
in the human body when consumed as a food ingredient. Both carbohydrate and protein fractions 
contribute towards these functions and maintain structure–function relationships that offer good 
biological characteristics of GP.[49] It has been reported that algal glycoproteins exhibit miscella
neous biological properties, such as cell proliferative, hepatoprotective effect, anticancer, anti- 
inflammatory, anti-Alzheimer’s, antiviral, and antioxidant activities.[49] Glycoproteins isolated 
from the green algae Codium decorticatum have shown anticancer activities specially against 
human breast cancer cells (MCF-7, Siha and A549 cells have been inhibited at 60, 75 and 
55 µg/mL concentrations of GP respectively after 24 h incubation).[49,55,56] Also, few studies 
have reported the antioxidant (Superoxide dismutase activity- 53.45%), anti-Alzheimer’s 
(Acetylcholinesterase and Butyrylcholinesterase inhibition activities of GPs stated by IC50 values 
were 63.56 and 99.03 μg/mL), hypoglycaemic (Inhibitory effect was detected as IC50 values of 0.11 
and 0.29 mg mL −1 in yeast and rat intestinal α-Glucosidase inhibitory activity assays respectively) 
and anti-inflammatory (85.27% inhibition in the In vitro COX inhibition assay at a concentration 
of 500 μg/mL of glycoprotein) activities of glycoproteins obtained from brown algae Undaria 
pinnatifida that is available mostly in East Asia as a food ingredient.[57–59] Antioxidant (DPPH 
radical scavenging activity and Superoxide dismutase activity were 85% and 94% respectively) and 
DNA protection actions have been identified from the glycoprotein isolated from brown algae 
Saccharina japonica.[60]

Lectins
Lectins or agglutinins, are proteins that have the affinity to bind with carbohydrate proteins and are 
found in a wide range of organisms.[61] Lectins have been classified as mannose-, galactose-, N-acetyl- 
glucosamine-, fucose-, and sialic acid-binding lectins according to their affinity to bind with sugars.[62] 

Mannose-specific seaweed lectins from red algae have been characterized in previous studies. 
According to the study of Barre et al.,[62] mannose-specific lectins of seaweeds have been classified 
in to five groups depending on the structural scaffold, namely, the griffithsin lectin family, oscillatoria 
agardhii agglutinin homolog (OAAH) lectin family, the legume lectin-like lectin family, the Galanthus 
nivalis agglutinin (GNA)-like lectin family, and the MFP2-like lectin family, and these lectins have 
elicited anticancer properties and anti-HIV properties.[62] Chaves et al.[63] reported two isolectins that 
have been isolated from the marine red alga Solieria filiformis SfL-1 and SfL-2. The primary structures 
of SfL-1 and SfL-2 consist of four tandem-repeat protein domains with 67 amino acids each and have 
been similar to OAAH-family lectins.[63] These isolectins are composed of two β-barrel-like domains 
formed by five antiparallel β-strands.[63] The mixture of these isolectins (SfLs) has shown an anticancer 
effect against MCF-7 cells. According to previous studies, a lectin isolated from Solieria filiformis has 
exhibited antidepressant-like action also, anti-nociceptive and anti-inflammatory activities have been 
shown in lectins isolated from Caulerpa cupressoides var. lycopodium.[64,65] Also, a novel lectin has 
been isolated from the green algae Halimeda renschii; namely HRL40, had shown potential inhibitory 
action on influenza virus (A/H3N2/Udorn/72).[66] This lectin has been formed by combining 
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a quaternary protein of a 11,641 Da polypeptide with a disulphide bond to a carbohydrate which its 
binding profile similar to antiviral Type I high-mannose specific lectin.[66] From the phycolectins that 
have been distinguished among algae, most of them were thermostable and low molecular weight 
proteins.[11] Also, have shown inclination toward oligosaccharides or glycoproteins, and divalent 
cations have not been essentially required for the structural coherence or biological activity.[11] 

Lectins are useful for: detection of alternatives in glycan synthesis with the ability of preventing 
diseases; blood group typing and definition of secretor status; quantification of aberrations of cell 
surface glycan presentation, e.g., in malignancy; cell markers for diagnostic purposes including 
infectious agents like viruses, bacteria, fungi, parasites.[61] Lectins from four marine algal species 
were examined for interaction with human platelets by Matsubara et al..[67] These results have 
indicated that the algal lectins are a new group of inhibitors and may be useful to study glycoconju
gates on platelet membranes and to design novel platelet aggregation inhibitors.[67] The lectin 
designated hypnin A, from the red algae Hypnea japonica, inhibited adenosine diphosphate (ADP)- 
or collagen-induced human platelet aggregation in a dose-dependent manner.[67]

Mycosporine-like amino acids
In seaweeds, there are secondary metabolites called mycosporine-like amino acids (MAA); having low 
molecular weight, water-soluble molecules absorbing UV (Ultra Violet) radiation in the wavelength 
range 310–365 nm.[68] MAAs denature at high temperatures and is water-soluble due to their 
amphoteric properties.[11] They function as sunscreen to protect against UV radiation serve as 
antioxidant molecules, accumulate as compatible solutes following salt stress, etc.[68] MAAs have 
been commercially explored as sun care products for the protection of skin and other non-biological 
materials, e.g., as photo stabilizing additives in plastics, paint, and varnish.[61] A large number of 
derivatives have been tested in skin care products.[61] Moreover, a product called Helioguard® 365 that 
contains mycosporine-like amino acids from the red alga Porphyra umbilicalis has been 
commercialized.[61] The MAA called “Porphyra-334” extracted from Porphyra vietnamensis has also 
exhibited sunscreen protection due to its ability to prevent harmful UV radiation.[69] This MAA has 
a 5.11-fold greater sunscreen protective ability than the commercial product “Aloe vera gel” available 
in the Indian market.[69]

Phycobiliproteins
Phycobiliproteins, which are “located in the chloroplast stroma” are the main proteins found in red 
seaweeds.[70] These proteins behave like sensors, which absorb energy in the visible spectrum.[71] 

Phycobiliproteins are a major pigment in Rhodophyta. They are phycoerythrin, phycocyanin, allo
phycocyanin, and phycoerythrocyanin. R-phycoerythrin is an oligomeric water-soluble 
chromoprotein.[72] Phycobiliproteins are not found in photosystems of the lipid bilayer and attached 
to cytoplasmic surface of thylakoid membranes called phycobilisomes.[11] These phycobiliproteins 
have exhibited poor fluorescence ability.[11] Techniques such as ammonium sulfate precipitation and 
chromatography (ion exchange, gel filtration, etc.) have been used to purify these proteins. 
R-phycoerythrin is applied in immunology, cell biology, and flow cytometry and as a colorant in 
the cosmetics industry and foods as well.[72] Furthermore, the seaweed proteins have soluble and 
insoluble protein fractions.[23] The water-soluble proteins extracted using Ulva armoricana showed 
higher digestibility by trypsin or chymotrypsin compared to Palmaria palmata and Sargassum sp.[73] 

The protein quality and its digestibility are two important parameters, which provide itself to function 
inside the human body.[74] Different extraction methods are discussed in Table 1.

When studying the three major types of seaweed protein extraction methods; enzymatic hydrolysis 
(Cellulase, xylanase, ĸ-carrageenase, etc.), physical processes (i.e Osmotic stress, high shear force, 
aqueous treatment, potter homogenization, etc.), and chemical extraction (i.e., acid-alkaline treat
ment), the highest extractable protein yield have been elicited by enzymatic hydrolysis. For example, 
the extractable protein yields of Palmaria palmata using enzymatic extraction, physical process, and 
chemical extraction have been reported as 67%, 40%, and 24%, respectively.[77] Enzymatic digestion
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appears to be an effective treatment for R-phycoerythrin extraction from the red seaweed Palmaria 
palmata.[78] The study of Dumay et al.[78] revealed that under enzymatic optimization conditions, 
R-phycoerythrin extraction yield (12.36 g kg−1 dw) was 62 times greater than without enzymatic 
treatment (0.20 g kg−1 dw). Also, it has been 16 times greater even without optimization 
(Yield = 3.28 g kg−1 dw).[78] This provides an additional economic value for R-phycoerythrin 
production.

Amino acid composition of algal proteins

The quality and nutritional value of algal proteins are based on their amino acid composition. Humans 
need all essential amino acids for their growth. Amino acid composition of foods varies greatly. Foods 
being labelled as “high quality” protein sources consisted of higher amounts of essential amino acids like 
lysine, methionine, etc.[79] Interestingly, all essential amino acids are available in most seaweed 
proteins.[39,80]The by-product obtained during agar extraction from Gracilaria fisheri is rich in proteins 
and essential amino acids.[81] Accordingly, 60.29 g/100 g of total amino acids (including free and bound 
forms) have been obtained by the acid hydrolysis of the proteins in the seaweed by-product.[81] Caulerpa 
lentillifera and Ulva reticulata proteins were of high quality because the essential amino acids represented 
almost 40% of total amino acids and the essential amino acid profiles were closed to those of egg and soya 
protein, except for relative lack of data on tryptophan, methionine and cysteine.[82] Previous studies have 
reported that “aspartic” and “glutamic” amino acids occupy a large scaffold in most of the seaweed 
proteins (Table 2).[17] According to Table 2, amino acid content is high in green algae than red and brown 
algae.[86,87] It implies that amino acid composition varies with the species. The amino acid composition 
changes during the sampling period of the year.[2,73] Hence, the protein composition varies with the season 
of the year. The amino acid composition of 19 tropical seaweeds have been studied by Lourenco et al.[17] to 
evaluate the variation of amino acids among six chlorophytes, four phaeophytes and nine rhodophytes. 
Among the six green algae evaluated in this study; Caulerpa fastigiata, Caulerpa racemose, Codium 
decorticatum, Codium spongiosum, Codium taylorii and Ulva fasciata, the highest total amino acid content 
has been elicited by Caulerpa fastigiata (98.4 as percentage of amino acid/100 mg of algal protein).[17] The 
highest content of methionine has been reported from Codium taylorii (i.e 2.0 as percentage of amino acid/ 
100 mg of algal protein).[17] From the four brown algae species; Chnoospora minima, Dictyota menstrualis, 

Table 1. Different types of seaweed proteins and their extraction methods.

Seaweed Name of the protein Protein yield % Extraction method

Ulva sp. 
(Green algae)[2]

Glycoproteins(GP) “UvGP-1” (0.54) 
“UvGP-2 DA”(0.52) 
“UvGP-2-DS”(1.98)

Water 
TCA 

(NH4)2SO4

Ulva lactuca 
(Green algae)[75]

GP fraction G ND Distilled water 
Water 
NaOH 

DEAE cellulose
Saccharina japonica 

(Brown algae)[60]
Glycoprotein 0.27 Distilled water and ethanol

Solieria 
Filiformis(Red algae)[63]

Lectins 
“SfL-1” 
“SfL-2”

ND Phosphate buffer, (NH4)2SO4

S. filiformis(Red algae)[64] Lectin “SfL” ND Tris-HCl buffer, 
(NH4)2SO4

Capsosiphon 
Fulvescens(Green algae)[76]

“Cf-hGP” ND Sodium acetate, 
Methanol: chloroform: distilled water 

Purified by lectin wheat germ agglutinin resin
Undaria 

Pinnatifida (Brown algae)[57]
“UPGP” ND Distilled water 

Ethanol

*ND Not detected
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Padina gymnospora and Sargassum vulgare, the highest total amino acid content and methionine content 
have been recorded from Padina gymnospora (97.2 as percentage of amino acid/100 mg of algal protein)
and Sargassum vulgare (2 as percentage of amino acid/100 mg of algal protein) respectively.[17] In the same 
study it has been revealed that among the nine red algae; Acanthophora spicifera, Aglaothamnion 
uruguayense, Cryptonemia seminervis, Gracilaria domingensis, Gracilariopsis tenuifrons, Laurencia flagelli
fera, Plocamium brasiliense, Porphyra acanthophora and Pterocladiella capillacea, the highest total amino 
acid content and methionine content have been obtained by Porphyra acanthophora (104.2 as percentage 
of amino acid/100 mg of algal protein) and Gracilariopsis tenuifrons (1.3 as percentage of amino acid/ 
100 mg of algal protein) respectively.[17]The content of aspartic acid and glutamic acid in red and green 
seaweeds were significantly higher than that of brown seaweed.[17]

These impacts occur with different amino acid content in algae. More aspartic and glutamic acid 
contents together produce a distinctive flavor in seaweed; its savoury flavor (umami flavor).[83] 

Meanwhile, serine can provide a sweet taste that results in the complex flavor of seaweed.[83] 

Furthermore, Holdt and Kraan[88] reported that the taste of nori (dried or edible seaweed often used 
in Japanese cookery) is the result of a large number of different amino acids, including alanine, glutamic 
acid, and glycine. The study by Lumbessy et al.[83] has reported that K. alvarezii and G. salicornia 
seaweeds are rich in aromatic amino acids (i.e., threonine) and have limited sulphur amino acids (i.e., 
lysine). This suggests that K. alvarezii and G. salicornia seaweeds can act as a complementary protein 
source for humans as well as animals. When evaluating the amino acid composition of Gracilaria sp. 
and Ulva sp. protein concentrates obtained using alkaline treatment and their profiles have shown 
similarities with egg albumin, meanwhile they have been in compliance with FAO/WHO 
recommendations.[25] Amino acid composition of different seaweeds are shown below in Table 2.

The direct way for quantifying the “true protein content” in seaweeds is basically represented by sum 
of the amino acid residues after hydrolysis.[18,86] The “amino acid residue” means the proteomic amino 
acid fraction that actually remained after hydrolysis (as when copolymerized in polypeptide chains).[86] 

Amino acids are analysed using chromatography techniques like Ultra performance liquid chromato
graphy (UPLC) and Reversed phase high performance liquid chromatography (RP-HPLC).[86,89]

Table 2. Amino acid composition of some seaweeds (in g amino acid/100 g protein).

No.
Amino acids 

(AA)

Caulerpa 
lentillifera 
(Green 

algae)[82]

Ulva reticulate 
(Green 

algae)[82]

Kappaphycus 
alvarezii 

(Red algae)[83]

Gracilaria 
salicornia 

(Red 
algae)[83]

Turbinaria ornata 
(Brown 

algae)[84]

Durvillaea 
antarctica 
(Brown 

algae)[85]

Essential AA
1 Threonine 6.38 5.41 2.49 2.25 0.15 5.84
2 Valine 7.03 6.30 2.49 2.20 0.23 9.97
3 Lysine 6.63 6.02 1.51 - 0.20 4.22
4 Isoleucine 5.01 4.23 2.14 1.98 0.18 8.05
5 Leucine 8.00 7.90 2.34 2.16 0.26 15.88
6 Phenylalanine 4.93 5.26 2.11 1.79 0.19 9.97
7 Methionine - - 1.69 1.61 0.05 3.89

Non essential 
AA

8 Aspartic 11.56 12.50 3.33 - 0.53 4.17
9 Serine 6.14 6.39 2.68 2.90 0.10 5.38
10 Glutamic 14.39 12.98 11.67 2.79 0.58 17.87
11 Glycine 6.87 6.49 2.97 2.18 0.22 18.36
12 Arginine 7.03 8.65 2.40 2.40 0.19 4.83
13 Histidine 0.65 1.08 1.60 2.29 0.07 2.26
14 Alanine 6.87 8.09 2.93 2.51 0.23 9.57
15 Tyrosine 3.88 3.62 1.81 1.74 0.05 4.45
16 Proline 4.61 5.08 - - 0.17 7.95
17 Cystin - - - - 0.00 0.78
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Extraction of seaweed proteins

The interest in protein extraction from seaweeds has now sparked up.[39,45,77,90–92] Due to the high 
protein content in seaweeds, these were available as functional food ingredients. A major obstacle for 
protein extraction is the complex polysaccharide matrix in the cell wall.[2,91,93] Hence, food applica
tions are restricted. Higher percentages of phenols and phlorotannins also decrease the protein 
extractability[94,95] and digestibility of the proteins.[26,95–97]

Due to the low protein extraction yield, poor technical clarifications such as low gel electrophoresis 
resolution and inadequate further analysis of algal protein may occur restrictions in utilization of 
seaweed proteins.[2] According to the study of Harrysson et al.,[98] results of protein analysis varied 
with the expected value due to interference of compounds like pigments, carbohydrates, and salts. 
Efficiency of direct extraction procedures had been influenced by seaweeds’ chemical and morpholo
gical properties.[99] For example, tough leathery brown seaweeds were shown to be more resistant to 
certain extraction procedures compared to seaweed with soft thalli.[99]

Extraction Methods
Protein extraction procedures differ by many factors. The volume of water and exposure time used for 
the extraction of water-soluble proteins, pre-treatment mode (fresh/dried, milled, freeze-dried etc.), 
buffer type, and time duration used, solubility of proteins, the method of precipitation (e.g., centrifuge 
time and force)[15,26,90,99] are some of them. Traditional protein extraction methods (aqueous, acidic, 
and alkaline) have shown lower yields (24% to 59%).[100] Although novel protein extraction methods 
(ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction[101]) have 
exhibited higher extraction yields, these have not yet been fully developed to an economically feasible 
scale.[102] Enzyme-assisted extraction (EAE) can be suggested as a beneficial protein extraction 
method[100] because it provides many advantages like high yield and conserves significant protein 
qualities.[103] The study of Vasquez et al.[102] reveals that carbohydrase enzyme ‘cellulase’ had intensify 
the protein extraction yields from the brown seaweed Macrocystis pyrifera and the red seaweed 
Chondracanthus chamissoi. According to this study, enzymes like cellulase, pectinase and α-amylase 
etc. had hydrolysed seaweed polysaccharides.[102] These extracts had resulted with better antioxidant 
and antihypertensive activity which can be used as potential nutraceuticals or functional ingredients in 
food industry.[102] Same study shows that proteins extracted from M. pyrifera and C. chamissoi have 
been increased by 4.7 and 1.5 times respectively using Enzyme assisted extraction compared to the non- 
enzymatic extraction.[102] In comparison with other methods, carbohydrases have been reported an 
increase in extraction yields for protein extraction from seaweeds.[15,77] According to the study of 
Fleurence,[15] carrageenase and cellulase had elicited 10 times higher extraction performance on 
Chondrus crispus while agarase and cellulase also had increased 3 times higher efficiency in Gracilaria 
verrucosa compared to non-enzymatic process. Alkaline treatment along with carbohydrases have 
resulted a higher yield in protein extraction from Palmaria palmata since algal protein solubility is 
high in alkaline pH.[77,104] However, carbohydrases like carrageenase and agarase which are specific to 
polysaccharides were known to give less qualitative performance[77] on proteins than nonspecific 
carbohydrases since these hydrolyse cellulose and other polysaccharides partially without disturbing 
the commercial viability of the seaweeds.[102] Maximum protein extraction yield would be reached when 
provided with optimum physio-chemical conditions and suitable selection of specific enzyme.[105–107]

Apart from the above extraction methods various liquid systems such as distilled water,[23,39,73] 

buffers, alkaline solutions,[45,93] urea,[108] lysis solutions,[45] and phenol-based extraction 
systems[91,108,109] have been used to extract proteins from seaweeds. Further, partial characterization 
of the glycoprotein-rich fractions can be carried out by the matrix-assisted laser desorption ionization- 
time of flight/mass spectrometry (MALDI-TOF/ MS) analysis.[2]

Among various liquid systems, the most effective results have been demonstrated by phenol-based 
extraction.[90,91,108] Higher extractable proteins have been reported with lysis solution systems com
pared to water and buffer.[2] Today, there is an immense trend for green extraction systems in the food
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and pharmaceutical industries. For example, water and buffer extractions.[110] In water extraction, the 
addition of distilled water and holding it for a few hours creates osmotic shock and facilitates protein 
extraction from seaweeds.[93,99] The combination of physical methods and iso-electric precipitation 
for extraction of seaweeds proteins is depicted in Fig. 1.

Methods including the salting out method, isoelectric precipitation, and the accelerated solvent 
extraction (ASE®) method have manifested better results after pre-removal of lipids and 
phlorotannins.[98] Among these, the highest protein yields have been achieved using the pH-shift 
method applied to Porphyra umbilicalis and Saccharina latissima.[98] Moreover, fatty acids in Ulva 
lactuca and S. latissima also have been increased by 2.2 and 1.6 times, respectively.[98] Hence, it is 
advantageous to use this method in food industry.

However, selecting the best method to obtain the highest yield of seaweed protein is challenging. 
Previous studies have revealed that cultivated seaweeds have shown higher protein content, inattentive 
to protein analysis methods.[23,56] Seaweed cultivation seems sound reasonable in obtaining a yield 
with high protein content and helps to reduce the burden caused due to harvesting huge quantities of 
seaweeds from wild populations.[56] Grote[111] has reported that in Europe, including countries like 
Norway, France, and Ireland, wild harvested biomass has been used for their productions (more than 
97%). Also, in Latin America nearly 96% of the total production has been harvested from naturally 
grown.[14,111,112]The protein quality, and yield could be improved through Microwave Assisted 
Extraction, Enzyme Assisted Extraction, and ultrafiltration extractions.[113–115]Pressurized Liquid 
Extraction (PLE), or Accelerated Solvent Extraction (ASE), also increase the efficiency of extraction, 
while stabilized in the liquid state to increase mass transfer rate at temperature (50–200°C) and 
pressure (35–200 bar).[56,116] However, both conventional and modern extraction methods exhibit 
advantages and disadvantages as well (Table 3).

Biological activities of proteins

Seaweeds are well-known today for their natural bioactive substances.[125,126] For example, sulfated 
polysaccharides,[127] phlorotannins,[128] pigments,[128] sterols,[129] peptides, and proteins, etc.[15,130] In 
the algal protein extraction process, valuable phytochemicals are also co-extracted to provide aug
mented final products meanwhile reducing the waste.[25] Polyphenols can be considered as one such 
bioactive molecule which is present in algae[106,131] and is highly beneficial for human health mainly as 
reducing agents/antioxidants.[132] Polyphenols like Catechin, epicatechin, and gallate that have been 
found in Halimeda sp. has provided potential antioxidant properties in algae.[133] Similarly, sulfated 
polysaccharides like fucoidan, alginic acid, laminaran that have been found in Turbinaria conoides and

Figure 1. Extraction of seaweed proteins by combining physical methods and iso electric precipitation.[41,45,46,50].
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phycoerythrin and phycocyanin that were found in red algae also have shown antioxidant properties 
in algae.[134,135]It has been reported that glycoproteins extracted from algae have beneficial properties 
like preventing liver cells, antidiabetic, anti-inflammatory, antioxidant, and anti-Alzheimer’s 
activities.[2] Dexamethasone (DEX)-induced myotube atrophy has been prevented by the peptides of 
Pyropia yezoensis called “PYP15.”[56,136] Many new bioactive natural molecules and valuable metabo
lites from seaweeds having an economic impact have been investigated during the past few years.[61,88] 

Several biological activities such as antiviral,[137] antibacterial[138] antioxidant[139] have been identified 
in red (Rhodophyta) and brown (Phaeophyta) algae. Antioxidant and antiviral properties of proteins 
extracted from Ulva armoricana have been previously reported with the use of enzyme-assisted 
extraction.[72–75,118] Amino acids, which show antioxidant potential have been disclosed by enzymatic 
hydrolysis, hence they easily donate hydrogen to the peroxyl radical.[25,140] Peptides are the most 
commonly available antioxidant substances in food due to their high bioactive performance.[56,141]

Due to the high attraction of polyphenols towards proteins,[25] polyphenols present in protein 
extracts[142] facilitate their co-extraction, and may improve their health-promoting value. Recent 
studies indicated that seaweed, which contained 4.2% of polyphenol could effectively suppress body 
weight gain, decrease lipogenesis in the liver, and inhibit hyperinsulinemia by promoting energy 
regulation.[143] The ethanolic extract of red seaweeds like Plocamium telfairiae which contains 
26.79 ± 0.08 protein, contained around 4% polyphenol and have shown anti-obesity activities.[143] 

Moreover, amino acid residues of algal proteins have elicited antioxidant properties.[140] Assessment 
of antioxidant activity in algal proteins depicts potential health benefits with regards to their valuable 
amino acid profile.[144] Furthermore, the co-extraction process has elicited best medicinal benefits in 
utilizing plant sources rather than pharmaceutical sources in food products.[145] Therefore, the 
antioxidant ability of seaweed protein provides added value in food processing. In addition to these, 
“mannose-specific algal lectins” specially from Rhodophyta has elicited anti-cancer and antiviral 
properties.[62] These identified proteins could be utilized to protect against human immunodeficiency 
virus (HIV-1), due to their broad-spectrum specificity to interact with the envelope glycoprotein and
prevent the pathogenic effect of HIV-1 towards the host CD4 + T-lymphocyte cells in vitro.[62] The 
high-mannose specific lectin and its recombinants from K. alvarezii have a high tendency to bind with 
the glycoprotein gp120 of the virus envelop and has shown a strong anti-HIV activity.[56,146]

Functional food applications

The seaweed industry in Europe has branched towards France, Norway, and Ireland as main 
producers, while Spain, Portugal and the UK as small producers and suppliers.[46] Although the 
protein quantity and quality of many seaweeds have been explored,[77] their food applications have 
been promoted sparsely. Food applications are merely a challenge since seaweed proteins are novel.

Challenges in food applications
There are several reasons that restrict food applications of seaweed protein. Mainly, the efficiency of 
protein extraction has been reduced due to the more complex and heterogeneous structure of cell walls 
in seaweeds than those of terrestrial plants.[147] They are composed of mixtures of sulfated and 
branched polysaccharides which are associated with proteins.[103] Hence, treatments are needed to 
degrade these structures and extract proteins. However, advanced methods (EAE, Ultrasound assisted 
extraction (UAE), Microwave assisted extraction (MAE) etc.) which give higher extraction yields are 
of high cost. Also, it is a big challenge to maintain the same quality and quantity of seaweed protein 
throughout the year since environmental factors, or harvesting period and locations probably resulted 
an instability.[56] For example, higher protein contents have been reported during the winter com
pared to summer and autumn.[15] Therefore, this will appear to have a negative impact on seaweed 
food industry compared to other plant sources. Although seaweeds are popular as a healthy and safe 
food for humans, they are very easy to experience damage in fresh conditions because the chemical 
composition is dominated by water. For example, Caulerpa sp. were easily susceptible to 
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microorganisms and physical damage due to mushy nature of their thalli.[148]Therefore, food applica
tions become limited due to the losses occurred during harvesting and storage. Lack of knowledge on 
protein content and functionality of different seaweeds among consumers is another reason that limits 
food applications. Although several studies have evaluated the functional properties of different 
seaweed varieties, rarely these functionalities have come in to practice.[31,149,150] Functional properties 
like solubility, foaming capacity and stability, water holding capacity, oil holding capacity and 
emulsifying ability are dependant factors of food applications of seaweeds. For example high nitrogen 
solubility is required for protein concentrates to be used as functional ingredients in many foods 
including beverages, dressings, coffee whiteners, whipped toppings and confections.[31,151] Therefore, 
scarcity of knowledge and experience on handing these functional properties may delay the 
approaches for reaching seaweed protein based food products to the market. Apart from the functional 
properties, presence of contaminants, anti-nutritional factors, allergens and food safety hazards 
associated with novel proteins also affect food applications.[31,152]

Possible solutions
Interestingly, several studies have brought solutions to this. The potential food applications given in 
Table 4 will provide more evidence on utilization of seaweed proteins for human consumption. 
Although the extraction process of protein is often affected by polysaccharides in the cell wall, produc
tion capability has been improved with the introduction of efficient methods like EAE, UAE, and MAE. 
In EAE, enzymes convert water-insoluble materials into water-soluble materials and this method does 
not adapt to any toxic chemicals.[103] In addition, cheap and food-grade enzymes are useful in the future 
to extract proteins commercially.[103] Currently, research studies have proved that the toxicity of many 
seaweed proteins has minimal impact on humans. Cytotoxicity of glycoprotein fractions isolated from 
selected seaweeds has been tested on cultured Vero cells, and no toxicity has been detected in Solieria 
chordalis (Rhodophyta), Ulva sp. (Chlorophyta) and Sargassum muticum (Phaeophyta).[118,154]

Generally, seaweeds should be stored under freezing conditions or dried immediately after harvesting 
to prevent quality and nutrient loss. The strong tastes associated with seaweed may also be reduced by 
cooking or washing since these are allied with many beneficial micronutrients.[36]

Food applications
The application of seaweed proteins as a source of animal feed has been investigated. The study 
evaluated by Anh et al.[19] shows that the green algae Cladophora spp. could replace up to 30% of 
protein in the diets for postlarval tiger shrimp (Penaeus monodon) as a protein substitute. Various
food products, like soups, ready to serve foods, snacks are usually flavoured by thermally processed 
flavourings.[81] When sources of plant proteins like wheat,[156] soy,[157] and Brassica[158] were ther
mally processed, meaty or beefy flavours were generated meanwhile they act as good flavour enhancers 
than animal proteins.[81] Although, seafood flavour is generally produced by protein hydrolysates from 
marine sources, like fish, crab, prawn etc., it is difficult to maintain high quality due to their 
susceptibility to fat oxidation and removing excess fat being expensive.[81,159] By-products produced 
after agar extraction contain low fat and rich in flavour generating amino acids, such as glutamic, 
aspartic, lysine and arginine.[81] The study evaluated by Laohakunjit et al.[81] has suggested, the by- 
products of agar-extraction from Gracilaria fisheri are a suitable protein source to produce such 
flavours because they contain more protein (28%) and less fat content (0.60%). Among various 
proteolytic enzymes bromelain is generally used in many food products because of its stable activity 
over a broad pH range (pH 4.0–8.0) and the cleavage of peptide bonds with a wide range of 
specificity.[81]

For ages, marine algae has been used as a flavour enhancer in the preparation of soups and 
salads.[81] Edible green seaweed Ulva sp. (sea salad) is well popular in Japan as Baonori and used in 
Europe for soups and salad preparations.[2] A blue colored chromoprotein, which is 
a phycobiliprotein, has been added to foods by Japanese as a colourant.[1] This is a phycocyanin 
which is extracted from the microalgae Spirulina sp. is commonly added to chewing gum, soft drinks, 
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dairy products, and sushi bars.[160] Rhodophyta are also featured with purple and red colours owing to 
pigments like R-phycocyanin, R-phycoerythrin.[161] Currently, enrichment of bakery foods with 
proteins against protein malnutrition has prompted, and seaweeds are an excellent source to enrich 
foods[162] as protein alternatives.[163] Around the world, seaweed proteins extracted using different 
methods have shown different food potentials (Table 4).

Table 4. Potential applications and extraction methods of different seaweed species collected from different places in the world.

Name Sampling locations Potential applications Extraction methods Reference

Brown algae-Saccharina 
latissima, Ascophyllum 
nodosum, Fucus 
vesiculosus, Laminaria 
digitata

Barents Sea & 
White Sea

Source of amino acids. Acid hydrolysis Bogolitsyn 
et al.[153]

Red algae-Gracilaria fisheri Commercial 
seaweed pond 
in the Southern 
part of Thailand

A precursor to thermally 
processed seafood-like flavour that 
can be used as a flavour 
supplement and as a savoury 
flavour source for various seafood 
products.

Bromelain hydrolysis Laohakunjit 
et al.[81]

Brown algae-Saccharina 
latissima

Island of Froya, 
Norway

Microbial protein produced from 
Brown Seaweed and Spruce Wood 
as a Feed Ingredient.

Enzymatic hydrolysis Sharma 
et al.[20]

Green algae-Ulva rigida and 
Ulva fasciata & 
red algae- 
Gracilaria dura

Israeli 
Mediterranean 
Sea intertidal 
zone

Protein concentrates suitable for 
human diet (high protein content 
i.e. 70–86%, has a nutritional amino 
acid composition, easily digested & 
antioxidative properties).

Extracting by liquid 
medium. 
Eg: Deionized 
water, lysis buffer, 
NaOH

Kazir 
et al.[25]

Green algae- 
Ulva armoricana 
(Ulvales, Ulvophyceae)

English 
Channel 
(Brittany, 
France)

Production of antiviral and 
antioxidative extracts.

Enzymatic hydrolysis Hardouin 
et al.[154]

Brown algae-Saccharina 
japonica

Japan, China 
and Korea

As an ingredient in food, cosmetic, 
and pharmaceutical products.

Extraction using 
different lysis 
buffers and 
detergents

Kim et al.[45]

Green algae- 
Ulva lactuca & brown 
algae- Padina pavonica

Buleji coast, 
Karachi, 
Pakistan

Could be utilized 
as food, medicines and fodder etc.

TCA/ Acetone 
method

Fareeha 
et al.[155]

Brown algae- Himanthalia 
elongata (Linnaeus)

Muros, A Coruña, 
Galicia, Spain

Known as sea spaghetti. Foaming and 
emulsifying properties suggest that 
it could be suitable for its use in the 
formulation of a wide variety of 
food products such as sausages, 
breads, and cakes as well as soups 
and salad dressing.

Ultrapure water 
extraction method

Garcia- 
Vaquero 
et al.[31]

Red algae-Palmaria palmata 
(Dulse)

Belle Ile (located 
on the French 
Brittany coast).

Potentially a good source of proteins 
(10–26% of the dry mass, fairly 
moderate in vitro digestibility.

Ultrapure water 
extraction method

Galland- 
Irmouli 
et al.[39]

Red algae-Kappaphycus 
alvarezii

Cultivation farm, 
Port Okha, 
Gujarat, 
Northwest coast 
of India

Protein concentrate (62.3 ± 1.62% 
proteins) could be incorporated 
into several value-added food 
products.

Treatment with de- 
ionized water and 
2-mercaptoethanol

Kumar 
et al.[149]

Brown seaweed- Macrocystis 
pyrifera & 
red seaweed- 
Chondracanthus chamissoi

Tongoy Bay of 
Coquimbo 
Region, Chile

Nutraceutical or functional 
ingredients. Both have antioxidant 
activity and M. pyrifera protein 
extract exhibited a potential 
antihypertensive activity.

enzyme-assisted 
extraction

Vásquez 
et al.[102]
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Digestibility of seaweed proteins

Generally, the digestibility of plant protein is lower than animal protein.[164] Naturally occurring anti 
nutritional factors tannins, trypsin inhibitors restrict the digestibility of proteins. For example, tannins 
in legumes and cereals; trypsin inhibitors and haemagglutinins in legumes; phytates in cereals and 
oilseeds; gossypol in cottonseed protein products; and glucosinolates in mustard and canola protein 
products that reduce the digestibility of plant proteins.[165] Therefore, the digestibility of algal proteins 
by human proteases must be evaluated at the preliminary stage by utilizing them as a food 
ingredient.[25]

Several studies have reported, “in vitro digestibility of algal proteins” that have been extracted 
under strong alkaline conditions.[15,74] According to the study evaluated by Fujiwara-Arasaki et al.[74] 

algal protein digestion has been carried out by three enzymes, pepsin, pancreatin, and pronase. The 
relative digestibility (Expressed as a percentage of casein digestibility base, i.e. 100%) of proteins 
extracted from Porphyra tenera was 70% in the presence of pronase and 56% with pepsin and 
pancreatin.[74] The relative digestibility of alkali-soluble proteins extracted from Ulva pertusa by 
three enzymes pepsin or pancreatin or pronase is 17%, 66% and 95%, respectively.[74] Similarly, the 
relative digestibility of proteins extracted from the brown algae Undaria pinnatifida by above three 
enzymes are 24, 48 and 84 respectively.[1,74] Digestibility of red seaweeds by pepsin, pancreatin and 
pronase have been relatively lower than green and brown seaweeds.[39,74] The results evaluated by 
Kazir et al.[25] using casein as the digestion standard have depicted that significant amounts of Ulva 
protein and Gracilaria protein have been digested by pepsin at the end of the gastric phase(47.8% and 
68.1% have been hydrolysed respectively). In the same study, trypsin and chymotrypsin also had 
hydrolysed 89.4% of the Ulva protein and 100% of the Gracilaria protein at the end of the gastric 
phase.[25]Removing anti-nutritional factors using the two methods; fermentation processes and 

Table 5. Digestibility of different protein sources (%).

Protein source Digestibility % Reference

Plant proteins
Lentils (canned) 84 Sarwar and Peace[176]

Kidney bean (canned) 81 Sarwar and Peace[176]

Pinto bean (canned) 79 Sarwar and Peace[176]

Pinto bean (autoclaved) 80 Sarwar and Peace[176]

Seafarer bean (autoclaved) 84 Sarwar and Peace[176]

Black bean (autoclaved) 72 Sarwar and Peace[176]

Fababean (autoclaved) 86 Sarwar and Peace[176]

Soya protein isolate (SPI) 95 Gilani and Sepehr[177]

Soyabean meal, raw 80 Gilani and Sepehr[177]

Animal proteins
Casein 99 Gilani and Sepehr[163]

Raw egg 90 Evenepoel et al.[178]

Cooked egg 51 Evenepoel et al.[178]

Boiled beef 27 Yin et al.[179]

Microalgae
Nostoc sphaeroides F&M-C117 82 Niccolai et al.[180]

Arthrospira platensis F&M-C256 81 Niccolai et al.[180]

Chlorella vulgaris Allma 76 Niccolai et al.[180]

Nannochloropsis oceanica F&M-M24 C 50 Niccolai et al.[180]

Chlorella sorokiniana F&M-M49 55 Niccolai et al.[180]

Macroalage 
Rhodophyta

Palmaria palmata 58 Marrion et al.[181]

Gracilaria verrucosa 42 Marrion et al.[182]

Chlorophyta
Ulva lactuca 86 Wong and Cheung[183]

Phaeophyta
Laminaria japonica 72 MišurCoVá et al.[184]

Undaria pinnatifida 69 MišurCoVá et al.[184]
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enzymatic maceration increase the digestibility and improve the nutritional value of algal protein.[166] 

Protein digestibility is inhibited by several factors. For example, fibres extracted from Laminaria 
japonica and Undaria pinnatifida had shown notable restrictive impact (55 and 21%) on pepsin 
activity.[167] The variations in protein fraction digestibility of green seaweed Ulva armoricana, has 
been associated with glycoprotein content which mainly affected by seasons,[73] while other algae are 
rich in lectins that could affect protein digestibility.[168] However, these studies reveal that the 
availability of higher quantities of polysaccharides in seaweeds has become the major reason for low 
protein digestibility.[169] Compared to animal proteins, moderate digestibility has been recorded in red 
algae proteins. High fiber content of red algae in general acts as blocking agents to digestive enzymes 
which adhere on substrates thereby reduce the activity of proteolytic enzymes.[11] Other compounds 
like polyphenols or trypsin inhibitors also inhibit the digestibility of seaweed proteins.[170]

Discussion

At present, the global food system has moved towards the consumption of plant protein sources 
mainly due to the inability to access sufficient dietary protein requirements of people. Also, many 
zoonotic flu pandemics like H1N1 have been circulated around the world due to unhygienic food 
practices with meat consumption. Seaweed proteins, a novel meat alternative, can be considered as 
a major plausible protein source among other alternative sources. Novel seaweed extraction methods 
direct pathways to utilize algal protein in food, pharmaceutical and cosmetic products. Novel protein 
extraction technologies like EAE, UAE, HHP, MAE, and supercritical fluid extraction have higher 
efficiencies and yields while performing as green technologies. After extraction of proteins, identifica
tion of different proteins is important. Electrophoresis is a simple and relatively inexpensive technique 
used to characterize proteins in a sample. Co-extraction of carbohydrates, polyphenols with proteins 
may provide beneficial health properties, which conversely interfere in the identification and purifica
tion of proteins.[70]

Protein identification and purification

Sodium dodecyl sulfate (SDS)-PAGE gel electrophoresis, which allows protein separation by mass, is 
a common method used for protein characterization.[171] Here, the extracted protein fraction that runs 
on a Polyacrylamide-based discontinuous gel is influenced by structure and charge, and proteins are 
separated solely on the basis of differences in their molecular weight.[171]Chromatographic separation 
is another identification mode in which separation of peptides occurs on the basis of differences in 
their hydrophobicity.[70] High-Performance Liquid Chromatograph (HPLC) is extensively applied to 
detect amino acid profile and purification of many compounds.[14] Generally, HPLC requires 
a derivatization step prior to the purification or separation of amino acids.[14] Derivatization reagents 
that commonly used were 9-fluorenylmethyl chloroformate (FMOC-Cl), ortho-phthalaldehyde 
(OPA), phenyl isothiocyanate (PITC), 1-fluoro-2,4-dinitrobenzene, 1-fluoro-2,4-dinitrophenyl- 
5-L-alanine amide, and dansyl chloride.[172] For example, the reversed-phase high-performance 
liquid-chromatographic method has been used for analysis of the amino acids in edible seaweeds 
Himanthalia elongata, Laminaria ochroleuca, Undaria pinnatifida, Palmaria sp. and Porphyra sp.[172] 

Those amino acids produced had been derivatized with phenyl isothiocyanate. The amino acid content 
of the algae analysed ranged from 22.4 ± 1.9 to 138.0 ± 5.6 mg g−1 dry weight.[172] Spectrometry is 
another identification method which mainly provides the structural composition of proteins. Fourier 
Transform Infrared (FTIR) spectroscopy is the commonly used spectrometric method. This helps to 
detect non protein compounds in the protein extracts.[102] FTIR method has been used to characterize 
proteins of Macrocystis pyrifera and Chondracanthus chamissoi extracted from enzyme-assisted 
extraction.[102] Accordingly, the bands represented at 3302 cm−1and 3321 cm−1 in both seaweeds 
had been corresponding to O-H in polysaccharides/polyphenol or N–H present in proteins.[102] For 
the identification of proteins in C. chamissoi, the bands that were detected at 1637 cm−1 and 1524 cm−1 
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had been identified as C = O, N–H, or C–N that probably had been corresponding to amides.[102] Also, 
the bands at 3281 cm−1 and 3274 cm−1 found in the protein extract in both seaweeds probably had 
been N–H stress vibrations corresponding to amide of a protein polypeptide.[102]

Future trends

Extraction of the soluble protein fraction of seaweed is essential since these were digested and 
absorbed by the human intestine. However, the protein content is mainly affected by geographical 
location, seasonal variation, and variety of microalgae. Hence, these factors may appear more essential 
in food applications. The study of Banach et al.[152] stated that in 2016, over 30 million tons (fresh 
weight) of farmed seaweed was reported to be produced globally, countries including China (47.9%), 
Indonesia (38.7%), the Philippines (4.7%), the Republic of Korea (4.5%), Japan (1.3%), and Malaysia 
(0.7%). Also, the European Union (EU) exported 101,594 tons of seaweed, of which 4,607 tons were 
for human consumption, while imports totalled 178,467 tons, of which 15,184 tons were for human 
consumption.[152]According to statistical analysis, in 2018 global soybean production accounted for 
over 360 million tonnes.[173] Although soya bean production is extremely high compared to seaweed, 
it requires millions of hectares of terrestrial land for cultivation and large quantities of herbicides. 
Unlike terrestrial plant sources, seaweed grows naturally in large amounts without the addition of 
artificial fertilizers. Development of macro-algae cultivation in the sea is a sensible option to increase 
total production in the country since it diminishes the requirements for both free inlands and 
freshwater for irrigation.[25,174] When utilizing seaweed proteins as a protein alternative, it is worth 
revealing the toxicity levels of algal proteins before consumption. Only a few studies have reported the 
cytotoxicity of seaweed. According to a study by Wijesekara,[2] glycoproteins extracted from Ulva sp. 
harvested from France had shown no cytotoxicity in Vero cells at a concentration of 500 mg dw ml−1. 
However, further analysis to detect the toxicity of seaweed proteins has to be encouraged. Based upon 
available findings, the total number of deaths and illnesses reported due to the consumption of 
seaweed is very small.[175] The most serious reports of illness and death have come from direct
consumption. For example, in Pacific Rim countries, just three genera (Caulerpa, Gracilaria, and 
Acanthophora) were found as toxic and harmful seaweeds.[175] Many factors including seaweed type, 
physiology, season, harvest and cultivation environment, geography, processing etc. can affect the 
presence of hazards.[152,175] Also, it has been reported that cultivation of seaweeds near industrialized 
or anthropogenic activities may negatively influence and can increase the likelihood of hazards in 
seaweed.[175] Therefore, collecting data on hazards will be helpful in future studies. Since many studies 
are now being evaluated on seaweed protein extraction, their food applications have to be conse
quently developed. However, seaweed proteins are now emerging as a future trend in pharmaceutical, 
cosmeceutical and food industries around the world.
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