Rs. 30001

Rs. 3 VARIATION OF STEM TAPER WITH DIFFERENT

AGES IN Tectona grandis L.f. (Teak)

BY

M. A. NAFEES (B.Sc)

This dissertation is submitted in partial fulfillment of the requirement for the Degree of Master of Science (Forestry and Environmental Management), Department of Forestry and Environmental Science, Faculty of Graduate Studies, University of Sri Jeyewardenepura, Nugegoda, Sri Lanka.

> 183315 2005

ABSTRACT

Taper is the rate of change of diameter over a specified length along the tree stem, which varies not only by species but also by diameter at breast height, tree height and other tree parameters. Taper is important for the foresters to predict the upper stem diameters especially in volume calculations. Although it is difficult to find taper studies in Sri Lanka, studies have been carried out in Canada and New Zealand (Hewage, 2002).

The main objective of the current study is to find out the variation of stem taper with different ages of *Tectona grandis L.f* (Teak). Three plantations (22 year, 27 year and 35 year) were selected in block 01 of Kotagoda teak plantation in Ampara Forest Division for this purpose by selecting different ages in same site, it is assumed that the site difference is not significant. The selection of sample plots were carried out randomly within the sub blocks separately. Data were collected from twelve 0.05 ha circular plots and each tree was measured for total height, dbh, sectional diameters at 5m and 10m along the stem. These were used to estimate the parameters for the selected equation originally constructed for Douglas fir in Coastal Central Colombia by Kozak *et.al.* (1969).Furthermore in this study, separate models were constructed with different parameter sets with the similar basic model structured for three different ages of teak. These three models were tested to find whether they significantly vary from each other. Then finally an attempt was made to construct a common model with new parameters to apply for all age gradations simultaneously by pooling the data. These tests revealed that, the different models constructed were not sensitive for different ages, and therefore it can be recommended to use the common model for the prediction of upper diameters or the taper for teak irrespective of their age gradation.

Finally a sensitivity analysis was carried out for the re-calibrated models developed in 1969 by Kozak *et.al.* for Douglas fir and in 2002 by C. Hewage for Caribean pine. The results indicated the high sensitivity proving that the inability of using the models constructed for different species to predict the stem taper of some other species.

CONTENTS

			Page
LIST OF TABLES			
LIST OF FIGURES			
ACKNOWLEDGEMENT			v
ABSTRACT			
CHA	PTER 1	: INTRODUCTION	01
1.1	Object	tives of the study	03
CHA	PTER 2	: REVIEW OF THE LITERATURE	04
2.1	The in	portance and the history of forest plantations	04
2.2	Teak (Tectona grandis)	05
	2.2.1	Commnercial value of Teak	05
	2.2.2	Site Condition	06
	2.2.3	Dimate	06
	2.2.4	Teak as Timber	06
	2.2.5	Quelition and utilization of taek	07
	2.2.6	fruits and flowers	08
	2.2.7	Bark and root	09
	2.2.8	Wood waste	09
2.3	Tree cl	haracteristics	09
	2.3.1	Height	09
	2.3.2	Diameter	10
	2.3.3	Cross sectionan area	11
	2.3.4	Sectional height and upper end diameter	11
	2.3.5	Tree volume	12
	2.3.6	Log volume by direct measurement	13
2.4	Effect	of form factor and taper in trees and logs	14
2.5	Variati	ion in taper	16
2.6	Taper	equations form predicting yield.	17
CHA	PTER 3	3 : MATERIALS AND METHODS	20
3.1	The st	udy area	20
	3.1.1	Slope Correction	23
	3.1.2	Trees on border of sample plots	23
3.2	Measu	urements taken	23
	3.2.1	Lower diameter	23
	3.2.2	Measurement of upper diameter	23
	3.2.3	Total height and series of sectional heights along the stem	24
3.3	Select	ed equations to predict upper stem diameter	24
3.4	Calcul	ations	25
	3.4.1	Estimation of stem-number density	25
	3.4.2	Estimation of mean height	25
	3.4.3	Estimation of mean dbh	26
	3.4.4	Estimation of dominant height	26
	3.4.5	Estimation of basal area	26
	3.4.6	Estimation of parameters	26
3.5	Const	ruction of common model for all age groups	27
3.6	Testin	g the sensitivity of the estimated parameters in the new model	28

i

CHAPTER 4: RESULTS			30	
	4.1	Summary of data collected	30	
	4.2	Parameter estimation		
	4.3	Residual analysis		
	4.4	Distribution of standard residuals versus fitted values		
	4.5	Quantitative test residuals		
	4.6	Construction of the common model	34	
		4.6.1 Distribution of normal residuals versus fitted values for the		
		common model	35	
	4.7	The sensitivity of the model used	36	
CHAPTER 5: DISCUSSION			38	
CHAPTER 6: CONCLLUSION			41	
CHAPTER 7 : RECOMMENDATION			42	
REFERENCES				

ii