INVESTIGATION OF POSSIBLE CAUSES AND

REMEDIAL MEASURES FOR SPLITTING IN

EUCALYPTUS

BY

DEIYANDARA GAMAGE DANTHA DARSHANI

B.Sc(University of Ruhuna.)

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE, UNIVERSITY OF SRI JAYAWARDANEPURA, NUGEGODA, SRI LANKA April - 1996

144082

INVESTIGATION OF POSSIBLE CAUSES AND REMEDIAL MEASURES FOR SPLITTING IN EUCALYPTUS

ABSTRACT

This study examined the possible causes of splitting in *Eucalyptus* and how it can be reduced. Log samples were obtained from plantation at Kandapola in the Nuwara Eliya District. These samples were taken from even-age (35 year old) trees of *Eucalyptus microcorys* and *Eucalyptus grandis*.

Patterns of splitting and splitting intensity were measured according to the time period. Splitting in *Eucalyptus grandis* was more severe than *Eucalyptus microcorys*. The pattern of splitting between these two species also varied. Splitting varied according to the bole height in the trees and the diameter of the bole. It was observed that the larger diameter logs were subjected to more splitting. Splitting intensity was higher in the mid bole height than the base and the top height of *Eucalyptus grandis* trees.

1 BL

cio

The density showed an increasing trend from pith outward and also it varied between the species. Splitting started from the pith and extended towards the bark. Minor

V

splits were started from bark and extended toward the pith during the second stage of splitting. In *Eucalyptus* grandis it started immediately after felling. Splitting time increased with increasing Equilibrium Moisture Content (EMC). No relationship was found between heart wood percentage and splitting. It was found that splitting can be reduced by reducing the stress from pith outward by fixing ganinails at the cut surface of the logs. Also splitting can be reduced by applying vaslin on the cutting surfaces.

Although vaslin and gangnail treatments reduce splitting, it was found difficult to stop splitting completely by these treatments. Other methods are also discussed in controlling splitting: fixing iron ring around the log, debarking three months before felling, using proper logging, sawing and seasoning techniques.

TABLE OF CONTENTS

CONTENTS:

Elga

dur's

grai

ami 3

(EMC

per

be

Eix

TUB

.

Lga

CON

61.6

the

pro

Declarationi					
Dedicationii					
Acknowledgementsiii - iv					
Abstractv - vi					
Table of Contentsvii-ix					
List of Tablesx					
List of Figuresxi-xii					
List of Platesxiii-xiv					
Abbreviationsxv					

CHAPTER	1	INTRODUCTION1
	1.1	General introduction1
	1.2	Objectives of the study3

CHAPTER	2	LITERATURE REVIEW4
	2.1	Classification and botanical
		description of Eucalyptus grandis and
		Eucalyptus microcorys4
	2.2	Distribution of <i>Eucalyptus</i> 5
	2.3	Eucalyptus in Sri Lanka6
	2.4	Properties of <i>Eucalyptus</i> wood7
	2.5	Splitting in <i>Eucalyptus</i> 9

2.5.1	Possible	causes	for	splitting	8
2.5.2	Remedial	measure	es		13

1000

12.13

COMI

Decl

Deda

Acia

CHAPTER	3	MATERIALS AND METHODS15
	3.1	Study site15
	3.2	Experiment 1: Investigation of
		possible causes for splitting in
		Eucalyptus16
	3.2.	1 Sampling method16
	3.2.	2 Determination of splitting pattern17
	3.2.	3 Determination of physical properties19
	3.2.	3.1 Measurement of shrinkage20
	3.2.	3.2 Measurement of density20
	3.2.	3.3 Measurement of Moisture Content22
	3.2.	3.4 Analysis of data
	3.3	Experiment 2: Remedial methods for
		splitting in <i>Eucalyptus</i> 23
CHAPTER	4	RESULTS
	4.1	Possible causes for splitting
		in Eucalyptus24
	4.2	Remedial measures for
		splitting in <i>Eucalyptus</i> 50
CHAPTER	5	DISCUSSION
	5.1	Possible causes which affect the
		splitting in <i>Eucalyptus</i> 57
	5.2	Preventive measures60

CHAPTER	6	CONCLUSIONS AND RECOMMENDATIONS62
	6.1	Conclusion and recommendation for future
		studies62
	6.2	Recommendations to control the
		splitting of <i>Eucalyptus</i> timber
		in Sri Lanka63
LITERATUR	E CIT	ED66
APPENDICE	IS	

1	Splitting length of discs
	according to the time69
2	Weight of discs according to the
	time
3	Shrinkage from pith outward71-72
4	Equilibrium Moisture Content73-75
5	Density from pith outward76
6	Analytical data77-78