183299

EXTENDED COST BENEFIT ANALYSIS OF BIOGAS GENERATION USING MUNICIPAL SOLID WASTE

By

K. G. S. P. KARUNARATHNA (B.Sc.)

Dissertation submitted in partial fulfillment of the requirement for the postgraduate degree of Master of Science (M.Sc.) in Forestry and Environmental Management of the Faculty of Graduate Studies in University of Sri Jayewardenepura.

Department of Forestry and Environmental Sciences University of Sri Jayewardenepura. Nugegoda, Sri Lanka

October 2004

183299

DECLARATION

I carried out the research study described in this dissertation on economics of a biogas generation project, under the supervision of Dr. Mrs. U A D P Gunawardena as the partial fulfillment of the M.Sc. degree course, in the Department of Forestry and Environmental Sciences at the University of Sri Jayewardenepura, Sri Lanka.

Kerganage

(K.G.S.P.Karunarathna)

20 - 11 - 2004 Date

SUPERVISOR'S CERTIFICATION

This is to certify that this dissertation is based on the study carried out by the candidate herself and is now approved for submission.

15/11/2004

Date

NORPHY

Signature Dr. Mrs. U A D P Gunawardena, Supervisor, Senior Lecturer, Department of Forestry & Environmental Sciences, Faculty of Applied Sciences, University of Sri Jayewardenapura, Nugegoda.

DEDICATION

То

My Loving Parents And Teachers

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to my supervisor, Dr. Mrs. U A D P Gunawardena, Senior lecturer of the Department of Forestry & Environmental Sciences, of the University of Sri Jayewardenepura, Nugegoda for her generous assistance, advice and guidance rendered to me throughout this study & the preparation of the dissertation.

I am also grateful to all the academic staff members of the Department Forestry & Environmental Sciences for their valuable advices, suggestions in preliminary presentations & for the encouraging making this success.

I would like to be grateful to Dr M.D.A. Athula Jayamanne, Senior Research Engineer and Ranjith Sowise, Project Engineer, Department of Renewable Energy, NERD center, Ekala, Ja-Ela, for the opportunity given me to carry out this study and for the information they provided and useful suggestions concerning this study. And also thank to all who helped me during the survey in relevant local authorities to make my study success.

Finally a special word of thanks goes to my husband for his generous co-operation throughout the study and all the nonacademic staff of the Department of Forestry and Environmental science and NERD center for their assistances in many ways.

vi

LIST OF T	`ABLES
-----------	--------

Table 2.1: Applications of the CVM in developing countries on some pollution damage valuations.	15
Table 2.2: Typical composition of biogas generated from anacrobic digestion of MSW	27
Table 2.3: Emissions and related GWPi for 20, 100 and 500 years (IPCC 1994)	28
<i>Table 2.4:</i> Some biogas equivalent	32
Table 2.5: Waste composition and Summary of the study sites	35
Table 3.1: Location and waste collection of selected dumpsites	45
<i>Table 4.1:</i> Socio-Economic Characteristics of respondents in site 01: (Wattala- Mabola)	54
Table 4.2: Socio-Economic Characteristics of respondents in site 02: (Ja-Ela)	54
<i>Table 4.3:</i> Socio-Economic Characteristics of respondents in site 03: (Peliyagoda)	54
<i>Table 4.4:</i> Mann-Whitney Test	58
Table 4.5: Descriptive analysis of WTP values of three sites	58
Table 4.6: Regression Analysis on WTP for Wattala-Mabola site	60
Table 4.7: Regression Analysis on WTP for Ja-Ela Site	61
Table 4.8: Regression Analysis on WTP for Peliyagoda Site	62
Table 4.9: Summary results of Pollution Damage Cost	63

.

.

.

.

.

Table 4.10:	
Calculated L0 values	64
Table 4.11:	
Summary results of the cost- benefit analysis	68
Table 4.12;	
Cash flow for Biogas (in Rs.)	69
Table 4.13:	
Discounted Cash flow and NPV for Biogas Plant (in Rs.)	71
Table 4.14;	
Discounted NPV and B/C ratio in Sensitivity Analysis	72
Table 4.15:	
NPV changes at 8% discount rate	73
Table 4.16:	
NPV changes at 10% discount rate	73
Table 4.17:	
NPV changes at 12% discount rate	73

LIST OF FIGURES

2.1: Economic values attributed to marshy lands)
2.2: Compensating variation measured by Hicks-compensated demand curve 1	6
2.3: Equivalent variation measured by Hicks-compensated demand curve1	8
3.1: Summery of costs and benefits of biogas plant4	1
4.1: Environmental impacts of site 01; (Wattala-Mabola)5	5
4.2: Environmental impacts of site 02; (Ja-Ela)5	6
4.3: Environmental impacts of site 03: (Peliyagoda)5	6

ABBREVIATIONS

BCR	- Benefit Cost Ratio
CAFOs	- Concentrated Animal Feeding Operations
CBA	- Cost Benefit Analysis
CEA	- Central Environmental Authority
CVM	- Contingent Valuation Method
DUV	- Direct Use Values
GHG	- Green House Gas
GWP	- Global Warming Potential
IPCC	- Inter government Panel of Climate Change
IRR	- Internal Rate of Return
IUV	- Indirect Use Value
MSW	- Municipal Solid Waste
NERD	- National Engineering and Research Development center
NPV	- Net Present Value
NUV	- Non-Use Values
OV	- Option Value
P.S.	- Pradesheya Saba
PV	- Present Value
SWM	- Solid Waste Management
τεν	- Total Economic Value
U.C.	- Urban Council
UV	- Use Value
WTA	- Willingness To Accept
WTP	- Willingness To Pay

х

CONTENTS

.

Contents		mber
Declaration		ili
Supervisor's Certification		iv
Dedication		v
Acknowledgement		vi
List of Tables		vii
List of Figures	••••	ix
Abbreviations		x
Contents		xi
Abstract		xvi

Chapter 01: Introduction

1.1	Overv	iew IntroductionI		
1.2	Enviro	onmental Aspects of the study2		
	1.2.1	Municipal Solid Waste (MSW) 2		
	1.2.2	Present situation and implications of MSW2		
	1.2.3	Pollution impacts of MSW 3		
	1.2.4	Benefits of Biogas generation in Sri Lanka3		
1.3	.3 Objectives of the study			
1.4	Descr	iption of the biogas/bio fertilizer projectMuthurajawela5		
	1.4.1	Background5		
	1.4.2	Aims of the project		
	1.4.3	Project implementation6		
	1.4.4	Process Technology6		
	1.4.5	Microbiology of the process		
	1.4.6	Project inputs7		
	1.4.7	Project outputs		
	1.4.8	Major challenges difficulties encountered in		
		Implementation		

Chapter 02: Literature Review

2.1	Econor	nic value of Environmental Resources	9
	2.1.1	Externalities and Market failures	10
	2.1.2	Solutions for market failures	11
2.2	Contin	gent Valuation: Using Surveys to clicit Information	
	about c	costs and benefits	12
	2.2.1	Requirement of the Contingent Valuation Method	12
	2.2.2	Overview	12
	2.2.3	The Theoretical basis of CVM	16
	2.2.4	Methodology of the Contingent Valuation Method	19
	2.2.5	Issues and Limitations	22
	2.2.6	Biases of CVM	25
	2.2.7	Validity testing	25
2.3	Anaero	bbic digestion of Municipal Solid Waste	26
2.4	Contril	oution of MSW for Green House Effect	28
	2.4.1	Global Warming Potential of Methane and Carbon	
		dioxide from MSW	28
	2.4.2	Contribution of MSW for Green House Effect	28
2.5	Biogas	Utilization as an energy source	31
	2.5.1	As a source of energy	31
	2.5.2	Utilization	31
2. 6	Refuse	composting	33
	2.6.1	Benefits of organic waste utilization	33
2.7	Descri	ption of the study site	34
	2.7.1	Waste production	35
	2.7.2	W.ste collection	36
	2.7.3	Waste disposal	37
2.8	Theory	and Methodology of Cost benefit analysis	37
	2.8.1	Background Theory of Cost and Benefit Analysis	38
	2.8.2	Approach of Cost- Benefit Analysis	38
2.9	Sensiti	vity analysis	40

Chapter 03: Materials and Methods

3.1	Identification	of Costs and Benefit components	41
3.2 Identification and Esti		and Estimation of costs component	42
	3.2.1 Estim	ation of investment cost and operating cost	42
	3.2.2 Estim	ation of Global Warming damage cost	
	of bio	gas burning	43
3.3	Identification	and estimation of Benefits components	43
	3.3.1 Benef	its of Avoided Pollution Damage Cost	44
	3.3.2 Samp	le Selection and Survey	44
	3.3.3 Surve	y design	45
	3.3.3.1	Questionnaire design	45
	3.3.3.2	Selection of payment vehicle	45
	3.3.3.3	Questionnaire	46
	3.3.3.4	Socio -economic Characteristics of the respondents	s.47
	3.3.3.5	Pilot study	47
	3.3.3.6	The Survey	48
3.4	Estimation of	Global Warming Reduction Benefit	48
	3.4.1 The S	choll Canyon Model	49
3.5	Benefit of pro	oduced bio gas as a fuel	50
3.6	Bio Fertilizer	Benefit	50
3.7	Indirect Emp	loyment benefit	51

Chapter 04: Results

4.1	Estima	ted cost values	52
4.2	Estima	ited Benefit values	53
	4.2.1	Estimation of the Benefit of Avoided Pollution	
		Damage Cost	53
	4.2.1.1	Results of the survey	53
	4.2.1.2	Statistical analysis	57
	4.2.1.3	General Tests	57
	4.2.1.4	Comparison of obtained WTP values	58
	4.2.1.5	Summery Statistics of WTP values	58
	4.2.1.6	Variation of WTP with Socioeconomic Variables	59
	4.2.1.7	Multiple Regression Estimates for WTP	60

	4.2.1.8	B Pollution damage cost of MSW	62	
4.3	Result	s of global warming reduction benefit	63	
4.4	Evalua	ation of Biogas production benefit	66	
4.5	Evalua	ition of benefit of bio fertilizers of the project	66	
4.6	Evalua	Evaluation of employment benefit of the project		
4.7	Cost -	benefit analysis summary for biogas generation plant	67	
4.8	Result	s of the Economic Analysis	69	
	4.8.1	Cash Flow	69	
	4.8.2	Net Present Value	70	
4.9	Sensit	ivity analysis	72	
	4.9.1	Summary of Sensitivity analysis	72	

Chapter 05: Discussion

5.1	Discussion on benefit stream	'4
	5.1.1 On CVM Survey 7	4
	5.1.2 In Applying the Contingent Valuation Method 7	75
	5.1.3 Advantages 7	6
	5.1.4 Aggregation of the results	7
	5.1.5 Discussion on limitations of the CV Method 7	77
	5.1.6 Problems due to less sample size 7	78
	5.1.7 Theoretical validity 7	78
5.2	On estimation of emission reduction benefits	79
5.3	On fertilizer benefits	30
5.4	Benefit by cleaning Hamilton canal	31
5.5	Other benefits that could have been valued	31
5.6	Discussion on cost stream	81
	5.6.1 Waste transport cost	32
5.7	Discussion on Cost Benefit Analysis	83
	5.7.1 Discount rates	83
	5.7.2 Sensitivity analysis	84
Chapter 06:	Conclusion	85
Chapter 07:	Recommendations	86
References	References	

Appendix

Appendix 1:	Household sample questionnaire
Appendix II (a):	Current supply and expected waste supply of the project
Appendix II (b)	Estimated capital expenditure of the project
Appendix III:	Discounted Cash flow and NPV for Biogas Plant (in Rs.)
Appendix IV:	Discounted NPV for 1.2% incensing rate of Costs and Benefits
Appendix V:	NPV changes when Cost up 20% Benefit down 20%
Appendix VI:	NPV changes when cost up 20% and benefit up 20%
Appendix VII:	NPV changes when cost down 20% and benefit up 20%
Appendix VIII:	NPV changes when cost down 20% benefit down 20%
Appendix IX:	Normal Probability plots
Appendix X:	Economic cost and benefit streams (Excluding population growth
	rate)
Appendix XI:	Economic cost and benefit streams (Including population growth
	rate- 1.2%)

•

Appendix XII: Photographs of waste dump sites

Appendix XIII: Photographs of biogas plant and its uses

xv

Karunarathna K.G.S. P. Extended Cost Benefit Analysis of Biogas

Generation using Municipal Solid Waste

Department of Forestry and Environmental Science, University of Sri Jayewardenepura

ABSTRACT

Solid waste is a growing problem in Sri Lanka in the absence of proper management measures. Development and implementation of a National strategy for municipal management is essential in order to reduce environmental, social and the economic problem associated with the present disposal practices. Such strategies however, need to be subjected to proper economic analysis in order to arrive at informed decisions. The present study presents an extended cost benefit analysis of a biogas generation plant that uses munipal solid waste as the raw material.

To dispose vegetable market garbage available in Wattala, Kandana and Ja-ela areas productively, the 640 Mt capacity biogas/ bio fertilizer project has been housed at Muthurajawela (along Hamilton canal, Elakanda), by the National Engineering Research & Development Center of Sri Lanka (NERDC), which uses Dry Batch Anaerobic Digester Technology. Among the other biological treatment options, anaerobic digestion is the most cost effective, due to the high-energy recovery linked to the process and its limited environmental impacts.

Economic analysis has been carried out to identify costs and benefits associated with the above project. Several environmental valuation methods have been applied to value the identified costs and benefits. The main benefit of reduction of municipal solid waste has been estimated as Rs 1,093,444 per year. Contingent valuation method (CVM) was used to estimate this benefit using samples from Wattal-Matola, Ja-ela, and Peliyagoda local authorities. Green house gas (methane) emission from solid waste was estimated through Scholl Canyon model and valued using avoided global damage cost approach. Benefits of biogas as an energy source, organic fertilizers and employment benefits were estimated by market based approach.

The project is viable from economy and environment point of view with net present value of Rs. 249.43 million for 20-year period with 10% discount rate. This analysis provides a justification for undertaking solid waste management strategies in a technologically environmentally and economically viable manner.

