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Distributed optimization is a very important concept with applications in control theory and many related fields, as it is high fault-
tolerant and extremely scalable compared with centralized optimization. Centralized solution methods are not suitable for many
application domains that consist of large number of networked systems. In general, these large-scale networked systems co-
operatively find an optimal solution to a common global objective during the optimization process. Thus, it gives us an op-
portunity to analyze distributed optimization techniques that is demanded in most distributed optimization settings. This paper
presents an analysis that provides an overview of decomposition methods as well as currently existing distributed methods and
techniques that are employed in large-scale networked systems. A detailed analysis on gradient like methods, subgradient
methods, and methods of multipliers including the alternating direction method of multipliers is presented. These methods are
analyzed empirically by using numerical examples. Moreover, an example highlighting the fact that the gradient method fails to
solve distributed problems in some circumstances is discussed under numerical results. A numerical implementation is used to
demonstrate that the alternating direction method of multipliers can solve this particular problem, by revealing its robustness

compared with the gradient method. Finally, we conclude the paper with possible future research directions.

1. Introduction

Optimization is a mathematical discipline which determines
the best possible solution corresponding to the optimum
performance of a quantitatively well-defined system. The
theory of optimization has been established as a desirable
tool that is used in a wide range of disciplines, such as
automatic control systems, estimation and signal processing,
communications and networks, electronic circuit design,
data analysis and modeling, statistics, and finance [1-3]. In
the recent study [4], the novelty search, a tool that is used in
evolutionary and swarm robotics was developed for the use
of global optimization. Formally, a mathematical optimi-
zation problem can be posed as follows:

minimize f  (x) i

subjectto x € G,

where f is a real-valued objective function of the decision
variables x € R" and € cR".

However, in reality, it may be difficult or not possible to
find analytic solutions to certain optimization problems. As
a result, iterative methods that provide approximate solu-
tions have been introduced by researchers. Algorithms that
are used to solve optimization problems have been exten-
sively analyzed mainly under centralized and decentralized
architectures [5, 6]. Centralized solution methods are not
suitable for many communication networking problems
such as large-scale and data-intensive problems that demand
distributed solutions. Consequently, the application of
distributed optimization techniques where subsystems co-
ordinate to find a solution to the original problem is of
utmost importance. Intranets, the Internet, telecommuni-
cation networks, aircraft control systems, sensor networks,
and electronic banking are some important examples for
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distributed systems. These systems consist of a large number
of smaller subsystems, and they integrate together to reach
an optimal status of the process. This optimal status of
process in large-scale networked systems needs to be
achieved without incurring errors and exceeding already set
time limits for expected outcomes. Therefore, the study of
well-established theoretical concepts together with empirical
implementations on distributed optimization is critical. This
gives us an opportunity to analyze currently existing dis-
tributed techniques and methods. In general, we may have
many subsystems in a distributed optimization setting. We
consider the following optimization problem with five
subsystems as an example to provide a deeper explanation of
distributed optimization:

minimize f, (xy,y) + f, (x5, ¥, 7)
+ f3(x59) + falxp 3,2) + f5(x5,7,2)
X, €X1,x, € Xyx3 € X35%4 € XLy

(2)

subject to

X5 €5,y €Y, r € R,z €Z,

where X', X5, X3, Xy, L5, R, and Z are subsets of R". In
this problem, we can observe that there are three compli-
cating variables y,r, and z. The variable y is shared by
subsystems 1,2,3, and 4, the variable r is shared by sub-
systems 2 and 5, while the variable z is shared among
subsystems 4 and 5. Figure 1 shows the associated de-
composition structure of (2), and the related distributed
problem can be stated as follows:

minimize  f, (x1, y1) + f2 (%2 ¥ 11) + f3 (x5, ¥3)
+ fa(%g ¥ 21) + f5(X5.72,2,) (3)

subjectto ¥y, = ¥, = Y3 = Y4 =15,2; = 2,.

Here, we can observe that problem (3) is minimized by
multiple users cooperatively. Hence, a distributed method is
required to find a solution.

Many networked systems cannot communicate exact
information between subsystems due to unavoidable errors
that may occur as a result of limited communication
bandwidths and sometimes due to measurement errors
[7, 8]. Therein lies the importance of analysing quantized
distributed methods in real life situations [9-13]. Although
many quantized distributed methods have been analyzed,
deeper investigation of quantization methods is still
required.

We present the outline of our paper as follows. In
Section 2, we discuss the preliminaries related to distrib-
uted optimization and primal and dual decomposition.
Section 3 provides a general literature review on currently
existing well-known distributed optimization methods.
Next, in Sections 4, 5, and 6, we discuss the gradient
method, the subgradient method, and the alternating di-
rection method of multipliers (ADMM), respectively. In
those sections, we discuss the theoretical concepts of the
relevant methods as well as previous studies performed on
them. In Section 7, we continue our discussion on dis-
tributed optimization with noise to emphasize the im-
portance of involvement of error in distributed
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FIGURE 1: Decomposition structure with five subsystems and three
coupling variables.

optimization methods. In Section 8, we provide our nu-
merical results to discuss the convergence of aforemen-
tioned distributed methods. Finally, in Section 9, we
conclude our paper with possible future research
directions.

2. Preliminaries

In this section, we discuss the concept of distributed opti-
mization and we introduce primal decomposition and dual
decomposition, which play an important role in distributed
optimization. Our introduction on primal decomposition
and dual decomposition is mainly inspired by the lecture
notes on decomposition methods by boyd et al. [14].
Throughout the paper, we will use following notations.

Notation. We let R,R", and R’} represent the set of real
numbers, n-dimensional Euclidean space, and positive
orthant in n-dimensional Euclidean space, respectively. For
x € R", |x| denotes the Euclidean norm and [x]4 denotes
the projection of x on to the set L'CR". The set of n x m
matrices is denoted by R™™. The transpose of a matrix A is
given by AT. V£ represents the gradient of a scalar valued
function f.

2.1. Distributed Optimization. Distributed optimization is
an optimization process that is used in networked systems
with a large number of users. This process enables the system
to solve a global problem cooperatively even if there is no
central controller available in the system. When compared
with centralized techniques, distributed optimization has
many considerable advantages. In distributed algorithms,
nodes or users in the network share information only with
necessary parties. This fact improves cyber security and
reduces communication cost. Furthermore, distributed
techniques have the ability to handle problems even if the
problem size is very large. These techniques also have the
potential to increase the solution speed [15].

Distributed optimization algorithms solve large-scale
and data-intensive problems in a wide range of application
areas such as communications [16-19], electricity grid
[20, 21], large-scale multiagent systems [22, 23], smart grids,
wireless sensor networks [24], and statistical learning. Zhang
and Sahraei- Ardakani have developed a fully distributed DC
optimal power flow method that incorporates flexible
transmission and discussed the effect of communication
limitations on the convergence properties [25, 26]. In [27],
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authors have presented a study on finite-time consensus
opinion dynamics and studied an application to distributed
optimization over digraph.

Many distributed optimization algorithms are built on
decomposition methods. Decomposition is an interesting
approach to solving a global problem by breaking it up into
smaller subproblems and solving each of them separately.
These subproblems get solved either in parallel or sequen-
tially [6, 14, 28-30]. Decomposition in optimization appears
in early work on large-scale linear programs from 1960s [31].
The simplest decomposition structure is available in block
separable problems. For an example, a block separable
problem can be given as follows:

minimize f (x;) + f,(x,) @
subjecttox; € X, x, € X,.

In this form, we can minimize f,(x) and f,(x) sepa-
rately in parallel and obtain the optimal value and optimal
solution. However, this method seems to be trivial and does
not seem to be an interesting task as many real life problems
appear in a more complex form than this [14]. This problem
becomes more complicated and creates more interest when
the subvectors x; and x, are coupled. This situation can be
handled by primal decomposition and dual decomposition,
which are the most well-known decomposition methods
currently available.

2.2. Primal Decomposition. Primal decomposition deals with
complicating variables. Here, we consider a constrained
minimization problem that consists of n number of users as
follows:

minimize f(x) = i fi(xy)
= ()

subjecttox; € €;,i =1,2,...,m,y € ¥,
where x = (x,%,,...,%,,,y),€; CR", ¥<R", and f;s rep-
resent real-valued objective functions of individual users.
Here, the variable y is called the complicating variable,
which complicates the system. When y is fixed, problem (5)
decomposes in to m smaller subproblems.

Subproblems are as follows:

Si(y) = minimize f; (% y)- (6)

Then, the original problem (5) is equivalent to the
problem

miryﬁer;ize S(y) = Z S (y), (7)

i=1

and this is called the master problem in primal decompo-
sition [14]. Next, the original problem (5) can be solved by
solving the master problem (7), using a distributed algo-
rithm under some well-defined assumptions on individual
primal objective functions f;s.

2.3. Dual Decomposition. Here, we consider the same
problem (5) discussed under primal decomposition only
with two users. Then, we have the objective function as
f(x)=fi(x;, )+ f,(xy y). Next, the problem can be
rearranged by introducing new variables y, and y, as follows
[14]:

minimize f (xy, X5, y1, ¥,) = f1 (%1 31) + f2 (%2 ¥2)
subjectto y; = y,, %, € €1, %, € €, V1, Y, € Y.
(8)
According to this new arrangement, the objective
function f is separable. Next, we can apply the decompo-
sition with its dual problem. The Lagrangian of (8) is given
by
L(x1, %5 y15 y250) = f1 (e y1) + F2 (320 2) + A (31 = 32)-
(9)

Next, the related dual function is given by

g(A) = inf L(X1>x2ay1)Y2’A)’
x,€6,

X2€%)
Y1y2€y

(10)

which is accompanied with subproblems

91 () =xl€(€ifljl€f;/f1 (xl,y1)+/\Ty1, a
. Y
g.(A) = xze%}?jze?fz (xz’)’z) Ay,

Then, the dual problem of (8) is given by
maxi)tmizeg(/\) =g, (1) +g,(A). (12)

This is called the master problem in dual decomposition.
This problem can be solved by using an iterative method
such as subgradient method, which will be discussed under
Section 5. Although we are able to solve the dual problem
and find dual optimal measures, we still cannot guarantee
that we can find primal optimal measures without intro-
ducing some acceptable conditions on the primal objective
function. For an example, if f, and f, are strictly convex,
then the primal variables x|, x,, ¥;, and y, found by solving
two subproblems g, and g, are guaranteed to converge to
the optimal solution of the primal problem (8) [14].

3. A General Literature Review on Distributed
Methods for Solving Optimization Problems

In this section, we provide a general overview of currently
existing distributed optimization methods. A detailed
analysis will be given in later sections with more technical
details. Most of the existing studies done on distributed
optimization problems have been analyzed and related so-
lution methods have been discussed when the optimization
problem is convex. Convex optimization problems can be
solved very reliably and efficiently using interior-point
methods, and most of the theories related to convex opti-
mization have been already developed. Therefore, recog-
nizing or formulating a problem as a convex optimization



problem gives us a great advantage. In the texts [5, 6],
authors have provided the readers with a very good back-
ground to develop a working knowledge on convex opti-
mization to recognize, formulate, and solve convex
optimization problems. For example, if we consider a
nonconvex constrained optimization problem, the associ-
ated negative dual problem is always convex. Hence, in some
situations, the original problem can be solved by using the
dual problem which provides an easy environment to work
with because of the convexity.

We have observed that currently available state-of-the-
art distributed methods of solving optimization problems
are gradient-based algorithms, subgradient-based algo-
rithms, and their variants, such as ADMM [30, 32-38]. The
gradient method is generally applied on unconstrained
optimization problems. In 1970, Ramsay had studied gra-
dient methods for optimizing nonlinear functions of several
variables that cause difficulties when second derivative ap-
proaches are used [39]. In the recent study [40], Nedic et al.
have focused on solving a distributed convex optimization
problem using “push-pull gradient methods.” They have
given this interesting name as the agents in the problem
network push the gradient information to the neighbors and
the decision variable information is pulled by neighbors
throughout the method. In [41], Calamai and Moré have
studied the convergence properties of the projected gradient
method for linearly constrained problems which are useful
in large-scale problems. The projected gradient method is a
variant of the gradient method which is used in constrained
optimization.

The subgradient method can be considered as a gen-
eralization of the gradient method and is useful in opti-
mizing nondifferentiable functions. In [9-12, 22, 42],
subgradient methods are used to solve large-scaled dis-
tributed problems that deals with the sum of a large number
of convex local objective functions. References [24, 43-45]
are some studies that have been focused on effects of
constraints, and they have presented projected subgradient
algorithms to solve constrained optimization problems. In
[44], Amini and Yousefian have studied a very important
class of bilevel convex optimization problems that are often
used for large-scale data processing in machine learning and
neural networks. The authors in [45] have studied the binary
iterative hard thresholding algorithm, a state-of-the-art
recovery algorithm in one-bit compressive sensing which
makes use of the projected subgradient method.

ADMM is also a well-suited method used in distributed
convex optimization over large-scale networked systems
arising in statistics and machine learning. The ADMM was
first proposed by Gabay, Mercier, Glowinski, and Marrocco
[46] in the mid-1970s. In the recent study [47], Xiao et al.
have presented a distributed and scalable algorithm for
managing the residential demand response programs using
ADMM. They have shown through their simulation studies
that the proposed method can reduce customers’ electricity
bills and peak load. Authors in [48] have presented a dis-
tributed ADMM for solving the direct current dynamic
optimal power flow with carbon emission trading problem.
In [49], Hajinezhad and Shi proposed an algorithm related
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to ADMM to study a class of nonconvex nonsmooth op-
timization problems with bilinear constraints which are
widely used in machine learning and signal processing
application domains. The study [50] has presented a
modified distributed ADMM to handle nonconvex opti-
mization problems with discrete control variables.

4. The Gradient Method

Let us consider an unconstrained minimization problem as
follows:

minimize f (x), (13)

where f: R” — R is differentiable and x € R". Then, the
gradient method to solve optimization problems of form
(13) can be expressed by following iterative process, which
starts from some initial point x°:

X = xR ocka(xk), (14)

where o > 0 is known to be the step size. The convergence of
method (14) can be discussed under various considerations,
using the theorems presented in [51].

Theorem 1 (see [51]). Suppose that oy = « (a constant step
size) in (14). Let f (x) be differentiable on R", V f is Lipschitz
continuous with constant L, and let f (x) be a strongly convex
with constant I. Then, method (14) converges to a unique
global minimum point x* with the rate of geometric pro-
gression when 0 <a <2/L:

"xk—x*HSqu; 0<g<l. (15)

Next, the following theorem shows the convergence of (14)
for an even smaller class of functions.

Theorem 2 (see [51]). Let f (x) be strongly convex and twice
differentiable. Suppose that

II<V’f(x)<LI; 1>0,Vx. (16)

Then, for 0 < a < 2/L,
k * 0 || _k
[ < -l -
q=max{l —al,1-al}<1

Moreover, when « = 2/ (L + 1), g is minimal and equal to
q* = (L-1)/(L +1). The proofs of Theorem 1 and 2 are given
in [51], and the convergence to a local minimum point of
f (x) is also discussed in the same text under Theorem 4 of
Section 1.4. We discuss the convergence of the gradient
method using a numerical example in the numerical results
section (Section 8). In Section 8.1, our focus of discussion is
the convergence results with the use of primal
decomposition.

There are many early studies done on gradient methods
[39, 41, 52, 53]. Authors in [53] had combined gradient
methods with back propagation methods for neural net-
works to discuss the optimization of weights of multilayer
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neural networks. In the study [52], authors have proposed
two new step sizes for the classical-steepest descent method,
where & in method (14) is used as a; = argmin, f (x* — aV f
(xF)). The most interesting fact regarding these new step
sizes is that they require less computational effort than the
classical-steepest descent method. However, these studies
have not given enough attention and emphasis on distrib-
uted optimization techniques, which have become crucial to
be analyzed in many application domains.

Some recent work that relies on gradient methods can be
found in [8, 40, 54, 55]. In these studies, the gradient method
has been applied with the use of distributed techniques. In
[8], the authors have investigated fundamental properties of
distributed optimization based on gradient methods, where
gradient information is communicated using a limited
number of bits. It is a well-known fact that message exchange
between subsystems is a common phenomenon in distrib-
uted optimization settings. However, perfect message ex-
change between subsystems is not possible due to limited
communication bandwidths between subsystems. Therefore,
quantized information tends to be exchanged between users
in networked systems, which led to the exploration of new
findings on quantized distributed techniques. The study [8]
is a very good initiative in this regard. This piece of work has
studied a general class of quantized gradient methods where
the gradient direction is approximated by a finite quanti-
zation set, to optimize a constrained convex optimization
problem. Here, they have considered optimization problems
of the form as follows:

minimize f (x)

(18)
subjecttox € ',

where f is convex and differentiable with L-Lipschitz
continuous gradient, x € R", " is closed and convex set, and
the optimal solution set £ is nonempty and bounded.

To solve problem (18), they have used the projected
gradient method as follows:

£ = [xk - ockdk]&ﬂ, (19)

where d* is quantized gradient information coded using
limited number of bits. In this paper, authors have proposed
two types of quantization schemes, namely, binary quan-
tization and proper quantization.

(a) Binary Quantization. In this quantization scheme, the
quantization set is taken as D ={l/\/n (e e,,...,
e le; € {~1,1}}, where dk = sign(Vf(xk)). A convergence
proof of method (19) was given under this binary quanti-
zation when & = R" and & = R']. These convergence results
are very important as they can deal with a dual problem of
form (18) associated with equality and inequality con-
strained primal problems.

(b) Proper Quantization. When the above discussed
binary quantization is used to solve TCP problems, the
related quantized gradients are transmitted using n bits.
There are many applications, where the dual problem is

maintained by an individual coordinator [18, 19]. Therefore,
it is worth seeking to analyze whether it is possible to use less
number of bits than # when an individual coordinator exerts
the problem. This fact motivates authors in [8] to discuss
about the proper quantization. Here, we like to highlight the
following two definitions they have used to establish their
results.

Definition 1 (see [8]). A finite set & is a proper quantization
for problem (18); if for every initialization x° € Z in iterates
(19), we <can choose d*€2 and «a; >0,Vke
N, s.tlim,_ . (inf .o llx* - x| = o.

Definition 2 (see [8]). The finite set @ is a 0 — cover if
Oe[0,7/2) and VgeS™ !, IdeD st ang(g,d) =
cos™ ! ({g,d)) <0, where " ! represents the unit sphere in
R". It has been proved that 6 — covercS™ ! is a proper
quantization for the problem class (18), and the minimal
proper quantization is n+ 1 [8].

Authors in [54] have introduced two measures of
communication complexity of dual decomposition, which
help to identify the communication overhead required by
limited communication networks. The first measure deter-
mines the smallest number of bits needed to find a solution
within a given accuracy, while the second measure quantifies
the best possible solution accuracy when a fixed amount of
bits were communicated. Furthermore, in this same work,
the authors have studied a quantization scheme (introduced
as Primal-Feasible quantization scheme) which guaranteed
primal feasibility at each iteration in their method.

5. The Subgradient Method

Subgradient method is basically used to minimize non-
differentiable convex problems. Nondifferentiable or non-
smooth functions are one important class of problems that
arise in many applications of mathematical programming,
such as game theory, multicriteria models, nonlinear pro-
gramming problems, optimal control problems with con-
tinuous or discrete time, and integer and mixed integer
programming problems [56]. Subgradient methods are first-
order methods. Their performance highly depends on
problem scaling and conditioning, whereas Newton’s
method and interior-point methods are not dependent on
problem scaling [57].

Before entering into the topic of subgradient methods,
we would like to discuss about subgradients, which can be
introduced as a generalized concept of gradients. When a
function is nondifferentiable, the gradient of the function at
nondifferentiable points cannot be found uniquely. There-
fore, a well-defined way to express the slope of the function
at those nondifferentiable points is required, mainly in
optimization theory. Thus, getting a better understanding of
subgradients is essential in the field of optimization theory.
Reference [56] gives a very good exposition of the concept of
subgradients, and it provides many important theoretical



aspects related to subgradients. Polyak’s text [51] and the
text [6] of Bertsekas are two other good references that
discuss subgradients and subgradient methods. Next, we will
define a subgradient of a convex function.

Definition 3. A vector g€ R" is a subgradient of
f: R" — R at x € domf if for all y € domf,

fMN2fx)+g (y-x). (20)

The set of all subgradients of f at x is called the sub-
differential of f at x and denoted by 0 f. If f is differentiable,
then its subgradient at x is unique and it is the gradient of f at x.

5.1. The Basic Subgradient Method. We consider the same
form of the unconstrained optimization problem (13) con-
sidered in Section 4. The objective function f (x) is still convex
but not necessarily differentiable. Then, the subgradient
method used to solve this problem can be given by the fol-
lowing iterative sequence starting at some initial point x°:

xk+1 _ Xk _ (ngk, (21)
where x* is the kth iterate, g* is an any subgradient of f at
x¥, and a; >0 is the step size related to kth iteration. The
subgradient method (21) can be considered as an extension
of the gradient method (14). The difference is that, in each
iteration, we use a subgradient g* of the function f (x) at x
instead of V f (x*) in (14). Moreover, the step size selection
in the subgradient method is much different to the gradient
method. In [57], Boyd has given five basic step size rules,
namely, constant step size, constant step length, square
summable but not summable, nonsummable diminishing,
and nonsummable diminishing step length. From theses five
step size rules, we present three common ones as follows:

(1) A constant step size, a;, = ais a positive constant and
independent of k.

(2) Square summable but not summable: the step sizes

satisfy

k=1 (22)

For example, o = 1/k.

(3) Nonsummable diminishing: the step sizes satisfy

493 > 0,
lim a; =0,
00
Z o = 00.
k=1

For example, o = 1/vVk.
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Above choices for the step size «;, do not depend on details
computed during the subgradient algorithm. This fact differs
from the step size rules found in standard descent methods,
which uses current point and search direction. Good discus-
sions on descent methods can be found in chapter 9 of [5] and
chapter 8 of [58]. We can find many other choices for step size
oy in addition to the choices mentioned above. In [51], Polyak
has shown that the subgradient method (21) cannot converge
rapidly under diminishing nonsummable step size rule.
Therefore, the author has described another variant of the
subgradient method, by introducing a different step size rule
that depends on f*, the optimal value of f (x). We introduce
this step size in Theorem 4.

Next, we discuss the convergence of the subgradient method
(21) that relies on Boyd’s step size rules mentioned above. We
use the following assumptions to discuss the convergence:

Assumption 1. Optimal set 27, the set of minimizers of
problem (13) is nonempty
Assumption 2. Ing|| is bounded

Assumption 3. The number K st [x°—x*[| <K is
known, where x* € 2* and x° is the initial point of the
algorithm

Theorem 3 (see [57]). Let Assumptions 1, 2, and 3 hold and
let fk . =min,_, . f(x). Then, in method (21), the fol-
lowing inequality holds:

R+G Y o
k
2Yi %

where R is s.t ||x° = x*|| <R and G is s.t IngII <G for all k.

fll:est - f* < > (24)

The proof of Theorem 3 can be found in Section 3.2 of
[57]. Using this theorem, one can show that the subgradient
method converges within some range of the optimal value
[, for constant step size and constant step length. For other
variants of the step size, square summable but not sum-
mable, nonsummable diminishing, and nonsummable di-
minishing step lengths, the subgradient method converges
exactly to the optimal value without incurring any error. We
discuss the convergence of the basic subgradient method
empirically, in the numerical results section with the above
presented three step size rules. In Section 8.2, we use a
constrained optimization problem, and we dedicate our
attention to discussing the convergence using dual de-
composition. Next, we state the following theorem which
gives the convergence of the subgradient method using
Polyak’s step length.

Theorem 4 (see [51]). Let the set of minimizers L™ of
problem (13) (with nondifferentiable f) is nonempty and
o = (f(xk) —f*)/Ilaf(xk)Ilz. Then, in method (21),
xF— x* e .

The proof of above theorem is given by Polyak in his
book [51]. Now, we discuss and analyze some studies done
on subgradient methods. In [22], authors have considered
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a subgradient method to optimize a sum of convex ob-
jective functions corresponding to multiple agents. This
work analyzes large-scale networked systems, where it is
essential to design decentralized resource allocation
methods, since the centralized solution methods are not
suitable. This paper has considered a scenario where
agents cooperatively minimize a common additive cost.
The corresponding optimization problem can be posed as
follows:

minimize i fi(x) (25)
i=1

subjecttox € R”,

where the function f;: R” — R represents the cost function
of agent i, which is convex and not necessarily to be differ-
entiable, and x € R" is the decision vector. To analyze this
problem, authors have proposed the following subgradient
method:

xi(k+1):iw?(k)xj(k)—oc"(k)d,—(k); i=1,....,m (26)
j=1

where w? represents the weight that agent i assigns to the
information x/ received from a neighboring agent j and the
scalar o (k) > 0 represents the step size used by agent i. The
vector d; (k) is a subgradient of agent i’s objective function
fi(x) at x = x' (k). Next, to analyze the convergence of
method (26), they have used a different representation of
that method in a way that each iteration x'(k + 1) can be
estimated using the information w’(s) and estimates
x'(s),wherei,j=1,..., mands<k. In this study, the au-
thors have considered an unconstrained optimization
problem, but in general, this problem can be viewed in a
more advanced setting, in the presence of constraints. This
fact motivates readers to extend this seminal work done by
Nedi¢ and Ozdaglar to a different path of research, which
will lead to a different line of convergence analysis. Fur-
thermore, their model assumes that agents can exchange
exact information, which is not possible in practice due to
limited communication bandwidths. Therefore, the infor-
mation is usually quantized before being sent, and it is
considered that the quantization reduces the communica-
tion cost in networked control systems [59-61].

In [11], authors have considered the distributed sub-
gradient method discussed in [22] and they have presented
improved convergence results. Furthermore, they have
shown that upper bounds for the difference between the
estimated objective function value and the exact optimal
value of the problem have a polynomial dependence on the
number of agents m, by using results of their prior work [62].
We can view these bounds as improved versions of error
bounds obtained in studies [22, 42], which involve expo-
nential dependence on m. Moreover, the authors have
studied the subgradient method when the communicated
information is quantized to address the issue that perfect
message exchange between agents cannot be performed.
Some other works related to the same line of research are
[9, 10, 12].

5.2. Projected Subgradient Method. Projected subgradient
method is an extension of the basic subgradient method used
in constrained optimization problems. Consider the opti-
mization problem of the form

minimize f (x)

(27)
subjecttox € T,

where f and X are convex. Then, the projected subgradient
method can be given by

xk+1 — [xk _ (xkgk]&”, (28)
where g* is any subgradient of f at x*. Convergence of
method (28) can be attained under the same step size rules
described under the basic subgradient method [57].

Authors in [43] have presented distributed algorithms to
solve a constrained consensus problem and a constrained
optimization problem. They have used a distributed pro-
jected subgradient method to solve the constrained opti-
mization problem, which consist of minimizing a sum of
convex local objective functions. They have shown that their
method converges to the optimal solution with square
summable but not summable step size rule. In [24], Madan
and Lall have proposed two distributed projected sub-
gradient methods to find an optimal routing flow to max-
imize the network lifetime in a partially and fully
decentralized manner. In their solution, subgradient
methods have been applied with their dual problem. We
noticed that most of the studies performed on distributed
optimization have used their original primal objective
function in the optimization process. They have not shown
much interest on duality theory, which provide many ad-
vantages in solving constrained optimization problems.
Under these circumstances, Madan’s and Lall’s work [24]
provides immense value addition to the study of distributed
optimization.

6. Alternating Direction Method of Multipliers

ADMM is a simple but strong method that is used in dis-

tributed optimization [32]. ADMM is a variant of aug-

mented Lagrangian and method of multipliers that uses the

decomposability of dual ascent. In [32], augmented La-

grangian and method of multipliers are discussed under the

following equality constrained optimization problem:
minimize f (x)

(29)
subjectto Ax = b,

where x € R", A € R™", and f is convex. Then, the aug-
mented Lagrangian for problem (29) is given by

Lp(A") = £ () 27 (Ax - 0) +(D)1ax - b, (30)

where p>0 is known as the penalty parameter. Then, the
corresponding dual function is given by g,(A) =inf,L,
(x,A). The authors have used the gradient method to
minimize negative g, (1) with penalty parameter p as the
step size. The method of multipliers can be viewed as more



robust version of the dual ascent method, and it yields
convergence under more general conditions than the dual
ascent. However, “when f is separable, L, is not separable” is
the fact that the authors in [32] have concerns with. When f
is not separable, the minimization process cannot be con-
tinued in parallel, and hence, the method of multipliers
cannot be used in dual decomposition. Therefore, an al-
ternative way of observing problem (29) is needed, and
consequently the ADMM has been introduced to address
this issue. ADMM is a method well suited for distributed
optimization settings that consist of large-scaled problems.
In [32], authors have considered another variation of
problem (29) as follows, to view it in separable form which
has then led to the introduction of ADMM:

minimize f (x) + g(y)

(31)
subjectto Ax + By =,

where x e R",y e R",A ¢ R"",Be R?", and ceR1.
Moreover, f and g are convex functions. Then, the dis-
tributed algorithm for ADMM can be given using
Algorithm 1.

There are many early studies done on the method of
multipliers and ADMM [63, 64]. Some recent studies done
on ADMM can be found in [65-69]. In [65], Erseghe has
proposed a fully distributed algorithm for optimal power
flow using ADMM. In this paper, the author has intro-
duced another variation on ADMM Algorithm 1 with
assumptions such as g(y) = 0, where y is contained in a
linear space with associated orthogonal projector and also
with certain assumptions on initial choices. In the study
[66], authors have presented a decomposed solution ap-
proach with ADMM to solve a cost minimization prob-
lem, where the objective consists of energy and battery
degradation cost. This work has used a modified version of
ADMM, which helps to reduce the computations cost and
ensures the stability of the solution. Most of the re-
searchers including the ones mentioned above who have
worked on ADMM have no concerns on noises that can be
embedded in their models due to different types of errors
occurring in practice, for an example, due to limited
communication bandwidths. This fact motivates readers
to work on this path with ADMM.

7. Distributed Optimization with Noise

The distributed methods for solving optimization prob-
lems can be applied in pure form only if errors and
inaccuracies are fully avoided, which is hardly possible in
the real world. As an example, errors or noises can occur
due to inexact computation or measurement of sub-
gradients and function values, sparsification [70], and
quantization [8, 71]. The noise can be deterministic or
random according to the behaviour of the application
domain. Most of the real world problems consist of large-
scale networked systems and mostly solve a common
objective function interactively. In such situations, sub-
systems have to exchange their private information with
neighboring subsystems during the optimization process.
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However, the subsystems may not be able to communicate
exact information due to several reasons such as security
measures and communication overheads. Therefore, it is
very important to analyze distributed methods with noise
imposed on the system.

7.1. Distributed Methods with Noise for Optimizing Smooth
Functions. In distributed methods for optimizing differ-
entiable (smooth) functions, we always deal with a
computation of the gradient, and instead of the exact value
of the gradient Vf(x*), we may have it computed with
error

sk = Vf(xk) +r5, (32)

where 7* is introduced to be the noise. In chapter 4 of [51],
Polyak has discussed four types of most important classes of
noise:

(1) Absolute deterministic noise: r* is deterministic and
satisfies the boundedness condition [r¥| <e

(2) Relative deterministic noise: 7 is deterministic and
satisfies the condition |r¥| < €|V f el

(3) Absolute random noise: r* is random, independent,

centered, and has bounded variance, E[r¥] = 0 and
E[lIr*] < 0?

(4) Relative random noise: % satisfies the condition
E[r*] = 0, E[Ir*I] < TIV f (5117

In the above classes of noise, ¢ 0, and T represent
positive constants. In the same text [51], the convergence
of the gradient method (14) was discussed, where the
gradient is computed with error as given in (32). Here, the
convergence properties of the gradient method were
analyzed under all four types of errors mentioned above,
under the assumption that the objective function is
strongly convex and with a gradient satisfying a Lipschitz
condition.

Most of the related literatures available to solve
optimization problems with the use of gradient like
methods under the presence of noise were analyzed
under boundedness assumptions on the objective
function and the decision variable or show only
lim,__, inf|Vf (x*)| = 0 [72-75]. Authors in [55] dis-
cussed convergence results for the following method, by
removing various boundedness conditions such as
boundedness from below of f, boundedness of V f (x¥),
or boundedness of x*:

X=Xy (xk(sk + wk), (33)

where s* represents a descent direction of a function
f:R" — R and w* is a deterministic or stochastic
error. They first focus on the above method with
deterministic error, with w* satisfying following
conditions:

|| <a(a+ 2|7 ()] ) 34)
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Given initial A.
Set k = 1.

while (stopping criterion)
(1) x minimization step:
minimizexLP (x, yk,/\k)
Let x* = argminpr (x, yk,)tk).
(2)  y minimization step:
minimizeyLP (x*, Ak)
Let y* = argmin L,
(3)  Dual variable update:
Al =k p(Ax* + By* —¢)

(x*, y,AF).

ALGORITHM 1: Alternating direction method of multipliers (ADMM).

where p and g are some positive scalars. Then, the con-
vergence of method (33) was obtained using following
theorem.

Theorem 5 (see [55]). Suppose that s* in method (33) is a

descent direction satisfying for some positive scalars ¢, and c,,
and for all k,

alvs () < v,
& Scz<1 +||Vf(xk)”).

Then, for a; >0 with square summable but not sum-
mable step size rule, method (33) guaranteed to convergent
to the optimal solution.

Next, the authors have obtained convergence results for
minimizing a sum of large number of functions using in-
cremental gradient methods. Moreover, they have focused
on stochastic gradient methods. In the recent study [68],
authors have analyzed the convergence of distributed
ADMM for consensus optimization in the presence of
random error. They have presented lower and upper bounds
on the mean squared steady state error of the algorithm
when individual objective functions are strongly convex and
when the gradients are Lipschitz continuous. Furthermore,
authors have presented that steady state error of their noisy
ADMM algorithm is bounded when they have a bounded
random error and when individual objectives are proper,
closed, and convex.

(35)

7.2. Distributed Methods with Noise for Optimizing Non-
smooth Functions. In chapter 5 of [51], Polyak has intro-
duced the well-known subgradient method of optimizing
nondifferentiable (nonsmooth) problems with noise,

kel _ K Kk
=t - st

36
sk=af(xk)+rk, (30

where r* is the noise imposed on the subgradient. The

convergence results of the noisy subgradient method (36)
have been discussed by the same author under the same
classes of noises discussed in the previous subsection. In the

early study [76], Polyak has studied minimization methods
of a nonlinear function with nonlinear constraints when the
values of the objective function, constraints, and gradients
are computed with errors. In [77], authors have studied the
effect of noise on subgradient methods for convex con-
strained optimization problems of form (27). They have
discussed the convergence properties of the following
projected subgradient method when the noise is deter-
ministic and bounded:

k+1 k ~k
=]

X - g ]&,, (37)

where ¢ is an approximate subgradient of the form
g~ = g° +r*, where r* is the noise and g* is an e, sub-
gradient of f at x* for some e, >0. Convergence properties
of method (37) have been analyzed under three step size
rules, namely, constant step size rule, diminishing step size
rule, and dynamic step size rule which is given by

~ ~lev

Ock=ykf(xk)_fk X

(38)
A

0<yp<yc<2,Vk20,

where jf (x;) is an error involved function value and ﬁfv is
a target level approximating the optimal value f*. First,
the convergence of method (37) has been obtained when
the constrained set is compact. Secondly, the authors
have analyzed their method using a convex objective
function which has a sharp set of minima. The important
results observed by authors were as follows: (a) in the first
scenario, the method converges to the optimal value with
some tolerance and (b) in the second scenario, the
method converges exactly to the optimal value without
any error.

It is very important to pay attention to the stochastic
optimization processes since many practical problems
cannot be viewed as deterministic structures. Some studies
that paid attention to this particular area can be found in
[76, 78]. Authors in [78] have studied stochastic quasigra-
dient methods which allow solving optimization problems
without calculating exact values of objectives and con-
straints. In [76], a general convex problem with noise was
solved with assumptions as follows:
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(i) The objective function and inequality constraint
functions are convex continuous

(ii) Feasible set is a convex closed bounded set
(iii) Slater condition holds

(iv) All noises are with mean zero with bounded vari-
ance and are independent at different points

8. Numerical Results

In this section, we discuss the convergence of the gradient
method, subgradient method, and ADMM empirically by
using some numerical examples.

8.1. Example 1 (Gradient Method: Primal Decomposition).
Here, we consider an unconstrained minimization problem
with two users as follows:

minimize f (x;, %, y) = f1 (x5, 9) + f2 (2 7), - (39)

T
where f(xy,y) = [xlT yT]Al[x{ yT] and f,(x,, ) =
[xg yT ]Az[x%" yr ]T with x;, x, € R™ and y € R™. Here,
A, € RUmtmxtmam) and A, e ROmm>*(m+m) are positive
definite matrices. We use primal decomposition and analyze
the convergence of the gradient method (14) for this
problem with the use of Theorem 1. The subproblems related
to (39) can be given as follows:

Subproblem 1: S, (y) = minimize[xlT yT]A1 [xlT yT]T
Subproblem 2: S, (y) = minimize[sz y' ]A2 [ xl YT ]T
x2
Then, the master problem corresponding to (39) is given
by
miniymize S) =S, +S, (). (40)

Analytically, by solving the subproblems, we can show
that  S;(y) = yTAuy+ (xTAL +xTAy)y + x TA;x7,

where x: = argminxi [ x’iT yT ]Al [ _x;,r yT ]T and
Ai = [ Ail Ai2 Wlth Ail € Rnlxnl,Aiz € Rnlxnz’Ai3 €
Ai3 Ai4

R™*™", and A, € R™™ for i = 1,2. Then, S(y) is quadratic
as S, (y) and S, (y) are quadratic. Moreover, S; (y) and S, ()
are strongly convex since A, and A,, are positive definite.
Hence, S(y) is also strongly convex and VS(y) is Lipschitz
continuous. Therefore, we can apply Theorem 1 to solve
problem (40) using the gradient method (14). We use Al-
gorithm 2 to solve (40). In this algorithm, at each iteration,
the gradient update is given by VS (y*) = VS, (%) + VS, (y5),
where VS, (y*) = ALxF + A;xk+ 2A,,5% and VS, (y*) =
Aglez‘ + A23x’2‘ +2A,, 9%,

First, we illustrate our results with scalar valued primal
variables x,, x,, and y (n; = n, = 1 case) for different values
of constant step sizes a; = a. Figure 2 shows the convergence
of y* with & = 0.001, & = 0.01,a = 0.1, and & = 0.5. Next, we
show the convergence results for different dimensions of the
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complicating variable y with x, € R'’ and x, € R'°. Figure 3
shows the convergence of the residuals || yk — y*|| with step
size a=0.001, for yeR,yeR%,yeR’yeR’ and
y € R, where y* represents the optimal value of y. We
present Figure 4, which indicates log values of || y* — y*|, to
analyze the convergence of residuals when they approach to
zero. For this same set of dimensions of y with same step
size, the convergence of iterates S(yX) is shown under
Figure 5. Moreover, Figure 6 shows that the primal variable
iterates x¥ and x¥ converge exactly to their optimal solutions
using o = 0.001 and y € R.

8.2. Example 2 (Subgradient Method: Dual Decomposition).
Here, we focus on a problem which is not quadratic. We
consider the problem in the following form with two users:

minimizef(xl,yl,xz,yz) = fi (xl’yl) + 1) (xzn'Vz)
subjectto y; = ¥,,x; € L1, x5, € Xy, V1, V2 € Y,
(41)

where f,(x;,y;) = cosh(alx)+alx and f,(x, y,)=
cosh (bl y) +bly with x = (x;, 1), y = (x5, y,), L, SR™,
X, <R, % cR™, and a,,a,b;,b, € R™*™)  Here, we
intend to solve this problem in a fully distributed manner
using dual decomposition. We implement our results for
ny =n, =1 (scalar valued variables). We consider ', =
[-1,01, 2, = [L,2, % = [-2,2],a, = [1,1]",a, = [3,-2]",
b, = [1,1]7, and b, = [-2,5]F. The dual function corre-
sponding to the primal problem (41) is given by
g) = xﬁféljfrl (fl (x5 1) + £2 (%2, 72) +A" - J’z))>
x26%)
y1y2ey

(42)

and we use corresponding subproblems in dual decompo-
sition as follows:

Subproblem 1: g, (1)

inf ?fl (1 31) + ATy, )

x,€X1,y,€
Subproblem2: g,(A) = inf  f, (x5 y,) = A" y,.
(43)

X,€20,y,€Y

Then, the dual problem corresponding to the primal
problem (41) is given by maximize, g g(A) =
g1 (A) + g, (A). We know that g (1) is always concave (see
chapter 05 of [5]). We have obtained the graph of g (1) as
given in Figure 7. This figure also confirms the concavity of
g(A). Moreover, this figure shows that g(A) is non-
differentiable as it has a sharp point around A = 5. Hence,
—g(A) is convex and nondifferentiable, and therefore we use
subgradient method (21) to minimize —g(A) using
Algorithm 3.

We analyze the convergence results of the subgradient
method using Theorem 3 discussed under Section 5.
Therefore, we have to check whether Assumptions 1-3 used
in Theorem 3 hold for our particular problem considered
here. Figure 7 shows that there exists an optimal solution 1*



Journal of Mathematics

Given initial y, y°.
Set k = 0.

while (stopping criterion)

(1) x, and x, minimization steps: r
Step 1: xi = argmin, X J’Z A, xi yz; r
Step 2: x; =argming | x, ¥ |Ay|x; ¥

(2)  gradient information update:

VS(yF) = AT xK + Ak + 24,y + AL xk + Aypxh +24,,0F

ALGORITHM 2: Gradient method: primal decomposition.

(3)  y variable update:
)’k+1 — yk + OCVS()/k)
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FIGURE 2: Convergence of log,,lly* — y*|| using different constant
step sizes in the gradient method with primal decomposition. The
figure shows that slow convergence for relatively small step sizes.

to the dual function g (). Hence, Assumption 1 holds. At
each iteration in Algorithm 3, y% — y* used in the dual
variable update represents a subgradient s* of —g(1) at A*
( y’l‘ - y’z‘ represents a subgradient of g(A) at 15). We can
observe that [|s*| <4 as V1, ¥y € ¥ = [-2,2]. Hence, As-
sumption 2 holds. Moreover, we use the initialization A° = 1,
and we found that 1* = 5.14 using the CVX solver in Matlab.
Therefore, it turns out that |\’ — A*| = 4.14, from which
Assumption 3 follows. Hence, we can use Theorem 3 to
analyze the convergence of the subgradient method.

We have obtained the convergence results with constant,
square summable but not summable, and nonsummable
diminishing step size rules. Figure 8 shows the convergence
of log values of A% = A*|| for different constant step sizes.
This figure shows that large step sizes give fast convergence.
Next, we show the convergence with step sizes
a = 0.1, = 1/k, and a; = 0.1/Vk, in the same figure
(Figure 9) so as to identify the effect of different step size
rules. Here, we considered the convergence up to 107
tolerance. We can observe a slower convergence using o, =
1/k and o, = 0.1/Vk than that for the constant step size rule.

3.5

[ly* = |l

Iteration (k)

-—- 1’12=1 - nZ:S
——-ny=2 --- n,=10
== n,=3

FiGure 3: Convergence of the residuals | yk — y*|| for different
dimensions of y when the primal problem (39) is solved using the
gradient method followed by primal decomposition. The figure
shows that || yk — y*|l — 0 as the iteration number increases. This

shows that the convergence of y* to y* is guaranteed even for high
dimensional complicating variables.

In our Algorithm 3, both users solve their subproblems
separately and find optimal primal variables locally at each
iteration. Next, they exchange their information y* and y&
with each other and update the dual variable individually. In
general, their iterates y* and y% are not feasible. Therefore, at
each iteration, they agreed to have a feasible solution as
¢ = (y¥ + y5)/2. Next, by using these primal variable it-
erates and updated dual variable ¥, user 1 and user 2 can
compute g (Ak) and g, (/\k), respectively.  Then,
g(/\k) =g,(A) +g, (A¥) can be calculated. This is always a
lower bound on f*, the optimal value of the primal problem
[5]. Moreover, at each iteration, users can compute two
upper bounds on f* as follows [14]:

fl(xlf’yk) + fz(xlz(:yk)’
b1(7k) +b2(7k)’

ko k —kY _
w(xl,xz,y)—

b(7") =

(44)

11
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logyolly* - "Il

—30 | . s . R A R Iy
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Iteration (k)

=35

--- =1 -=- ny=5
—-=ny=2 --- n,=10
---np=3

FiGURE 4: Convergence of log,lly* — y*|| for different dimensions
of y when the primal problem (39) is solved using the gradient
method followed by the primal decomposition. This shows that a
high accuracy for the convergence of y* can be achieved within
1000 iterations even for high dimensional y.

INCRETA
o

0 200 400 600 800 1000
Iteration (k)

-—- Ny = == n,=5
—--=ny=2 --- n,=10

--- n,=3

FiGure 5: Convergence of S(y*) illustrated with different di-
mensions of complicating variable y. The figure shows that S(y*)
converges almost to f*, the optimal value of the primal problem
(39) regardless of the dimension of y.

where b, (7°) = minimize, o f; (x,,7%) and b,(F*) =
minimize, .o f5 (%, 7). In [14], w and b are defined as the
worst bound and the better bound. Worst bound represents

Journal of Mathematics

F-xill
|
w

r

Y

logyo||x

50 100 150 200 250 300
Iteration (k)

--- X

k
1
.
Ficure 6: Convergence of the primal variables x, € R and
x, € R' illustrated with scalar valued complicating variable y,
when the primal problem (39) is solved using the gradient method
followed by primal decomposition. The figure shows x* and x%
converge to their optimal solutions x] and x}, respectively.
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F1GURE 7: Dual function corresponding to problem (41). The figure
reveals the concavity and nondifferentiability of g(1). A* attains
around A = 5.

the primal objective function values evaluated at each it-
eration using feasible points (x,7%) and (x%,7%). Better
bound can be obtained by replacing y* and y% with ¥ and
then solving subproblems involved with related primal
decomposition structure of (41). Figure 10 shows the con-
vergence of g(AF), better bound, and worst bound using
constant step size rule o, = 0.1 and scalar valued primal
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Set k = 0.

@

Ak#—l

Given initial A, A°.

while (stopping criterion)
Primal variables minimization steps:

Step 1: (xl’yl) = argmlnxlegl yleyfl (1> 71) + ¢ )’1

Step 2: (xz’)’z) = argmin, .o yzeyfz (x5 ¥2) = A V2
(2)  Dual variable update:

)lk+0ck(y1 )

ALGORITHM 3: Subgradient method: dual decomposition
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FiGure 8: Convergence of log,,[A¥ — A*| in the subgradient method followed by dual decomposition with different constant step sizes. The
figure shows a trade off, large « yields fast convergence

variables. Here, we can observe that for this particular
problem, the lower bound g(1) and two upper bounds

converge exactly to f*.

8.3. Example 3 (ADMM). Here, we first discuss the ro-

bustness of ADMM compared with the gradient method. Let
us consider the following linear programme

minimize a’ x
subjectto Ax = b

(45)
Bx+Cy =0,

where x € R” and y € R" are decision variables of the
problem, aeR", AeR™" BeR™" CecR™" with
my,m, <nand b € R™ is a constant vector. Suppose that the
set of solutions of (45) is nonempty.

The dual function g(A), where A = /\T )LT] with
A, € R™ and A, € R™, for problem (45) is given by

s a=1

g) = 1nf

xeR",y

@ X+ A (Ax = b) + 13 (Bx + Cy))

= inf (a+ A", +BL,) x + inf (17Cy) - Afb,

(46)
Then, analytically we can obtain
o0 = { ATb; a+A"A, +B"A,=0andC"A, = 0
—00;  otherwise.
(47)
Next, the dual problem is given by
maximize g (A). (48)

Here, we can easily observe that the optimal value of the
dual problem (48) is —/\ b, which is attained when
a+ATA, +B'A, = 0and CT)L2 = 0. Usually we use following
subproblems when we use the gradient method to solve (48)

13
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Subproblem 1: g, (A;,1,) = iann (a +ATA + BTAZ)Tx,
X€

Subproblem2: g, (A,1,) = inf (AZC}/ - /XlTb).
yeR"

(49)

Algorithm 4 represents the corresponding gradient
algorithm.

We can observe that x and y minimization steps
(Algorithm 4) given in Algorithm 4 cannot proceed for
any arbitrarily chosen A as (a+ ATAY+ BTA5)"x and



method.
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Given initial 1, A° = ()LO,)Lg).
Set k = 0.
while (stopping criterion)
(1)  Primal variables minimization steps:
Step 1: XK= argmin, g« (a + AT)L]f + BT)L];)Tx
Step 2: y* = argmin g MTCy - A Tp)
(2)  Dual variable update:
A =2+ Vg (1)
ALGORITHM 4: Gradient algorithm to solve (48).
Given initial A, 1° = (Ao,lg), and initial y, yo.
Set k = 0.
while (stopping criterion)
(1)  Primal variables minimization steps:
Step 1: xF*1 = arg mﬁn(aTx + T (Ax = b) + T (Bx + Cy*) + (p/2)I|Ax = bI* + (p/2)|IBx + Cy¥|?)
x€eR"
Step2: y**! = arg mﬂi{I(aTxk+l + AT (AXRT — ) + AT (BxK + Cy) + (p2)I|AXM! = bI* + (p/2)IBxM + Cyl?)
yeR™
(2)  Dual variable update:
M= (At - )
A2+1 - /\2 +0¢(Bxk+1 +Cyk+l)
ALGORITHM 5: Example 3: (ADMM).
)LI;TCy - )L}fTb are unbounded below. Hence, the gradient a=[-1-3 -4 ]T
method fails to solve (48), and therefore the linear pro- i
gramme (45) also cannot be solved. However, the inter- A= 112
esting fact is that ADMM solves this problem without any 12 3]
issue, showing its robustness compared with the gradient "2 1 3
B= ], (51)
To solve (48) using ADMM, we consider the augmented L > 22
Lagrangian as follows: C- [-1 4 -2 ]
T T T L1 5 -3
L(x,y,A)=a x+1; (Ax-b) + A, (Bx +Cy) b4 S]T

(50)
+ §||Ax —b*+ gan +Cyl

where p represents the penalty parameter. Then, the cor-
responding dual function is given by g(A) = inf, s ycpn
L(x, y,A). Next, we maximize g (1) by using Algorithm 5. In
this algorithm, « represents a suitably chosen step size. Here,
we discuss the convergence of iterates (Algorithm 5) with

We choose p=a=0.1. Figure 11 shows that our
method guarantees the convergence of the dual variable A
exactly to its optimal value A*. Convergence of the dual
function iterates g(A*) and the objective function iterates
f(x*) = alx* is given in Figure 12, and it shows that the
both dual function and objective function converge exactly
to the optimal value f* = —6 of our primal problem (45).
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FiGgure 11: Convergence of the dual variable iterates A¥ in ADMM. The figure shows the log values of [AF = 1* || with iteration number. A
better convergence up to 107 ° tolerance is achieved within 100 iterations.
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F1Gure 12: Convergence of the dual function and objective function iterates in ADMM. Horizontal line represents the optimal value
f* = -6 of the primal problem (45). The figure shows the iterates almost converge to f* within 100 iterations.

9. Conclusions

Centralized methods are hardly being used or applied as they
are not suitable or they fail to deploy in many optimization
settings due to the high demanding necessity of distributed
techniques among large-scale networked systems. Therefore,
an attempt has been made by this paper to discuss the most

important methods that currently exist to solve distributed
optimization problems. A detailed analysis on gradient like
methods, subgradient methods, and ADMM has been
presented with numerical results. Gaps in previous studies
that need to be developed to enhance the process of dis-
tributed optimization over networked systems have been
discussed under each section. Here, we summarize the areas
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in which future research can be conducted in distributed
optimization.

(i) Many studies have shown their interest to solve
distributed problems using primal measures.
Therefore, more theoretical studies related to duality
need to be established to make use of the advantage
of optimizing more general (nonconvex) distributed
problems.

(ii) Methods of finding primal solutions from the dual
under more relaxed assumptions are critical, as the
dual measures do not converge to primal measures
in general.

(iii) Distributed methods over limited communications
between networked systems need to be analyzed in
depth, and related proper quantization schemes that
guarantee the convergence of corresponding dis-
tributed methods should be identified.

(iv) Inexact message exchange between subsystems due
to limited communication bandwidths is common
in distributed optimization. Consequently, analysis
of error-based distributed methods is essential over
many distributed application domains.
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