ECONOMICS OF RAINWATER HARVESTING IN SRI LANKA

Bø INDRASENA DISSANAYAKE

Thesis submitted to the University of Sri Jayawardenepura
for the awart of fithe degree off Doctor of Philosophy in
Environmental Economics

DECLARATION

I hereby certify that the work and analysis carried out by me and presented in this thesis is to the best of my knowledge and belief are original and my own work under the supervision of Dr. U.A.D.P. Gunawardena, Senior Lecturer, Department of Forestry and Environment Science of University of Sri Jayewardenepura and Prof. Ranjith Bandara, Chairman, Sri Lanka Foundation, Colombo 07 except as acknowledged in the text. The material has not previously been submitted, either in whole or in part for a degree at this University or any other institutions.

I. Dissanayake

30th June 2013

SUPERVISORS CERTIFICATION

We certify that the statement made by the candidate is true and the thesis is suitable for submission to the Faculty of Graduate Studies of the University of Sri Jayewardenepura for the Purpose of the award of the degree of Doctor of philosophy in Environmental Economics.

neon

Dr. U.D.A.P. Gunawardena

Senior Lecturer,

Department of Forestry and Environment Science,

Faculty of Applied Science,

University of Sri Jayewardenepura,

30th June 2013

Prof. Ranjith Bandara

Chairman,

Sri Lanka Foundation,

Colombo 07

30th June 2013

TABLE OF CONTENTS

			Page
Title	Page		
Decla	ration		
Super	visors Certification		
Table	of contents		i
List o	f Figures		vii
List o	f Tables		viii
List o	f boxes		xi
Abbre	eviations		xiii
Ackno	owledge		xv
Abstra	act		xix
CHA	PTER 1 – Introduction		01
1.	Introduction		01
1.1	Background of the study	- ₂₂	01
1.2	Problem statement		05
1.3	Rationale of the study		08
1.4	Specific and general objectives of the study		13
1.5	Rainwater harvesting potential		14
1.6	Scope and focus of the study		19
1.7	Contribution of this study	×	23
1.8	Structure of this thesis		24
1.9	Summary		28

CHAP	TER 2 - Conceptual framework and literature review	29
2.1	An overview of Rainwater and Rainwater harvesting with an analysis	
	of methods and quality of rainwater	30
2.1.1	Methods of collection of roof rainwater	31
2.1.2	The quality of harvested roof rainwater	32
2.2	Global water scarcity issues and rainwater harvesting practices	36
2.2.1	Global rainwater harvesting practices	39
2.3	Rainwater related studies and different types of valuation	40
2.3.1	A brief analysis of water related studies based on different types of valuation	on/
	assessment in Sri Lanka and other countries.	43
2.3.2	Rainwater harvesting valuation gaps	45
2.4	Concept of Market failure	47
2.5	The equivalent and compensating variation - The theory of Contingent	
	Valuation Method (CVM)	49
2.6	Water, both as marketable and non marketable commodity	53
2.7	The Total Economic Valuation concept	55
2.8	The Economic Valuation of water - Use of an economic tools for appraisal	
	and issues involving in Rainwater Harvesting -A review of available	
	techniques and their application	61
2.9	Brief review of economic valuation tools and techniques used for non	
	marketed commodities.	64
2.9.1	Hedonic price method (HPM)	65
2.10	Contingent Valuation Survey Method (CVM)	67
2.11	Cost Benefit Analysis (CBA) as a tool for economic appraisal -	
	A brief discussion	74
2.11.1	The CBA and process of its calculation	78

2.12	Economic instruments in relation to water and rainwater harvesting	86
2.13	Use of economic tools in policy decisions	90
2.14	Summary	90
СНАН	PTER 3 - Methodology	92
3.1	Contingent Valuation Method for economic assessment	92
3.2	Locations of study and sample selection	93
3.2.1	Sampling strategy	93
3.2.2	Urban sample	97
3.2.3	Rural sample	98
3.3	Designing of questionnaire and way of questions presented	101
3.4	Data collection procedure and method of survey	103
3.4.1	Rural and Urban Interview Schedule	103
3.4.2	Pilot test	104
3.4.3	Rainwater harvesting in large institutions	104
3.5	Analysis of factors related to Attitudes	104
3.6	Analysis of factors related to total economic value	105
3.6.1	Preparing data for the analysis and removing Outliers and protest bids	107
3.6.2	Estimation of Mean Willingness To Pay (MWTP)	107
3.6.3	Method of analyzing genuineness/Sincerity of WTP offer	108
3.6.4	Analysis of factors influencing for WTP- Statistical and	
	regression analysis	111
3.6.5	Validity testing	113
3.6.6	Analysis of biases	115
3.6.7	Extrapolation of sampling	117

3.8	Methodology for cost benefit analysis in relation to case study	119
3.8.1	Methodology of data collection	119
3.9	CBA of BMICH - necessary and essential considerations	121
3.10	Analysis of policy issues and integrated approach	122
3.11	Summary	123
CHAI	PTER 4 - Results and discussion	125
4.1	Socioeconomic and other characteristics of the study sites with special	
	emphasis on rain water harvesting	125
4.1.1	General characteristics, Climate, topography and Water availability	
	of the sample area	125
4.1.2	Specific socioeconomic and other characteristics that could influence	
	to rainwater harvesting	133
4.1.3	Harvested rainwater and health aspects	140
4.1.4	Summary	144
4.2	Urban and Rural Attitudes towards harvesting of rainwater	
	A comparative analysis	146
4.2.1	An analysis of attitudes of rural and urban samples	146
4.2.2	Influencing factors for the Attitudes towards Conservation,	
	Water resources, in general and RW harvesting in specific-Urban and	u u
	Rural responses Comparative analysis	148
4.2.3	Analysis of government interventions and perception on possible	
	contributors	162
4.2.4	Summary	166
4.3	Economic valuation of Rainwater harvesting (WTP analysis)	160

4.3.2	Willingness to pay (WTP) for rainwater- Estimation concept application -	
	detailed description of WTP model	175
4.3.3	Extrapolation of WTP values as to show how it generate the necessary	
	funding mechanism - Total WTP amount	192
4.3.4	Limitations confronted with this field survey and method of resolving	
	those problems	197
4.3.5	Summary	210
4.4	Possibilities of harvesting rainwater in urban centres/ institutions;	32
	An illustrative case study	213
4.4.1	Analysis of existing situation and pattern of water usage	214
4.4.2	Institutional attitudes and responses for RWH	221
4.4.3	Cost benefit analysis based on Potentialities for RWH for BMICH	224
4.4.4	Cost benefit analysis of Rainwater harvesting for BMICH	226
4.4.5	Replicability of RWH programmes for institutions	228
4.4.6	Summary	231
CHAP	TER 5 - Conclusion and policy implications	233
5. 1	Policy based approaches and strategies for rain water harvesting - global	
	perspective	234
5.1.1	Rainwater policy in Sri Lanka	238
5.2	The need for appropriate integration with other national policies	239
5.3	Limitation for development of rainwater harvesting activities in Sri Lanka	243
5.3.1	Disincentives created by government supply of water	243
5.3.2	Quality of rain water harvested	243

	5.3.3	Cost of rainwater harvesting systems and technological issues	244
	5.4	National level programme of rainwater harvesting for institutions	247
	5.4.1	Using economic instruments to promote RWH in larger institutions	248
	5.4.2	Policies, strategies and mechanism for development of RWH as a	
		National level integrated approach based action	249
	5.4.3	What is necessary for promotion and further development of	
		RW utilization?	254
	5.5	Using economic instruments based on estimated assessment of rainwater	254
	5.6	Suggestions for future actions and research on rainwater harvesting	256
	5.7	Brief review of results and concluding remarks	263
	List for	Figures	
	Figure 1	1 A generalized national water balance of Sri Lanka	10
	Figure 1	2 Mean Annual Rainfall	15
	Figure 1.	3 Sri Lanka agro ecological regions and rainfall expectancy	18
	Figure 2.	1 Effects of negative externality on allocative efficiency	49
	Figure 2.	2 a & b (a) the compensating variation of a price fall; (b) Marshallian	
		demands	50
	Figure 2.	3 Compensating variation (CV) and Equivalent variation (EV)	51
	Figure 2.	4 Direct and indirect use values of rainwater	58
	Figure 2.	5 Illustration of components of economic valuation techniques	63
	Figure 2.	6 Key Steps in Conducting a Contingent Valuation Study	69
	Figure 2.	7 The Distinction between 'Social' Net Benefit and 'Financial' Net Benefit	80
0	Figure 2.	8 Methodological Framework for Cost - benefit Analysis	81

	Figure 2.9	Market situations on hypothetical good X	83
	Figure 2.10	Water supply improvement benefits	84
	Figure 2.11	Gross Benefits of WSP	84
	Figure 3.1	Map showing Survey Sites	100
	Figure; 3.2	Dry and Wet - intermediate Zone (district) and the ecological	
		characteristics - map of Sri Lanka	118
	Figure 4.1.1	Socioeconomic parameters towards acceptability of rainwater	
		harvesting	134
	Figure 4.3.1	Hypothetical Change of Resources and adjusted WTP - Urban Area	185
	Figure 4.3.2	Hypothetical Change of Resources and adjusted WTPA-Rural Area	189
	Figure 5.1	Framework for integrated development of rainwater harvesting	240
	List of Tabl	es	
	Table 2.1	Physical and Bacteriological Quality of Rain water collected from	
		different tanks in Kurunegala District	35
	Table 2.2	Physical and Bacteriological Quality of Rain water collected from	
		different tanks in Puttalam District	35
•	Γable 2.3	Different types of assessments and water related studies in Sri Lanka	
		and other countries	43
•	Γable 2.4	Monetary measures for the price effect of price changes	52
-	Γable 2.5	Format for eliciting WTP values in CVM	68
•	Γable 2.6	Summary of water related Economic Studies mainly using Contingent	
		Valuation Models (CVM) and values achieved	72.

	Table 2.7	Summary of Cost Benefits based water resources studies	86
•	Γable 2.8	Types of Economic instruments and their advantages and disadvantage	es 87
	Γable 3.1	Basis for selection of samples Rural (Wet/Dry) and Urban	96
-	Γable 3.2	Dry and Wet District - Sri Lanka 119	
	Γable 4.1.1	Education level -Rural and Urban preference for RWH	127
	Table 4.1.2	Gender composition of the respondents level of education and RWH	
		preference	127
)	Table 4.1.3	House condition of rural and urban samples	129
7	Table 4.1.4	Socioeconomic condition of three locations. Levels of Income and	
		preference for rain water	130
Γ	able 4.1.5	The water shortage and time for fetching water RURAL, URBAN	135
Γ	able 4.1.6	The level of Influence of education RURAL and URBAN	137
Τ	able 4.1.7	Size of the home garden and agriculture practice -Rural and Urban	139
Τ	able 4.1.8	Prominent rural farming practices of the Rural samples	139
Τ	able 4.1.9	Prevalence of dental fluorosis in the Anuradhapura district	
		(Percentage from population)	142
T	able 4.1.10	Records of Water borne diseases Kandy and Anuradhapura	143
T	able 4.1.11	District - Anuradhapura (figures for the year 2005)	143
T	able 4.2.1	Variables included in the multivariate logit analysis of factors influencing	
		attitudes towards conservation and rainwater harvesting- Urban and Rural	148
T	able 4.2.2	Responses for statements in box 4.2.1 presented to respondents for the	
		direct-response to assess their opinion in general towards the	
		environmental conservation	150

Table 4.2.3	Responses for statements in box 4.2.2 presented to respondents for	
	assessing their opinion in particular towards the water resources	
	conservation	151
Table 4.2.4	Influencing factors for the attitudes towards water resources and RW	
	harvesting-Urban	152
Table 4.2.5	The factors influencing respondents' responses for the attitudes toward	ds
	water resources and RW harvesting-Urban - logit regression results	153
Table 4.2.6	influencing factors for the attitudes towards water resources and RW	
	harvesting- Rural	153
Table 4.2.7	The factors influencing respondents' responses for the attitudes	
	towards water resources and RW harvesting-Rural -	
* u	logit regression results	154
Table 4.2.8	Environmental awarenessRural /Urban	155
Table 4.2.9	Awareness of water issues - Rural/ Urban	156
Table 4.2.10	Attitudes and perceptions towards conservation of RW	159
Table 4.2.11	Response on government and international intervention	163
Table 4.2.12	People's perceptions about possible major contributors towards	
	RWH in future	164
Table 4.2.13	Respondents' ranking for other reasons in valuing rainwater	
	harvesting and water resources conservation aspects	165
Table: 4.3.1	Descriptive statistics of rainwater user willingness responses to	
	contingent valuation questions	169
Table 4.3.2	Percentage of respondents agreed to indicate WTP amounts	170
Table 4.3.3	MWTP and percentage of net monthly income levels	170

Table 4.3.4	Distribution of preferred methods of payment	
	(urban and rural samples)	172
Table 4.3.5	The factors influencing Willingness To Pay Amount (WTPA)	177
Table 4.3.6	Impacts on responses increasing resources level – Rural	180
Table 4.3.7	Impacts on responses decreasing resources level- Rural	181
Table 4.3.8	Decrease in natural resources and water resources level and its	
	impact on the response of the respondent's in urban areas	182
Table 4.3.9	Increase in natural resources and water resources level and its	
	impact on the response of the respondent's – urban	183
Table 4.3.10	Statistical model showing impact level on decreasing resources	
	levels -Urban Hypothesis change test stepwise multinomial	
	regression model	186
Table 4.3.11	Statistical models showing impact level on increasing resources	
	levels -Urban Hypothesis change test stepwise multinomial	
	regression model	187
Table 4.3.12	Statistical model showing impact level decreasing resources levels -	
	Rural stepwise multinomial regression model	190
Table 4.3.13	Statistical model showing impact level increasing resources levels -	
	Rural stepwise multinomial regression model	191
Table 4.3.14	WTP amounts extrapolating based on 2001 census population	
	distribution in dry, and wet urban/ rural areas	193
Table 4.3.15	WTP amounts extrapolating and amount of contribution	
	summarized version	194

Table 4.3.16	Selected contingent valuation studies of surface water quality in	
	developing countries and transitional economies	204
Table 4.4.1	Water usage at BMICH and SLIDA	217
Table 4.4.2	Potential for rainwater harvesting in BMICH	218
Table 4.4.3	Potential for rainwater harvesting in SLIDA	220
Table 4.4.4	Positive and negative comments gathered through case study	222
Table 4.4.5	Potential for rainwater harvesting for BMICH	225
Table 4.4.6	Sensitivity analysis	227
Table 5.1	Local and global legislative and policy based measures	234
Table 5.2	Peoples perception on policy issues based on policy document	241
Table: 5.3	Possible limitations in relation to Rainwater harvesting	246
Table 5.4	Responses on rainwater conservation and management	253
List of boxes		

Box 4.2.1	Statements presented to respondents for the direct-response to assess	
	their opinion in general towards the environmental conservation	149
Box 4.2.2	Statements presented to respondents for assessing their opinion in	
	particular towards the water resources conservation	150
Box 4.3.1	Variables included for analysis of the preliminary logistic model	191

References

Appendixes:

- 1. Interview schedule for the sample Survey/Urban & Rural
- 2. Collection of data from SLIDA and BMICH
- 3. Sri Lanka rainwater potential annual rain fall and rainy days
- 4. Rainwater harvesting policy options, strategies and benefits
- 5. Sample: collection of rain water based on roof size & rain fall
- 6. Estimated cost for construction of new sump for BMICH
- 7. Outline of inundation areas of CMC
- 8. National Water Policy and strategy for Sri Lanka
- 9. Cost benefit analysis of RWH system based on BMICH case study
- 10. Different rainwater harvesting practices in Sri Lanka

LIST OF ABBREVIATIONS

A/L General Certificate of Advance Level

ARR Accounting Rate of Return

BCR Benefit Cost Ratio

BFTA Benefit Transfer Approach

BMICH Bandaranayake Memorial International Conference Hall

BTM Benefit Transfer Method

CBA Cost Benefit Analysis

CBOs Community Based Organizations

CM Choice Model

CMC Colombo Municipal Council
CRM Contingent Ranking Method

CS Consumer Surplus

CV Contingent Valuation

CVM Contingent Valuation Method

CWSP Community Water Supply and Sanitation Project

DCS Department of Census and Statistics

EEZ Exclusive Economic Zone

EV Equivalent Variation

FAO Food and Agriculture Organization

GUF Grand Utility Frontier
HPM Hedonic Price Method
IRR Internal Rate of Return
IS Interview Schedule

IUCN World Conservation Union

MOFE Ministry of Forestry and Environment

MVSP Maximum Value of Social Product

MWTP Mean Willingness to Pay

NGOs Non Governmental Organizations

NOAA National Oceanic Atmospheric Administration - Contingent

Valuation Panel

NPV Net Present Value

NWHN National Water Harvesters Network

O/L General Certificate fo Advance Level

OECD Overseas Economic Commission for Development

OUSL Open University of Sri Lanka

RP Revealed Preference

RRWH Roof Rainwater Harvesting

RUM Random utility

RWH Rainwater Harvesting

RWHF Rainwater Harvesting Forum

SIC Social Indifference Curve

SLIDA Sri Lanka Institute of Development Administration

SODIS Solar Disinfection System

SOE State of Environment

SP Stated Preference

STPE Simple Transferring Point estimate Approach

TCM Travel cost Method

TEV Total Economic Value

TWDB Texas Water Development Board

UDA Urban Development Authority

UN United Nation

UNDP United Nation Development Programme
UNEP United Nation Environment Programme

USA United State of America

USAID United State of America programme for international Development

VCM Voluntary Contribution Mechanism
WAC Willingness to accept Compensation

WHO World Health Organization

WTAC Willingness To accept Compensation

WTP Willingness to Pay

WTPA Willingness to pay Amount

WWDR World Water Development Report

ACKNOWLEDGEMENT

This thesis would not have been completed without the help of a number of individuals. Firstly I would like to thank sincerely my principal supervisor, Dr. U.A.D.P. Gunawardena, Senior Lecturer, Forestry and Environmental Science, University of Sri Jayewardenepura for the invaluable intellectual advice, enthusiastic interest, encouragement and close supervision in bringing this thesis to completion. It has been great privilege to have her as my principal supervisor. Similarly, I also express my sincere thank to my associate supervisor, Professor Ranjith Bandara, Chairman, Sri Lanka Foundation of Colombo, for his kind support in reviewing of the text and developing models and statistical analysis, with dedication and unlimited encouragement given to me.

I would particularly like to acknowledge the assistance I received from two students of University of Colombo for the field work during the survey conducted by me in Kekirawa, Yatigammana and Colombo and suburbs. A great debt also owed to all staff members at the Faculty of Graduate Studies of University of Sri Jayewardenepura for their kind support extended during the last four years of my studies.

Special thanks to officials of Community Water Supply and Sanitation Project (CWSSP), National Water Supply and Drainage Board (NWS&DB), Colombo Municipal Council (CMC), Urban Development Authority (UDA), Central Environmental Authority (CEA), International Institute of Irrigation Management (IIMI), Bandaranayake International Memorial Conference Hall (BMICH), Sri Lanka Institute of Development Administration (SLIDA), Rainwater Harvesting Forum (RWHF), Distance Education Modernization Project (DEMP), Ministry of Higher Education for their wonderful assistance and corporation.

A special word of thanks goes to Mr. Chinthaka Shyamal, Assistant Custom Officer, Sri Lanka customs Department who helped me and coordinated many aspects of my works in the field and computerizing and other logistics including statistical analysis.

I would fail in my duty if I do not mention the support received from the respondents surveyed in rural and urban samples without whose generosity, the analysis undertaken in this thesis could not have possible. I am deeply indebted.

Also I am grateful and would like to extend my sincere gratitude to Ms. Ruki Salgado, Senior Lecturer, University of Colombo and Post Graduate Institute of Sri Jayewardenepura, Borella, who has taken great pain and devoted her valuable time in editing of this thesis. Also I would like to extend my sincere gratitude to Mr. Kilur M. Akram, the person who attended formatting and type setting. I appreciate his commitment and dedication.

I have been blessed with a most wonderful family who have nurtured and supported me. I am forever indebted to my family for the positive encouragement I received from my dearest wife, Chandrika and our son, Gajendra who had to bear patiently my heavy involvement and dedicated research and survey work where I should have been spending that time with them. I could not have made up my academic prospects this far without their love prayers and encouragement.

This dissertation is dedicated to my wife who passed away unfortunately and untimely, just before submission of my thesis to the Faculty of Graduate Studies. May she be with me through my all births in sansara and attain supreme bliss of Nibbana as quickly as possible.

ECONOMICS OF RAIN WATER HARVESTING IN SRI LANKA I. DISSANAYAKE

ABSTRACT

Although the roof rainwater collection has received considerable attention during the period of mid 1990s in some districts of Sri Lanka it has not lead to adequate development of harvesting practices. Even though Sri Lanka is not yet confronted with major water related conflicts, certain districts shows critical water issues which could lead to confrontations and conflicts in the near future. Benefits of conservation or wise use of roof rainwater are not usually captured through conventional markets because of the non availability of market prices for such benefits.

The main objective of the present study is therefore to outline economic reasons through comparative analysis of attitudes and perceptions for rainwater harvesting and to elicit the economic value of rain water harvesting within the total economic valuation framework. Additionally, the study aims at demonstrating roof rainwater harvesting potentials and economic viabilities for large institutions located in the wet zone through a case study.

Contingent valuation method was applied among the residents of the villages of 'Yatigammana' in Kandy and 'Kekirawa' in Anuradhapura Districts and in Urban Colombo and it's suburban areas. Logit regression models were developed to analyze the responses to identify the factors that influenced their responses and attitudes to the WTP elicitation questions.

The results indicate that there were three sets of mean willingness to pay (WTP) from the rural dry (Rs 59.06), rural wet (Rs 85.96) and Urban Rs 89.03 offered by the respondents. WTP amounts offered by the respondents expressed as a percentage equivalent of monthly income level were 0.98, 1.01 and 0.39 respectively. Aggregated WTP for the country was LKR 20,785,403,200 for a period of five years. The Rain water harvesting in Bandaranayake Memorial International Conference Hall (BMICH) was economically viable with a net present value of LKR 32,511,135. The sensitivity analysis further indicated the viability of the intervention.

The results of this study revealed that harvesting of rainwater is financially viable and socially beneficial in terms of health, labour time saving, improvement of social life etc.

The study also emphasized the possible support from both urban and rural people towards the proposed trust fund concept in generating the adequate financial contribution. However, government has to play an active role through technical assistance, information provision and further incentives in enhancing rainwater harvesting in Sri Lanka. The overall findings of this study could be used as a new approach for development of roof rainwater for wise use.