Habitat Use by Large Mammalian Herbivores

in Udawalawe, Wasgomuwa and Bundala

National Parks in Sri Lanka

By

Udathanne Kudabalahela Lakshman Peiris

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Doctor of Philosophy in Food Science and Technology on 2008

The work described in this thesis was carried out by me under the supervision of Prof. Arthur Bamunuarachchi and Dr. U. K. G. K. Padmalal and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree.

U. K. Lakshman Peiris

Candidate

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Signature

Name

Date

Signature: Licar Padmeld

Name

: Dr. U. K. G. K Padmalal

Date

: 17-03-2009

Table of contents

1. INTRODUCTION	1
2. LITERATURE REVIEW	5
2.1. Large Mammalian Herbivores	5
2.1.1. Elephant	5
2.1.2. Spotted deer	6
2.2.3. Sambar	8
2.1.4. Buffalo	9
2.2. Climatic zones of Sri Lanka	11
2.3. Protected areas of Sri Lanka	13
2.4. Habitat types	17
2.5. Seasonal changes of habitats	18
2.6. Food habits of herbivores	19
3. STUDY AREA	22
3.1. Udawalawe National Park	23
3.2. Wasgomuwa National Park	27
3.3. Bundala National Park	31
4. METHODOLOGY	35
4.1. Habitat types	35
4.2. Population and the habitat use by large herbivores	36
4.2.1. Population and the distribution of large herbivores	36
4.2.2. Habitat use of large herbivores	36
4.2.3. Ecological and crude densities of large herbivores	37
4.3. Fodder plants	38
\mathbf{i}	

4.4. Feeding intensities and abundance of fodder plants	38
4.4.1. Feeding intensities	38
4.4.2. Abundance of food trees	39
4.4.3. Abundance of fodder shrubs	41
4.4.4. Abundance of fodder grasses	41
4.5. Food habits of large herbivores	43
4.6. Nutrition of fodder plants	44
5. RESULTS AND DISCUSSIONS	45
5.1. Habitat types	45
5.2. Population and habitats use of large herbivores	46
5.2.1. Population and the distribution of large herbivores	46
5.2.1.1. Elephant	46
5.2.1.2. Spotted Deer	56
5.2.1.3. Buffalo	66
5.2.2. Habitats by large herbivores	57
5.2.2.1. Elephant	76
5.2.2.2. Spotted deer	79
5.2.2.3. Sambar	82
5.2.2.4. Buffalo	85
5.2.3. Discussion	88
5.3. Fodder plants	94
5.4. Feeding intensities and abundance of fodder plants	96
5.4.1. Feeding intensities	96
5.4.2. Abundance of fodder trees	99

5.4.3. Abundance of fodder shrubs	100
5.4.4. Abundance of fodder grasses	101
5.4.5. Discussion	105
5.5. Food habits of large herbivores	109
5.5.1. Elephant	109
5.5.2. Spotted Deer	115
5.5.3. Sambar	121
5.5.4. Buffalo	127
5.5.5. Discussion	133
5.6. Nutritional qualities of fodder plants	135
5.6.1. Discussion	159
6. CONCLUSION	162
REFERENCES	

List of tables

Table 2.1	The extent of designated areas administered by the Department of	
	forest and the Department of Wildlife Conservation	14
Table 3.1	The different Environmental Conditions of the	
	year at Udawalawe National Park	26
Table 3.2	The different Environmental Conditions of the	
	year at Wasgomuwa National Park	30
Table 3.3	The different Environmental Conditions of the	
	year at Bundala National Park	34
Table 5.1	The extent and the type of habitats in	
	Udawalawe, Wasgomuwa and Bundala National Parks	45
Table 5.2	The total population, ecological and crude densities	
	of elephants in Udawalawe National Park	47
Table 5.3.	The total population, ecological and crude	
	densities of elephant in Wasgomuwa National Park	50
Table 5.4.	The total population, ecological and crude	
	densities of elephants in Bundala National Park	54
Table 5.5.	The total population, ecological and crude	
	densities of spotted deer in Udawalawe National Park	57
Table 5.6.	Total population, ecological and crude densities of spotted deer in	
	Wasgomuwa National Park	61
Table 5.7.	The total population, ecological and crude	
	densities of spotted deer in Bundala National Park	64

Table 5.8.	The total population, ecological and crude	
	densities of buffalo in Udawalawe National Park	67
Table 5.9.	The total population, ecological and crude	
	densities in Wasgomuwa National Park	70
Table 5.10.	The total population, ecological and crude	
	densities of buffalo in Bundala National Park	73
Table 5.11.	The presence of fodder plants at Udawalawe,	
	Wasgomuwa and Bundala National Parks	94
Table 5.12.	The feeding Intensities of fodder plants at Udawalawe,	
	Wasgomuwa and Bundala National Parks	97
Table 5.13.	The abundance of fodder trees under different	
	environmental conditions	99
Table 5.14.	The abundance of fodder shrubs under different	
	environmental conditions	100
Table 5.15.	The abundance of fodder grasses under different	
	environmental conditions at Udawalawe National Park	102
Table 5.16.	The abundance of fodder grasses under different	
	environmental conditions at Wasgomuwa National Park	103
Table 5.17.	The abundance of fodder grasses under different	
	environmental conditions at Bundala National Park	103
Table 5.18.	The composition of elephant dung at Udawalawe National Park	109
Table 5.19.	The percentage of plant parts in elephant dung at	
	Udawalawe National Park	110
Table 5.20.	The composition of elephant dung at Wasgomuwa National Park 111	

Table 5.21.	The percentage of plant parts in elephant dung at	
	Wasgomuwa National Park	112
Table 5.22.	The composition of elephants dung at Bundala National Park	113
Table 5.23.	The percentage of plant parts in elephant dung at	
	Bundala National Park	114
Table 5.24.	The composition of spotted deer pellets at	
	Udawalawe National Park	115
Table 5.25.	The percentage of plant parts in spotted deer pellets at	
	Udawalawe National Park	116
Table 5.26.	The composition of spotted deer pellets at	
	Wasgomuwa National Park	117
Table 5.27.	The percentage of plant parts in spotted deer	
	pellets at Wasgomuwa National Park	118
Table 5.28.	The composition of spotted deer pellets at	
	Bundala National Park	119
Table 5.29.	The Percentage of plant parts in spotted deer	
	pellets at Bundala National Park	120
Table 5.30.	The composition of sambar pellets at	
	Udawalawe National Park	121
Table 5.31.	The percentage of plant parts in sambar pellets at	
	Udawalawe National Park	122
Table 5.32.	The composition of sambar pellets at Wasgomuwa National Park	123
Table 5.33.	The percentage of plant parts in sambar	
	pellets at Wasgomuwa National Park	124

Table 5.34.	The composition of sambar pellets at Bundala National Park	125
Table 5.35.	The percentage of plant parts in samber pellets at	
	Bundala National Park	126
Table 5.36.	The composition of buffalo dung at Udawalawe National Park	127
Table 5.37.	The percentage of plant parts in buffalo dung at	
	Udawalawe National Park	128
Table 5.38.	The composition of buffalo dung at Wasgomuwa National Park	129
Table 5.39.	The Percentage of plant parts in buffalo dung at	
	Wasgomuwa National Park	130
Table 5.40.	The composition of buffalo dung at Bundala National Park	131
Table 5.41.	The Percentage of plant parts in buffalo dung at	
	Bundala National Park	132
Table 5.42.	The percentages of nitrogen, fiber and water present in edible parts fodder	
	plants under the different environmental conditions	136

List of figures

Figure 2.1.	Asian elephant (Elephas maximus maximus)	06
Figure 2.2.	Ceylon Spotted Deer (Axis axis ceylonensis)	07
Figure 2.3.	Sambar (Cervus unicolor unicolor)	09
Figure 2.4.	Buffalo (Bubalus bubalis bubalis)	10
Figure 2.5.	Ecological Zones of Sri Lanka	12
Figure 2.6.	Protected areas of Sri Lanka (Department of Foresst)	15
Figure 2.7.	Protected areas of Sri Lanka (Department of Wildlife Conservation)	16
Figure 3.1.	Location of the study areas in relation in different	
	bio climatic zones of Sri Lanka	22
Figure 3.2.	The habitat types of Udawalawe National Park	24
Figure 3.3.	The habitat types at Udawalawe National Park area shown by satellite	25
Figure 3.4.	Monthly average rain fall at Udawalawe National Park	26
Figure 3.5.	Habitat types of Wasgomuwa National Park	28
Figure 3.6.	Habitat types at Wasgomuwa National Park area shown by satellite	29
Figure 3.7.	Monthly average rain fall at Wasgomuwa National Park	30
Figure 3.8.	Habitat types of Bundala National Park	32
Figure 3.9.	Habitat types at Bundala National Park area shown by satellite	33
Figure 3.10.	Monthly average rain fall at Bundala National Park	34
Figure 5.1.	Distribution of elephants at Udawalawe	
	National Park in wet environmental condition	48
Figure 5.2.	Distribution of elephants at Udawalawe	

	National Park in dry environmental condition	48
Figure 5.3.	Distribution of elephants at Udawalawe	
	National Park in extreme dry environmental condition	49
Figure 5.4.	Distribution of elephants at Wasgomuwa	
	National Park in wet environmental condition	51
Figure 5.5.	Distribution of elephants at Wasgomuwa	
	National Park in dry environmental condition	52
Figure 5.6.	Distribution of elephants at Wasgomuwa	
	National Park in extreme dry environmental condition	52
Figure 5.7.	Distribution of elephants at Bundala	
	National Park in wet environmental condition	55
Figure 5.8.	Distribution of elephants at Bundala	
	National Park in dry environmental condition	55
Figure 5.9.	Distribution of elephants at Bundala	
	National Park in extreme dry environmental condition	56
Figure 5.10.	Distribution of spotted deer at Udawalawe	
	National Park in wet environmental condition	58
Figure 5.11.	Distribution of spotted deer at Udawalawe	
	National Park in dry environmental condition	59
Figure 5.12.	Distribution of spotted deer at Udawalawe	
	National Park in extreme dry environmental condition	59
Figure 5.13.	Distribution of spotted deer at Wasgomuwa	
	National Park in wet environmental condition	62

Figure 5.14.	Distribution of spotted deer at Wasgomuwa	
	National Park in dry environmental condition	62
Figure 5.15.	Distribution of spotted deer at Wasgomuwa	
	National Park in extreme dry environmental condition	63
Figure 5.16.	Distribution of spotted deer at Bundala	
	National Park in wet environmental condition	65
Figure 5.17.	Distribution of spotted deer at Bundala	
	National Park in dry environmental condition	65
Figure 5.18.	Distribution of spotted deer at Bundala	
	National Park in extreme dry condition	66
Figure 5.19.	Distribution of buffalos at Udawalawe	
	National Park in wet environmental condition	68
Figure 5.20.	Distribution of buffalos at Udawalawe	
	National Park in dry environmental condition	68
Figure 5.21.	Distribution of buffalos at Udawalawe	
	National Park in extreme dry environmental condition	69
Figure 5.22.	Distribution of buffalo at Wasgomuwa	
	National Park in wet environmental condition	71
Figure 5.23.	Distribution of buffalo at Wasgomuwa	
	National Park in dry environmental condition	71
Figure 5.24.	Distribution of buffalo at Wasgomuwa	
	National Park in extreme dry environmental condition	72
Figure 5.25.	Distribution of buffalo at Bundala	
	National Park in wet environmental condition	74

Figure 5.26.	Distribution of buffalo at Bundala	
	National Park in dry environmental condition	74
Figure 5.27.	Distribution of buffalo at Bundala	
	National Park in extreme dry environmental condition	75
Figure 5.28.	Density of elephant dung in grasslands habitat	76
Figure 5.29.	Density of elephant dung in scrublands habitat	77
Figure 5.30.	Density of elephant dung in forestlands habitat	78
Figure 5.31.	Density of spotted deer pellets in grasslands habitat	79
Figure 5.32.	Density of spotted deer pellets in scrublands habitat	80
Figure 5.33.	Spotted Deer distribution in forestlands at	
	different environmental conditions	81
Figure 5.34.	Density of sambar pellets in grasslands habitat	82
Figure 5.35.	Density of sambar pellets in scrublands habitat	83
Figure 5.36.	Density of somber pellets in forestland habitat	84
Figure 5.37.	Density of buffalo dung in grassland habitat	85
Figure 5.38.	Density of buffalo dung in scrublands habitat	86
Figure 5.39.	Density of buffalo dung in forestland habitat	87

Acknowledgement

First and foremost I wish to thank Prof. Arthur Bamunuarachchi, Department of Food Science and technology, University of Sri Jayawardenapura and Dr. U. K. G. K. Padmalal, Head of the Environmental Studies Unit, Department of Zoology, Open University of Sri Lanka for supervising the work and for their constant encouragement and support throughout the project.

I gratefully appreciate Mr Ananda Wijesooriya Director General, Mr. Dayananda Kariyawasam and Mr. A. P. A. Gunasekara Former Director Generals who granted permission me to carry out this study and their encouragement given throughout the study.

My special thanks go to Mr. H. D. Rathnayaka, Director (Operation) and Mr. S.R.B.Dissanayake (Deputy Director Research and Training) Department of wildlife conservation, and all the officials of the department of Wildlife Conservation who assisted me in all the ways to fulfill the task.

Special thanks should also go to Mr. Lalith Senevirathna who helped me in obtaining facilities and encouraging me to carry out the study

Habitat use by Large Mammalian Herbivores in Udawalawe, Wasgomuwa and Bundala National Parks in Sri Lanka

U. K. Lakshman Peiris

ABSTRACT

Understanding of habitat quality and habitat relations of herbivores within protected areas are vital to draw up long term conservation strategies and to establish management plans for protected areas. Therefore this study was undertaken to identify Habitat use by Large Mammalian Herbivores in Udawalawe, Wasgomuwa and Bundala National Parks with the objectives of studying the distribution of herbivores in different habitats, their habitat relations and the quality of the habitat they live in different environmental conditions during the period from October 1999 to September 2004.

The forestland, scrublands and the grasslands were the main habitat types that were recognized in these protected areas using habitat maps and confirming them with the ground surveys. The environmental conditions were categorized using meteorological data available at the Department of Meteorology. Three distinct environmental conditions i.e wet, dry and extreme dry were recognized.

The distribution of herbivores in different habitats during different environmental conditions was assessed by using King Census technique. The habitat utilization patterns were assessed by using dung and pellets counts method. The fodder plants and food preferences were identified by direct observation and the feeding signs left by the herbivores, respectively. The parts of the different fodder plants were analyzed to determine the amount of nitrogen, fiber and the availability of water as food quality under the different environmental conditions. The samples were collected

during every environmental condition in all three protected areas under the study. The fecal samples were analyzed to determine the food habits of herbivores.

The highest and the lowest populations of elephant at Udawalawe National Park (UNP) were 361±81 and 104±48 during wet and extreme dry conditions respectively. In Wasgomuwa National park (WNP) the values were 201±71 and 30±28 and in Bundala National park (BNP) the values were 63±11 and 3±2 respectively. The highest population of spotted deer in UNP, WNP and BNP were 563±161, 363±169 and 126±23 respectively and the lowest populations recorded were 311±95, 298±176 and 41±28. The highest population of buffaloes in UNP, WNP and BNP were 7450±1890, 516±171 & 1630±615 and the lowest populations were 5306±2006, 301±90 and 760±306 respectively. The habitat use of herbivores indicated that the elephant prefers scrublands and grasslands and the spotted deer prefers the grassland, the sambar prefers the scrublands while the buffalo prefers grassland. The amounts of different plant parts present in the fecal matter of herbivores confirmed the distribution pattern of herbivores.

The distribution and habitat use by herbivores were strongly co-related with the environmental changes and the availability of food plants. The availability of food in different habitats directly depends on the environmental conditions. It was also observed that the presence of water in the soil was crucial in maintaining a quality habitat. The spotted deer and the sambar prefer mosaic type of habitats. Therefore establishing mosaic type habitats can be recommended. The existing grasslands should be maintained as such by removing of unpalatable perennials with continuous monitoring. Domestic buffalos have been identified as competitors with their counterparts in the wild for foraging. It is recommended to remove or control the buffalo population through implementing a suitable strategy. Further studies on other habitat components are vital to establish appropriate management interventions for long term conservation of healthy animal populations in the wild.