An investigation of palmyrah fruit pulp mediated inhibition of

intestinal glucose uptake and its toxicity

By

Deepthi Inoka Uluwaduge

PhD

2005

An investigation of palmyrah fruit pulp mediated inhibition of intestinal glucose uptake and its toxicity

By

Deepthi Inoka Uluwaduge

Thesis submitted to the University of Sri Jayewardenapura for the award of the Degree of Doctor of Philosophy in Biochemistry on 'An investigation of palmyrah fruit pulp_mediated inhibition of intestinal glucose uptake and its toxicity' on June 2005

DECLARATION BY CANDIDATE

The work described in this thesis, was carried out by me, under the supervision of Prof. E. R. Jansz (Dept. of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) and Prof. M. I. Thabrew (Dept. of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya) and a report on this has not been submitted in whole or in part to any University for another Degree/Diploma.

09 - 01 - 2006 Date

Signature of candidate

DECLARATION BY SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Prof. E. R. Jansz

P. J. Matsers Prot. M. I. Thabrew

TABLE OF CONTENTS

			Page No.
I. LI	ST OF TABLES	6	xii
II. LI	ST OF FIGURES		xv
III. LI	ST OF PLATES		xvii
IV. AI	BBREVIATIONS		xx
V. AC	CKNOWLEDGEMENTS		xxii
VI. AF	STRACT		xxv
1.	INTRODUCTION		01
1.1	General introduction		01
1.2	Justification and scope of the study		05
1.3	Objectives of the study		08
2. [·]	LITERATURE REVIEW		09
2.1	The palmyrah tree and its uses		09
	2.1.1 Non edible products		09
	2.1.1.1 Trunk/stem		09
	2.1.1.2 Petiole		10
	2.1.1.3 Sheath		10
	2.1.1.4 Stalk		10
	2.1.1.5 Leaf		10
	2.1.1.6 Seed		11
	2.1.1.7 Root		11

D.

I

	2.1.1.8 Seedling	13
	2.1.2 Edible products	13
	2.1.2.1 Sap based products	13
	2.1.2.2 Palmyrah tuber based products	17
	2.1.2.3 Fruit based products	20
2.2	Palmyrah fruit pulp (PFP) – Physical and chemical nature	21
2.3	Biomolecules of PFP	24
	2.3.1 Pectin and sugar	24
	2.3.2 Carotenoids	25
	2.3.3 Steroidal saponins	26
2.4	Flabelliferins	27
	2.4.1 Isolation	30
	2.4.2 Structural elucidation	34
·	2.4.2.1 The aglycogene	34
	2.4.2.2 Flabelliferin I (F-I)	34
	2.4.2.3 Flabelliferin II (F-II)	34
	2.4.2.4 Flabelliferin B (F _B)	35
	2.4.2.5 Flabelliferin C (F _c)	36
	2.4.2.6 Flabelliferin D (F _D)	37
	2.4.2.7 Flabelliferin N (F _N)	38
	2.4.2.8 Flabelliferin E (F _E)	38
	2.4.2.9 Flabelliferin F (F _F)	38
a	2.4.3 The UV active binder associated with PFP	38

II

	2.4.4	Bitter principles in PFP	39
	2.4.5	Debittering of PFP	39
	2.4.6	Bioactivity	40
		2.4.6.1 Saponin like properties	40
		(a) Foam stabilizing activity	40
		(b) Haemolytic activity	41
		2.4.6.2 Anti-microbial effects of PFP	41
		2.4.6.3 Hypocholesterolaemic effect of PFP	43
		2.4.6.4 Antioxidant activity of PFP	44
		2.4.6.5 Weight gain studies	44
2.5 To	oxic pro	operties of palmyrah flour	45
	2.5.1	Neurotoxicity	45
	2.5.2	Hepatotoxicity	47
	2.5.3	Immunotoxicity	48
	2.5.4	Other bioactivities caused by palmyrah flour	48
	2.5.5	Detoxification of palmyrah flour	49
2.6 Di	abetes	mellitus	50
	2.6.1	Diagnosis	50
12	2.6.2	Types of Diabetes mellitus	50
		2.6.2.1 Insulin dependent Diabetes mellitus (IDDM)	50
		2.6.2.2 Non-Insulin dependent Diabetes mellitus (NIDDM)	52
	2.6.3	Treatment of Diabetes mellitus	53
		2.6.3.1 Dietary control and physical exercise	53
•		2.6.3.2 Anti-diabetic drugs and the mechanism of action	54

2.7	Plant extracts with hypoglycaemic properties	57
	2.7.1 Sri Lankan plants used in the treatment of diabetes mellitus	57
	2.7.2 Active compounds which exert hypoglycaemic activity in	
	medicinal plants	68
	2.7.3 Modes of action of oral hypoglycaemic compounds isolated	
	from plants in Sri Lanka and other countries	68
2.8.	Na ⁺ /K ⁺ ATPase pump	72
	2.8.1 Mechanism of action	73
	2.8.2 Na^+/K^+ATP as dependent glucose transport system in the	
	intestinal cell	73
	2.8.3 Inhibitors of the pump (cardiac glycosides)	76
2.9	Use of animal models for bio activity – Important factors to be considered	77
	2.9.1 Formulation of animal diet	77
	2.9.2 Selection of animals	78
	2.9.3 Suitable experimental conditions	78
	2.9.4 Animals in toxicity studies	78
3. M	IATERIALS AND METHODS	81
3.1	Materials	81
	3.1.1 Water	81
	3.1.2 Chemicals	81
	3.1.3 Enzymes	81

	3.1.4	Animals	82
	3.1.5	Diabetic patients	82
3.2	Methods		83
	3.2.1	Collection of palmyrah fruits	83
	3.2.2	Extraction and storage of PFP	83
	3.2.3	Determination of the moisture content	85
		3.2.3.1 Dean and Stark method	85
		3.2.3.2 Air drying in an oven at 105°C	85
	3.2.4	Isolation of crude flabelliferins	85
	3.2.5	Techniques to separate flabelliferins	87
		3.2.5.1 Medium Pressure Liquid Chromatography (MPLC)	87
		3.2.5.2 Selective solvent extraction	91
		3.2.5.3 Monitoring of fractions	91
		3.2.5.4 Preparative TLC	93
		3.2.5.5 TLC-Densitometry	95
		3.2.5.6 Chromatotron	96
	3.2.6	Animal studies	98
		3.2.6.1 Housing of animals	98
		3.2.6.2 Compounding and pelleting of feed	98
		3.2.6.3 Sampling of blood	100
		3.2.6.4 Design and procedure of animal experiments	100
		3.2.6.5 Administration of extractives and glucose	100
÷		3.2.6.6 Glucose challenge	100

3.2.6.7 Dosage of flabelliferins	101
3.2.6.8 Determination of serum glucose	101
3.2.6.9 Determination of faecal sugar	102
3.2.6.10 Determination of faecal fat	106
3.2.6.11 Collection of intestinal samples and determination	
of glucose content in the intestinal wash	106
3.2.6.12 Anti-hyperglycaemic activity of PFP	107
3.2.6.13 Effect of 10% PFP containing feed on liver glycogen	
content of mice	109
3.2.6.14 Anti-hyperglycaemic activity of crude flabelliferins	
of PFP	110
3.2.6.15 Anti-hyperglycaemic activity of pure flabelliferins	
separated from crude flabelliferins	112
3.2.6.16 Effect of varying doses of F-II on blood glucose	
level and intestinal glucose content in mice after	
a glucose challenge	113
3.2.6.17 In vitro study of the effect of F-II on intestinal	
Na ⁺ /K ⁺ ATPase activity	113
3.2.6.18 Toxic effects of PFP	118
3.2.6.18. i Assessment of haematological parameters	118
3.2.6.18. ii Determination key hepatic enzymes	122
3.2.6.18. iii Serum creatinine levels	124
3.2.6.18. iv Determination of the approximate lethal dose	
of PFP	125

VI

	3.2.6.18. v	Short-term toxicity studie	es	126
	3.2.6.18. vi	Long-term toxicity studie	es	126
3.2.7 S	tudies with hu	iman diabetic subjects		128
3	3.2.7.1 Patient	selection		129
	3.2.7.2 Prepar	ation of pinattu		129
	3.2.7.3 Extrac	tion of fibre from PFP		129
	3.2.7.4 Detern	nination of reducing sugar	rs in pinattu and fibre	133
	3.2.7.5 Glucos	se challenge		133
3	.2.7.6 Admin	istration of pinattu		133
3	.2.7.7 Admin	istration of fibre		134
3.2.8 H	PLC studies of	on UV active carotenoids l	bound to F-II	134
3.2.9 C	omputational	evidence for relationship	of carbohydrate	
m	oiety of flat	pelliferins with phytofluen	e	134
3.2.10 S	tudies on poss	ible stoichiometry of F-II	and F_B with	
pl	nytofluene			135
3.2.11 A	ttempts to ass	ociate phytofluene and F-	II (<i>In-vitro</i> study)	135
3	.2.11.1 Separa	ation of free phytofluene		135
3	.2.11.2 Prepar	ring the column		136
3	.2.11.3 UV-sp	pectrum of F-II		136
1	3.2.11.4 React	ion of phytofluene and F-	п	136
3.2.12 St	atistical analy	sis	-	138

4.0 RESULTS		139
4.1 Moisture	e content and flabelliferin content of the PFP us	sed for the
major st	udy	139
4.1.1	Moisture content	139
4.1.2	flabelliferin content	139
4.2 Anti-hyp	perglycaemic effect of PFP on animal models	141
4.2.1	Effect of PFP (10%) incorporated feed pellets	on weight gain
	and fasting blood glucose concentration of rat	ts 141
4.2.2	Effect of PFP (10%) incorporated feed pellets	on weight
	Gain and fasting blood glucose concentration	of mice 143
4.2.3	Effect of PFP (10%) incorporated feed pellets	on post prandial
	blood glucose concentration (PPBS) and intest	tinal glucose
i i i i i i i i i i i i i i i i i i i	content in mice after a glucose challenge	143
4.2.4	Effect of PFP (10%) incorporated feed pellets	on faecal sugar
• 2	and faecal fat content after a glucose challenge	146
4.2.5	Effect of PFP (10%) incorporated feed pellets	on liver
	glycogen content of mice	146
4.3 Anti-hy	perglycaemic activity of mixed flabelliferins	148_
4.3.1	Effect of mixed flabelliferins associated with	the UV active
	binder on weight gain and fasting blood	
	glucose concentration of mice	148
4.3.2	Effect of mixed flabelliferins on faecal	
	sugar content	148

VIII

	4	.3.3	Effect of mixed flabelliferins on blood glucose concentration	on
			and intestinal glucose concentration after a glucose	
			challenge	150
	4	.3.4	Comparison of the anti- hyperglycaemic activities of mixed	d
			flabelliferins separated from the UV active impurity with	the
			mixed flabelliferins associated with the UV active	
			impurity	150
		4.3.4.	1 Effect on the post prandial blood glucose concentration	150
		4.3.4.2	2 Reduction in the intestinal glucose absorption	153
	4.4	Anti-	hyperglycaemic activity of individual flabelliferins	
		(F-II,	F_B , F_D/F_E) separated from the mixed flabelliferins	153
	4.4	4.1 Eff	ect of F-II, F_B , and F_D/F_E on blood glucose concentration	
		afte	er a glucose challenge	153
	4.4	4.2 Eff	ect of F-II on faecal sugar content –	153
3 * 9	4.4	4.3 Eff	ect of F-II, F_B , and F_D/F_E on intestinal glucose absorption	
		afte	r a glucose challenge	154
	4.5	Effect	of varying doses of pure F-II on blood glucose	
		levels	and intestinal glucose content after a glucose load	154
	4.6	Effect	of F-II (pure and with UV impurity) on Na^+/K^+ ATPase	
		activit	iy	157
	4.7	Invest	igations of toxic effects of PFP	160
	4.7	.1	Tests for LD ₅₀ of PFP	160
	4.7	2.2	Short term toxicity studies –feeding with 10% PFP	
			containing pellets	161

4.7.2.1 Effect on liver function as assessed by estimation of	
serum ALT, AST and ALP	161
4.7.2.2 Effect on serum creatinine levels	161
4.7.2.3 Effect on haematological parameters	161
4.7.3 Long term toxicity studies-feeding with 10% and 50% PFP	
containing pellets	164
4.7.3.1 Effect on liver function as assessed by estimation of	
serum ALT, AST and ALP	164
4.7.3.2 Effect on serum creatinine levels	164
4.7.3.3 Effect on haematological parameters	164
4.7.3.4 Effect on histopathology of liver, kidney and intestine	167
4.8 Studies with human diabetic subjects	172
4.8.1 Analysis of pinattu	172
4.8.1.1 Moisture content	172
4.8.1.2 Reducing sugar content	172
4.8.1.3 Flabelliferin profile	172
4.8.1.4 Fibre content of PFP	172
4.8.1.5 Reducing sugar content in crude fibre separated from	
PFP	173
4.8.2 Effect of pinattu and fibre (extracted from PFP) on glucose	
challenge in mild type-II diabetic patients	173
4.9 Quantification of F-II in different cultivars of PFP	178
4.10 Carotenoids of PFP	181
4.10.1 HPLC studies on carotenoid binder	

Х

4.10.2 Free carotenoids	182
4.11 Computational evidence for relationship of carbohydrate moiety of	
flabelliferins with phytofluene	182
4.11.1 Model diagrams for flabelliferin molecules	182
4.11.2 Heat of formation of flabelliferins with phytofluene	182
4.12 Studies on possible stoichiometry of F-II and F_B with phytofluene	188
4.13 Attempts to associate phytofluene with F-II (In-vitro study)	188
5. DISCUSSION	191
6. CONCLUSION	205
7. REFERENCES	206

APPENDIX

I. LIST OF TABLES

Table 1.1	Distribution of palmyrah trees in Sri Lanka	03
Table 2.1	Palmyrah fruit pulp composition	23
Table 2.2	The Flabilliferins of PFP	29
Table 2.3	Reference values of blood glucose concentration for the diagnosis	
	of diabetes mellitus and other catogories of hyperglycaemia	51
Table 2.4	Medicinal plants used in Sri Lanka for the control of diabetes	
	mellitus	58
Table 2.5	Classes of hypoglycaemic compounds identified from Sri Lankan	
	Medicinal plants	69
Table 2.6	Modes of action through which phytogenic compounds have been	
	shown to exert their hypoglycaemic effects	70
Table 2.7	Feed formula of WHO recommended rat and mice breeding feed	80
Table 3.1	Solvent gradient used to elute F- II	89
Table 3.2	Feed formula of the test feed based on the WHO recommended	
	rat /mouse breeding feed	99
Table 3.3	Concentration gradient of phosphate dilution series	115
Table 3.4	Reaction mixtures of F-II and phytofluene	137
Table 4.1	Food intake and weight gain of weanling rats fed on 10% PFP	
	incorporated feed pellets	142
Table 4.2	Fasting blood glucose concentration (mg/dl) of rats fed on 10% PF	Ρ
	incorporated feed	142

Page No.

Table 4.3	Mean food intake, mean weight gain and mean fasting blood gluc	ose
	concentration of mice fed on 10% PFP incorporated feed	144
Table 4.4	Effect of 10% PFP containing feed on intestinal and blood glucos	e
	concentration after a glucose challenge (1.5g/KgBW)	145
Table 4.5	Faecal sugar and faecal fat content of mice fed on 10% PFP conta	ining
	feed	147
Table 4.6	Effect of 10% PFP incorporated pellets on liver glycogen content	
	of mice (assessed in terms of glucose mg/g tissue)	147
Table 4.7	Average weight gain and mean fasting blood glucose concentration	on of
	mice after oral administration of mixed flabelliferins	149
Table 4.8	Effects of mixed flabelliferins containing UV binder on blood,	
	intestinal and faecal sugar content after a glucose challenge	151
Table 4.9	Effects of mixed flabelliferins with no UV binder on blood and in	testinal
	glucose concentration after a glucose challenge	152
Table 4.10	Effects of individual flabelliferins (with UV binder) on faecal, blo	od and
	intestinal sugar content after a glucose challenge	155
Table 4.11	Effect of pure F-II (0.25mg, 0.5mg, 0.75 mg/mouse) on blood glu	icose
	and intestinal glucose concentration after a glucose challenge	156
Table 4.12	Pecentage inhibition of Na^+/k^+ ATPase activity exerted by F-II (p	ure)
	and F-II (with UV impurity)	158
Table 4.13	IC_{50} values for F-II (pure and with UV compound)	158
Table 4.14	Serum levels of key hepatic enzymes and creatinine levels of mice	e fed
к.	with 10% PFP containing feed for 1 week	162

Table 4.15	Haematological parameters of mice fed with 10% PFP containing	
	feed for 1 week	163
Table 4.16	Serum levels of key hepatic enzymes and creatinine levels of mice	3
	fed with 10% or 50% PFP containing feed for 1 month	165
Table 4.17	Haematological parameters of mice fed with 10% or 50% PFP	
	containing feed for 1 month	166
Table 4.18	Mean reduction of post prandial blood glucose (PPBS) concentrat	ion
	of type-II mild diabetic patients after treatment with pinattu and f	ibre
		175
Table 4.19	Crude flabelliferin content and F-II content in 10 different cultiva	rs
	of PFP	180
Table 4.20	Calculated heats of formation values	187

II. LIST OF FIGURES

		Page No.
Figure 2.1	Proposed structure of the free steroid isolated by Jeyaratnam	28
Figure 2.2	Proposed structure of the aglycone isolated by Jeyaratnam	28
Figure 2.3	β- sitosterol	34
Figure 2.4	Probable sequence of the bitter flabeliferin.	34
Figure 2.5	Structure of F _B	36
Figure 2.6	Structure of F _C	37
Figure 2.7	Structure of F _D	37
Figure 2.8	Structure of F _N	38
Figure 2.9	Model of Na ⁺ /K ⁺ ATPase structure	74
Figure 2.10	Postulated mechanism of Na ⁺ and K ⁺ transport by the	
	Na ⁺ /K ⁺ ATPase pump	74
Figure 2.11	The transcellular movement of glucose in an intestinal cell	75
Figure 2.12	Chemical structure of Oubain	76
Figure 3.1	D.Waldi's scheme	94
Figure 3.2	Calculation of R _f value	94
Figure 3.3	Standard curve for glucose estimation by DNS method	105
Figure 3.4	Standard curve for P _i determination	116
Figure 4.1	A densitogram showing the flabelliferin profile of the PFP used	
	for the major study	140
Figure 4.2	Percentage inhibitions of Na ⁺ /K ⁺ ATPase activity vs. flabelliferin	
	concentration	159

XV

Figure 4.3	Reduction of post prandial blood glucose concentration	
	(PPBS) mediated by pinattu or fibre with respect to control	
	PPBS value in individual patient (n=20)	176
Figure 4.4	Percentage reduction of post prandial blood glucose concentration	ı
	(PPBS) after treatment of type-II mild diabetic patients with	
	pinattu (n=20)	177
Figure 4.5	Percentage reduction of post prandial blood glucose concentration	1
	(PPBS) after treatment of same patients with fibre isolate (2 nd co	ntrol)
	which was equivalent to fibre content of 6g of pinattu (n=20)	177
Figure 4.6	HPLC chart record for the UV compound at 280 nm	183
Figure 4.7	HPLC chart record for the UV compound at 330 nm	183
Figure 4.8	Model diagram of F-II	185
Figure 4.9	Model diagram of F _B	185
Figure 4.10	Model diagram of F _D	186
Figure 4.11	Model diagram of F _E	186
Figure 4.12	Peak area at 280 nm (UV binder) vs. peak area at 500nm (F-II)	189
Figure 4.13	Peak area at 280 nm (UV binder) vs. peak area at 500nm (F_B)	189
Figure 4.14	UV spectrum of phytofluene	190

III. LIST OF PLATES

Plate 1.1	A juvenile palmyrah tree	6
Plate 1.2	A palmyrah groove	6
Plate 1.3	A mature female inflorescence	7
Plate 1.4	A ripe palmyrah fruit	7
Plate 2.1	Rafters from the palmyrah trunk	12
Plate 2.2	Some ornamental products from palmyrah leaf	12
Plate 2.3	Fencing with palmyrah leaves	12
Plate 3.1	A photograph of ICR mice used for the experiments	84
Plate 3.2	Palmyrah fruit pulp enmeshed in fibre	84
Plate 3.3	Extracted palmyrah fruit pulp	84
Plate 3.4	A photograph of a cellulose column	97
Plate 3.5	MPLC apparatus	97
Plate 3.6	The chromatotron	97
Plate 3.7	Manually prepared pellets for the animal studies	132
Plate 3.6	Pinattu, a popular sweet-meat among North – East people	
	of Sri-Lanka	132
Plate 3.7	Fibre extracted from PFP, for the study	132
Plate 4.1a	A photomicrograph of liver of control mouse	
	Haematoxylin –eosin ×100	169

Page No.

XVII

Plate 4.1b	A photomicrograph of liver of mouse after 30 days	
	of pellet feed (10%PFP substitution) showing	
	no signs of histopathological lesions.	
	Haematoxylin –Eosin ×100	169
Plate 4.2a	A photomicrograph of liver of control mouse.	
	Haematoxylin – Eosin ×100	169
Plate 4.2b	A photomicrograph of liver of mouse after 30 days	
	of pellet feed (50%PFP substitution) showing	
	no signs of histopathological lesions.	
	Haematoxylin – Eosin ×100	170
Plate 4.3a	A photomicrograph of kidney of control mouse.	
	Haematoxylin –Eosin ×100	170
Plate 4.3b	A photomicrograph of kidney of mouse after 30 days	
	of pellet feed (10%PFP substitution) showing	
	no signs of histopathological lesions.	
	Haematoxylin – Eosin × 100	170
Plate 4.4a	A photomicrographof kidney of control mouse.	
	Haematoxylin –eosin ×100 –	170
Plate 4.4b	A photomicrograph of kidney of mouse after 30 days	
	of pellet feed (50%PFP substitution) showing	
	no signs of histopathological lesions.	
	Haematoxylin – Eosin × 100	170
Plate 4.5a	A photomicrograph of intestine of control mouse.	
•	Haematoxylin –Eosin ×100	171

XVIII

Plate 4.5b	A photomicrograph of intestine of mouse after 30 days	
	of pellet feed (10%PFP substitution) showing	
	no signs of histopathological lesions.	
	Haematoxylin –Eosin ×100	171
Plate 4.6a	A photomicrograph of intestine of control mouse.	
	Haematoxylin – Eosin ×100	171
Plate 4.6b	A photomicrograph of intestine of mouse after 30 days	
	of pellet feed (50%PFP substitution) showing	
	no signs of histopathological lesions.	
	Haematoxylin –Eosin ×100	171
Plate 4.7	A photograph of a TLC plate showing major	
	flabelliferins (F_B and F-II) of 10 different cultivars	
	(obtained from different geographical locations),	
	after spraying with anisaldehyde	179
Plate 4.8	A photograph of a TLC plate showing eluents collected	
	correspond to the relative retention time, after	
ж.,	spraying with anisaldehyde	184

ABBREVIATIONS

ALP	Alkaline phosphatase
ALT	Alanine transaminase
AOAC	Association of Official Analytical Chemists
AST	Aspartate transaminase
ATP	Adenosine triphosphate
BAW	n- butanol : glacial acetic acid : water
BEN	n- butanol : ethanol : ammonia
DM	Diabetes mellitus
FAB/MS	Fast Atom Bombardment- Mass spectrometry
FBS	Fasting blood sugar
F-I	Flabelliferin tetraglucoside
F-II	Bitter flabelliferin tetraglycoside
F _B	Anti bacterial flabelliferin triglycoside
F _C	Inactive flabelliferin triglycoside
F _D	Inactive flabelliferin diglycoside
F _E	New flabelliferin
F _F	New flabelliferin
F _M	New flabelliferin
F _N	New flabelliferin
γ - GT	Gamma glutamyl transpeptidase
GC	Gas Chromatography
Glc	Glucose
Hb	Haemoglobin concentration
H and E	Haematoxylin and eosin
HPLC	High Performance Liquid Chromatography
IDDM	Insulin dependent diabetes mellitus
MPLC	Medium pressure Liquid Chromatography
MW	Molecular Weight
NIDDM	Non insulin dependent diabetes mellitus
PCV	Packed Cell Volume

PFP	Palmyrah fruit pulp
PPBS -	Post prandial blood sugar
¹ H-NMR	Proton Nuclear Magnetic Resonance Spectrometry
RBC	Red blood cell count
Rha	Rhamnose
TLC	Thin Layer Chromatography
WBC	White blood cell count

ACKNOWLEDGEMENTS

I take this opportunity to express my heartiest gratitude to my supervisors Prof. M.I. Thabrew, Senior Professor, Dept. of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Ragama and Prof. E.R. Jansz, Senior Professor and Head of the Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenapura, Nugegoda for their valuable guidance and encouragement and moral support throughout the doctoral programme.

Their never tiring supervision, constructive criticism and valuable suggestions had been a great inspiration enabling me to successfully complete this work throughout many hardships. Dear Madam and Sir it is indeed an honour to be your student, thank you again.

Financial assistance given by NSF/M/02, NSM/M/04 and IPICS: SRI: 07 grants are greatly acknowledged.

I am very thankful to the vice chancellor of University of Kelaniya, Dean of the Faculty of Medicine, University of Kelaniya, former and present Heads of the Dept. of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya for granting me study leave to complete this study.

I am grateful to all the academic staff members of the Dept. of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya for sharing my academic work during my study leave period.

My sincere gratitude goes to Dr. (Mrs.) M.S.A. Perera, Kumari and the other members of the Family Practice Centre, Faculty of Medical Sciences for the kind assistance during the clinical trials. I am grateful to Dr. P.Jayaweera of the Dept. of Chemistry, University of Sri Jayewardenapura for the guidance and supervision in the Molecular Modeling studies. My thanks are due to Dr. (Mrs.) S. Yasawardene and Kumudu, Dept. of Anatomy, Faculty of Medical Sciences, University of Sri Jayewardenapura for their support in preparation of tissue sections for histopathological studies.

I extended my warmest gratitude to Dr. (Mrs.) Kamani Fernando and Sujeewa, Dept. of Pathology, Faculty of Medical Sciences, University of Sri Jayewardenapura for their support and guidance in examining tissue sections and Haematological studies.

I am grateful to all the academic staff members of the Dept. of Biochemistry, Faculty of Medicine, University of Sri Jayewardenapura for their numerous support.

I am pleased to acknowledge my research colleagues Dr. Rasika Perera, Buddhika Shiromi, Sevvandi and my senior colleague J.K. Nikawala for their support.

Dear Keerthi and Gayathri 'thank you very much' for the all round support given to me during my hardships.

My thanks are due to Dr. (Mrs) Jayasekera and Dr. (Miss) M. Thammitiyagoda (Animal Section, Medical Research Institute, Colombo) for their support in animal studies.

My sincere gratitude goes to the staff members of the ITI, Colombo for the kind help in preparation of pinattu and allowing me to use Dual wave length flying spot scanning densitometer.

I am pleased to acknowledge the contribution of staff of the Biochemistry laboratory (Faculty of Medical Sciences, University of Sri Jayewardenapura), Research laboratory (Faculty of Applied Sciences, University of Sri Jayewardenapura) and the Animal House (Faculty of Medical Sciences, University of Sri Jayewardenapura) for their willing assistance.

XXIII

I am thankful to Dr. Nanaja, Dr. Dulani and the staff of the Computer Centre, Faculty of Medicine, and University of Kelaniya for their help during the preparation of the manuscript.

Finally I would like to express my indebtness to my husband and two kids for their sacrifices, understanding, love and support throughout this study. Special thanks are due to my parents and brothers for their boundless faith and love extended to me in achieving my goals.

An investigation of palmyrah fruit pulp mediated inhibition of intestinal glucose uptake and its toxicity

Deepthi Inoka Uluwaduge

ABSTRACT

Reduced weight gain by Institute of Cancer Research (ICR) mice had been previously reported after feeding 10% palmyrah (*Borassus flabellifer*) fruit pulp (PFP) containing feed. In those studies F-II, a steroidal tetraglycoside of β -sitosterol (MW, 1030) was strongly implicated as the active principle. The objective of this study was to confirm the above, its effect on glucose uptake and determine the mechanism of action and some of the factors affecting this effect.

The study has provided evidence that confirms the weight reducing property of PFP and also demonstrated its ability to inhibit intestinal glucose uptake in mice. Studies showed that feeding of PFP had no effect on fasting blood sugar levels of mice (p=0.64) but significantly reduced the liver glycogen content of test mice (p<0.01, 11%). A mixture of flabelliferins (dose: 10mg/50g mouse) extracted by the methods described previously on administration to mice after a glucose challenge resulted in a decline in serum glucose levels (p<0.001, 43%), increased intestinal glucose levels ($p<10^{-10}$, 83%) and increased faecal glucose levels (p<0.01, 29%). On isolating F-II and other flabelliferins (F_B , F_D/F_E) it was found that only F-II has the ability to lower serum glucose (p<0.001, 43%) and increase intestinal glucose (p<0.001, 50%). This effect was shown at a dose of 1mg F-II/50g mouse. The findings of the mice study were supported by evidence from a study conducted with mild diabetic type-II patients. In the human study it was decided to use pinattu, a dried PFP which can be classified as fruit leather. The dose of 6g of pinattu (30 mg F-II) was calculated on the basis of IC₅₀

studies and mean human body weight. When pinattu was given to mild, type-II diabetic patients who are not under any therapeutic regimen there was a reduction of 24-48% serum glucose after a glucose challenge (post prandial) when compared with their control (post prandial) values. It has also been shown that the inhibition of intestinal glucose uptake by PFP is mediated mainly by F-II and not by the fibre it contains. A fibre control used in the human study showed that a small part of this is due to fibres (2-11% reduction in serum glucose level) present in PFP.

It has been known for some time that all flabelliferins are bound by a UV active binder. The present study revealed that this binder was comprised of a major carotenoid component identified as phytofluene and a minor component phytoene. Removal of the binder increased the efficiency with which F-II inhibited intestinal glucose uptake even when the dose was reduced to 2 mg mixed flabelliferin/50g mouse.

Inhibition of Na^+/K^+ ATPase activity was found to be a mechanism by which F-II mediates its inhibitory action on intestinal glucose uptake (the IC₅₀ values were

 9×10^{-5} M and 5×10^{-5} M with and without UV binder respectively). Computational studies showed that the lowering of the inhibition by the binder was probably due to the distortion of the carbohydrate moiety of the F-II, which is strongly connected to the activity the molecule. The beneficial effects of any pharmaceutical agent depend on it being non toxic. Results showed that feeding 10% PFP containing feed for one week (short term) or feeding 10% and 50% PFP containing feed for 30 days (long term) did not show any increase in the levels of key hepatic enzymes *viz*; alkaline phosphatase, alanine transaminase and aspartate transaminase in the test group when compared with that of the controls. Haematological parameters tested (haemoglobin level, packed cell volume, red cell count and white cell count) were not significantly different in the test

and control groups. Creatinine levels in the test and control groups were not significantly different from each other indicating no renal damage. Microscopic examination of liver, kidney and intestine of test group did not show any pathological changes when compared to those in the control group.

From the overall results it may be concluded that PFP possibly has an application in treating type –II diabetics most probably those that are obese. However the dosage of PFP pinattu must be closely monitored as different PFPs contain different amount of F-II.