19401

## A STUDY THE PHYSICAL PROPERTIES OF WHITE RICE HUSK ASH- FILLED NATURAL RUBBER COMPOUNDS

By

RATHNAYAKA R.M.S.M.

174401

M.Sc. (Polymer Science & Technology)

December 2001

## **ABSTRACT**

This thesis details the potential use of white rice husk ash (WRHA), which usually contains around 96%(w/w), silica as filler in natural rubber compounds. The loading levels of WRHA with deferent composition with natural rubber have been studied. The level with optimum physical properties was found to be as 10 phr loading and deterioration of properties were observed with further increase of loading levels of WRHA.

How ever, it was feel that WRHA could be used as cost effective filler with modification to surface characteristics. Incorporation of silane type coupling agent (A 1289) has resulted in improving the curing characteristics as well as physical properties of WRHA filled natural rubber compound.

The natural rubber compound containing 30 phr of WRHA and 0.5phr of Al289 showed higher physical properties indicating between the improved interaction between WRHA and the natural rubber phasae.

## CONTENTS

|      |                                                     | Page |
|------|-----------------------------------------------------|------|
| ACK  | NOWLEDGEMENT                                        | i ·  |
| LIST | OF TABLES                                           | 11   |
| LIST | OF FIGURES                                          | iii  |
| ABS  | TRACT                                               | iv   |
| СНА  | APTER 01 – INTRODUCTION                             |      |
| 1.1  | Introduction                                        | 1    |
|      | 1.1.1 Literature survey                             | 2    |
| 1.2  | Fillers                                             | 3    |
|      | 1.2.1 Rice husk                                     | 4    |
|      | 1.2.2. Rice husk ash                                | 6    |
|      | 1.2.3. Carbon black                                 | 7    |
|      | 1.2.4. Silica                                       | 8    |
| 1.3  | Coupling and surface modifying agent                | 10   |
| 1.4  | Antioxidant                                         | 13   |
| 1.5  | Accelerators                                        | 14   |
| 1.6  | Activators                                          | 16   |
| 1.7  | Processing oil                                      | 16   |
| 1.8  | Vulcanization system for natural rubber.            | 17   |
| 1.9  | Determination of physical properties of vulcanisate | 18   |
| CHA  | APTER 02 – EXPERIMENTAL PROCEDURE                   |      |
| 2.1  | Compounding ingredients                             | 19   |
| 2.2  | Physical modification of WRHA                       | 19   |
| 2.3  | Preparation of rubber compounds                     | 20   |
| 2.4  | Mixing                                              | 22   |
| 2.5  | Curing the sample                                   | 23   |

## CHAPTER 03 – RESULTS AND DISCUSSION

| 3.1  | Study the physical properties of WRHA                           |    |
|------|-----------------------------------------------------------------|----|
|      | filled RSS –1 vulcanisate                                       | 24 |
| 3.2  | Comparative study of the physical properties of RSS-1           |    |
|      | vulcanisate with WRHA, silica and carbon black                  | 3( |
| 3.3  | Study the effect of coupling and surface modifying agent on the |    |
|      | physical properties of RSS -1 vulcanisate                       | 33 |
| 3.4  | Conclusion                                                      | 38 |
| 3.5  | Suggestion for further works                                    | 39 |
| APPE | ENDIX A – Test method of vulcanisation characteristic           | 4( |
| APPE | ENDIX B – Test method of tensile properties                     | 44 |
| APPE | ENDIX C – Test method of hardness                               | 46 |
| APPE | ENDIX D – Test method of abrasion resistance                    | 49 |
| APPE | ENDIX E – Test method of tear strength                          | 52 |
| REFE | RENCES                                                          | 54 |

