174362 2004 07 19

FACTORS AFFECTING THE QUALITY OF CENTRIFUGED LATEX AND IT'S PROCESSING BEHAVIOUR IN THE LATEX PRODUCT MANUFACTURING INDUSTRY

BY Y.G.Y.M. YATTOWITAGE

174362

MSc in Polymer Science & Technology

2003

CR

648.11

Berno

f. 3000/

Abstract

Centrifuged latex manufacturing industry is one of the most economically important and rapidly growing industry in Sri Lanka. Centrifuged latex being a semi finished natural product it undergoes lot of chemical changes during storage. The consumer is more concerned in getting quality latex to suit his manufacturing process. The main quality parameters that should be controlled very carefully are the VFA number and MST of the latex concentrate.

Four types of concentrated latex were used to study of variation of characteristics of latex during storage. In LVFA latex, VFA number increases relatively a faster rate during the first 3 weeks and thereafter the rate of increase is gradually reduced to almost zero. The VFA number increases in HVFA latex at a relatively slower rate during the first 30 days and thereafter starts to rise very sharply.

Increase of MST with maturity time could be approximately divided in to three stages. In stage I, 0-14 days, MST increases very slowly. In stage II, 14-21 days it increases very rapidly. In Stage III, after approximately one-month storage MST remains unchanged or it starts to decrease very slowly. This general pattern of MST variation is consistent with the pattern of hydrolysis of phospholipids and glycollpids associated with RP. Results also indicate that HA preserved latex is consistent latex with properties when compared with LA preserved latex.

Blending of superior quality centrifuged latex with inferior quality latex was also investigated. Results indicate that HVFA latex can be blended with LVFA latex even in 1:1 ratio and can be stored for a period of two weeks without any appreciable increase in VFA.

Precipitation of magnesium by the natural process occurs at a faster rate within the first 6 hrs, and thereafter the rate of precipitation slows down. About 60% of magnesium from the initial level are precipitated within 24 hrs of storage. Only 60% of magnesium are precipitated by the incorporation of stoichiometric quantities of DAHP even for prolonged storage.

By centrifugation VFA number is reduced by 75% and the magnesium level by 40-50%.

Investigation of quality of centrifuged latex on the properties of the prevulcanized latex indicates that HA preserved latex shows higher tear strength when compare with LA preserved latex and relatively new latex with high MST shows higher tear strength than HMST old latex.

XIV

List of Contents

	Page
1.0 LITERATURE REVIEVE	1
1.1.Introduction	1
1.2 Classification of latices	2
1.3 Some fundamental characteristics of latices	4
1.3.1 Characteristics, which pertain to the dispersed polymer	4
1.3.2 Characteristics, which pertain to the dispersion medium	4
1.3.3 Characteristics, which pertain to the interfacial regions	5
1.3.4 The electrical double layer	6
1.4 Colloidal stability of latices	8
1.4.1 Thermodynamic of particle aggregation	8
1.4.2 Kinetic of particle aggregation	9
1.4.3 Attractive forces and potential between particles	10
1.4.4 Steric or enthalpic stabilization	10
1.5 Colloidal destabilization of latices	13
1.5.1 Introduction	13
1.5.2 Destabilization by physical influences	14
1.5.2.1 Colloidal destabilization through removal of dispersion medium	14
1.5.2.2 Effect of increase of temperature upon colloidal stability of latices	15
1.5.2.3 Colloidal destabilization of latices by mechanical agitation	16
1.5.3 Destabilization by chemical agencies	16
1.5.3.1 Direct or contact coacervation	17
1.5.3.2 Heat sensitizing coacervants	23
	V

THE REAL PROPERTY.

1.5.3.3 Delayed action coacervants	25
1.6 Concentration of natural rubber latex	28
1.6.1 Principal methods for concentrating natural rubber latex	28
1.6.1.1 Concentration by evaporation	28
1.6.1.2 Concentration by creaming	29
1.6.1.3 Concentration by centrifugation	29
1.6.1.3.1 Theory of centrifugation	29
1.6.1.3.2 Factors effecting separation	33
1.6.1.3.3 Centrifugation in practice	34
1.6.1.3.4 Factors effect composition of cream	36
1.6.1.3.5 Machine adjustment	38
1.6.1.3.6 Efficiency of latex concentration by centrifugation	39
1.6.1.3.7 Factors influence the bowl concentrating efficiency	41
1.6.1.4 Concentration by electrodecantation	43
1.7 Constitution of fresh and ammonia preserved natural rubber latex	44
1.7.1 Introduction	44
1.7.2 The rubber phase	44
1.7.2.1 Chemical constitution and structure of the particle in natural rubber latex	45
1.7.2.2 Sol fraction and gel fraction	45
1.7.2.3 Nature of the particle surface	46
1.7.3 The aqueous phase	49
1.7.4 Lutoid phase	50
1.8 Preservation of natural rubber latex	51
1.8.1 Preliminary consideration	51

VI

1.8.1.1 Why it is necessary to preserve natural rubber latex	51
1.8.1.2 Mechanism of spontaneous coagulation of natural rubber latex	51
1.8.2 Ideal preservatives for natural rubber latex	52
1.8.3 Ammonia as a preservative	52
1.8.4 Secondary preservatives, which are used with ammonia	55
1.8.5 Other preservatives for natural rubber latex	56
1.9 Prevulcanization of natural rubber latex	58
1.9.1 Introduction	58
1.9.2 Sulphur prevulcanization of natural rubber latex	58
1.9.2.1 History	58
1.9.2.2 Preparation of sulphur prevulcanized natural rubber latex	58
1.9.2.3 Assessing the degree of vulcanization of natural rubber latex	59
1.9.2.4 Mechanism of sulphur prevulcanization of natural rubber latex	59
1.9.3 Prevulcanization of natural rubber latex by reaction with organic peroxide and with hydrogen peroxide	61
1.9.4 Prevulcanization of natural rubber latex by expose to high- energy radiation	62
1.9.5 Prevulcanization by irradiation with high-energy electromagnetic waves	63
1.9.6 Effect of sulphur prevulcanization upon properties of natural rubber latex and of films derived from natural rubber latex	63
1.9.7 Leaching behavior of prevulcanized natural rubber latex films	64
1.10 Objectives	67

VII

2.0 EXPERIMENTAL

1

	2.1 Introduction	68
	2.2 Study of variation of properties during storage	69
	2.3 Investigation of the percentage reduction of VFA number and magnesium level by centrifugation	69
	2.4 Study of the effect of blending of various type of centrifuged latex concentrates	69
	2.4.1 Blending of low VFA centrifuged latex with high VFA centrifuged latex	69
	2.4.2 Blending of low MST centrifuged latex with high MST centrifuged latex	70
	2.5 Study of the effect of DAHP addition on magnesium level in ammonia preserved natural rubber latex.	70
	2.6 Study of the quality of centrifuged latex on the properties of the compounded latex	70
3.0 RI	ESULTS AND DISCUSSION	70
	Conclusions	96
	Further studies	97
	Appendix - 1	98
	Appendix – 2	124
	Appendix – 3	
	References	125

VIII

68