THE POTENTIAL OF GHG EMISSION SAVINGS FOR PROGRAMMATIC CDM BY MUNICIPAL SOLID WASTE COMPOSTING IN THE WESTERN PROVINCE

V. K. D. H. KARIYAKARAWANA

This dissertation is submitted in partial fulfillment of the requirements of the Degree of

Bachelor of Science in Forestry and Environmental Science,

Department of Forestry and Environmental Science,

Faculty of Applied Sciences,

University of Sri Jayewardenepura,

Nugegoda, Sri Lanka.

November, 2011

Affectionately dedicated to

my loving parents

for their endless support and encouragement......

CONTENTS

List of plate	s	i	
List of table	ablesii		
List of figur	es	iv	
List of abbr	eviation	s and acronymsv	
Acknowledg	ment	vii	
Abstract		ix	
CHAPTER	ONE:	INTRODUCTION1	
1.1	Munic	ipal solid waste in the Western Province of Sri Lanka1	
1.2	Munic	ipal solid waste composting1	
1.3	Process of municipal solid waste composting2		
1.4	Environmental implications of municipal solid waste disposal5		
1.5	Clean	Development Mechanism and programmatic Clean Development	
	Mecha	nism7	
1.6	Aim o	f the study7	
1.7	Object	tives of the study	
CHAPTER	TWO:	LITERATURE REVIEW9	
2.1	Climat	te change problem9	
	2.1.1	History of climate change9	
	2.1.2	The green house effect10	
	2.1.3	Greenhouse gases	
	2.1.4	Global warming potential of greenhouse gases14	
2.2	Globa	l actions for global warming15	
	2.2.1	United Nations Framework Convention on Climate Change (UNFCCC)16	
	2.2.2	Intergovernmental Panel on Climate Change (IPCC)19	
	2.2.3	Kyoto protocol	
	2.2.4	Clean Development Mechanism	
	2.2.5	Programmatic Clean Development Mechanism	

2.3	Solid	waste management	30
	2.3.1	Issues in municipal solid waste management in Asian region	31
	2.3.2	Municipal solid waste management in Sri Lanka	32
	2.3.3	Municipal solid waste composting	33
	2.3.4	Green house gas emissions in municipal solid waste composting	34
2.4	Munic	ripal solid waste management in the Western Province of Sri Lanka.	35
	2.4.1	Waste statistics	35
CHAPTE	R THRE	CE: METHODOLOGY	38
3.1	Study	area	38
3.2	Select	ion of Local Authorities for the study	38
	3.2.1	Selected Local Authorities for the study	39
	3.2.2	Sampling period and sampling frequency	40
3.3	Waste	composition analysis	43
	3.3.1	Site preparation	43
	3.3.2	Quarter method of waste sampling	43
	3.3.3	Waste sorting and measuring	43
3.4	Data c	collection on transportation, onsite fuel and electricity consumption	44
3.5	Waste	collection rates and the compost product estimation	45
3.6	Deterr	nination of green house gas emissions	45
	3.6.1	Selection of applicable green house gases to be quantified	46
	3.6.2	Quantification of methane emissions from the baseline scenario	47
	3.6.3	Quantification of avoided methane emission from the municipal	l solid
		waste composting	49
3.7	Study	of the current status of methane and carbon dioxide emission from the	he
	existin	ng compost piles	52
3.8	Extrap	polation of the findings to the entire Western Province	54
CHAPTE	R FOUR	RESULTS	56
4.1	Field of	observations	56
4.2	Result	s of the waste composition analysis	59
4.3	Waste	collection and waste transportation data	60

	4.3.1	Waste collection rates	61
	4.3.2	Fuel usage and waste transportation distances	61
4.4	Onsite	e electricity and fuel consumption	63
	4.4.1	Onsite electricity and fuel consumption of existing composting s	ites63
	4.4.2	Estimated onsite electricity and fuel consumption for the samp	ple Local
		Authorities	64
4.5	Green	n house gas emissions	65
	4.5.1	Baseline emissions	65
	4.5.2	Emissions due to waste transportation	66
	4.5.3	Project activity emissions	67
	4.5.4	Emissions from compost piles during the composting process	68
4.6	Quant	tification of avoidable green house gas emissions	70
4.7	Total	GHG emission reduction for the Western Province of Sri Lanka	71
СНАРТЕН	R FIVE	: DISCUSSION	75
5.1	Muni	cipal solid waste composition	76
5.2	Basel	ine GHG emissions	77
5.3	Waste	e collection and transportation emissions	78
5.4	Onsite	e electricity consumption and associated emissions	79
5.5	Onsite	e fuel combustion and associated emissions	80
5.6	Direc	t emissions from compost piles	81
5.7	Quan	tification of avoidable GHG emissions	82
СНАРТЕН	R SIX:	CONCLUSIONS	84
СНАРТЕН	R SEVE	EN: RECOMMENDATIONS	
REFEREN	ICES		
Appendix	1		
Appendix	2		
Appendix	3		

- Appendix 4
- Appendix 5
- Appendix 6
- Appendix 7
- Appendix 8
- Appendix 9

LIST OF PLATES

Plate 4.1	Waste dumping from LA 01	. 57
Plate 4.2	Waste dumping from LA 05	. 57
Plate 4.3	Recyclable material collection at the Karadiyana waste dump site	. 58
Plate 4.4	Recyclable material collection at the Manelgama waste dump site	58

LIST OF TABLES

Table 2.1	Annual growth rates and sources of greenhouse gases
Table 2.2	Global warming potentials of greenhouse gases
Table 2.4	Quantified economy-wide emission reduction targets for year 2020 communicated by Annex I Parties
Table 2.5	The projections carried out for the year 2001 to 2010 which are based on current waste collection rates and a population growth rate of 1.2 percent
Table 3.1	Sampling locations of MSW composition analysis
Table 3.2	Compost plants used for the data collection of on-site electricity and fuel consumption
Table 3.3	Emissions sources included or excluded from project boundary and baseline 46
Table 3.4	Local Authorities in the Western Province with no MSW composting facility 54
Table 4.1	Municipal Solid Waste composition by weight in the selected Local Authorities
Table 4.2	Quantity of municipal solid waste collection in the sample Local Authorities and the biodegradable portion that can be used for composting
Table 4.3	Average distance records, fuel consumption and load capacity of waste careers used for MSW transportation in the selected Local Authorities
Table 4.4	Average onsite electricity and fuel consumption for the compost production in the Compost Plants of the Western province

Table 4.5	Estimated onsite electricity and fuel consumption for the compost production in
	the sample Local Authorities
Table 4.6	Summary of Methane emissions from the compost piles in the tested compost
	plants 69
Table 4.7	Average achievable emission reduction for the selected Local Authorities 71
Table 4.8	Average GHG emission reductions quantified for Local Authorities in the entire
	Western Province
Table 4.9	Required emission levels in pCDM application and the obtained emission levels
	by the study for the Western Province74

LIST OF FIGURES

Figure 1.1	Flow chart of a typical MSW composting process
Figure 1.2	Basic GHG emissions and energy inputs in MSW disposal and MSW composting
Figure 2.1	Contribution of greenhouse gases to global warming during 1980s11
Figure 2.2	CDM project cycle
Figure 2.3	The flow of materials in a technological society and the resulting waste generation
Figure 3.1	Compost methane analyzing equipment structure
Figure 3.2	The nine insertion points of the windrow thermometer through a compost windrow
Figure 4.1	Composition of biodegradables in the municipal solid waste
Figure 4.2	Average baseline emissions
Figure 4.3	Average emissions due to transportations
Figure 4.4	Average emissions by onsite electricity consumption
Figure 4.5	Average emissions by onsite fuel consumption
Figure 4.6	Average methane emissions from compost piles
Figure 4.7	Total baseline emission and total avoidable emission projection for the first crediting period within the Western Province
	IV

LIST OF ABBREVIATIONS AND ACRONYMS

AAU	Assigned Amount Unit
CDM	Clean Development Mechanism
CER	Certified Emission Reduction
CFCs	Chlorofluoro Carbons
CH ₄	Methane
CO_2	Carbon dioxide
СОР	Conference of the parties
CPA	CDM Program Activity
DNA	Designated National Authority
DOE	Designated Operational Entity
DTIE	Division of Technology, Industry and Economics
EB	Executive Board
ERU	Emission Reduction Units
GHG	Green House Gases
GWP	Global warming potential
HFCs	Hydrofluoro carbons
IPCC	Intergovernmental Panel on Climate Change
JI	Joint Implementation
kt CO ₂	Kilo ton of CO ₂
LA	Local Authority
MC	Municipal Council
MOP	Meeting of the Parties
MSW	Municipal Solid Waste
MSWM	Municipal Solid Waste Management
Mt	Metric Ton
NO ₂	Nitrous oxide
pCDM	Programmatic Cleaner Development Mechanism
PDD	Project Design Document
PFCs	Perfluoro carbons

PoA	Program of Activities
PP	Project proponent
PS	Pradeshiya Sabha
SBI	Subsidiary Body for Implementation
SBSTA	Subsidiary Body for Scientific and Technological Advice
SF ₆	Sulfur hexafluoride
SWDS	Solid waste disposal site
tCO ₂	Tons of Carbon Dioxide equivalents
UC	Urban Council
UNEP	United Nations Environment Program
UNFCCC	United Nation's Framework Convention on Climate Change
WMA-WP	Waste Management Authority of Western Province
WMO	World Meteorological Organization

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my supervisor Prof. Nilanthi Bandara, Department of Forestry and Environmental Science, the University of Sri Jayewardenepura for her valuable advices and guidance throughout the period and for granting me the opportunity to carry out an interesting study for my final year research.

I am indebted to my external supervisor Mr. Saman Leelarathna, Assistant Director and Mr. Yasantha Gunarathna, Technical Assistant, Western Province Waste Management Authority for their guidance and support extend to me during the research.

I extend my sincere gratitude to Prof. Hiran Amarasekara, Head, Department of Forestry and Environmental Science, Prof. Hemanthi Ranasinghe, Prof. B.M.P Singhakumara, Dr. Prasanthi Gunawardena, Dr. Upul Subasingha and Mr. G.G.T Chandrathilake for the immense knowledge given to me to succeed in my research work.

I am grateful to Mr. Priyantha Samarakkodi, Director, Mr. Nalin Mannapperuma, Deputy Director and all the staff members of Western Province Waste Management Authority for their kind assistance in providing essential equipments and data for my research as well as the institutional arrangements given to me for carrying out my research work.

My special thanks for Mr. Shiro Chikamatsu, CDM Project Development Appraiser (JICA team), Climate Change Secretariat, Ministry of Environment, Sri Lanka for his kind assistance in the emission calculations.

I must highly appreciate the corporation given to me by my special batch mates, Dinesh Kumara, Sadeepa Yapa, Udya Abeysingha, Sarath Ranaweera, Niranjan Kannangara and Supun Nigamuni. I extend my heartfelt appreciation to Praneeth Rajapakse for the support given in many ways during my research work.

I must make a special acknowledgment to Prabani Jayasekara and Chammi Gunathilaka for their kind corporation and help extended throughout the study. My thanks are due to Ms. Ramanika Boteju for helping me in preparation of official letters.

It is with great honor I thank my father and mother for their encouragement and support which led me throughout the research study.

The Potential of GHG Emission Savings for Programmatic CDM by Municipal Solid

Waste Composting in the Western Province,

B.Sc Dissertation, Kariyakarawana VKDH (2011)

Abstract

The higher level of municipal solid waste (MSW) generation in Sri Lanka is due to increased consumption patterns as well as the movement of the people from the rural areas to urban centers. The Western Province (WP) is the most populated province in the country with 5.4 million people and a daily floating population of more than 1.5 million. It was found in the study that the daily collection rate of MSW in the entire WP is around 2000 tons per day. According to the composition analyses held in five Local Authorities (Dehiwala-Mt. Lavinia MC, Horana UC, Kesbewa PS, Kaluthara PS and Kelaniya PS) during the study, it can be concluded that the biodegradable portion dominates the bulk of MSW in WP as about 76.30%. Average composition found was: paper 5.77%; food waste 55.49%; garden waste 15.04%; metals 1.07%; plastics 2.14%; polythene 7.90%; glass 1.95% and other remaining 11.43%. Generally the biodegradable portion is mainly due to food and yard waste, typical of developing countries.

Out of the 48 administrative Local Authorities within the WP, only 16 Local Authorities are practicing MSW composting. All the other Local Authorities are practicing the most common method of MSW disposal; open dumping which contributes to a continuous emission of methane gas to the atmosphere in high quantities.

Global warming due to GHG emission is a major concerned environmental issue all over the world. Programmatic Cleaner Development Mechanism (pCDM) which is one of the flexibility mechanisms of Kyoto protocol affiliated with United Nations Framework Convention on Climate Change (UNFCCC) facilitates industrialized countries to reduce their GHG emission through developing countries. Among the 15 categories of CDM project types, avoidance of methane emission of open dumps by adopting composting is an opportunity for Sri Lanka to claim carbon credits from industrialized countries. Application of pCDM for MSW composting is suitable for the Sri Lankan scenario because it can be applied for several clustered small scale composting activities as a single group.

The study aimed at finding the potential of GHG emission savings by MSW composting in 32 Local Authorities of the WP which are not currently practicing MSW composting in order to quantify the CER which can be claimed for that. It can be conclude that the required emission saving level can be fulfilled with regard to the Western Province where, annually 231 kt of GHG emission can be avoided by MSW composting.

Key words: CDM, pCDM, Climate change, Global warming, Green house gasses, Municipal solid waste, Compost