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Investigation of electron transport in nanostructured semiconductor 

heterojunctions by using dye-sensitized solid-state solar cells 

Pitigala Kankanamage Don Duleepa Padmal Pitigala 

FUMSFINEW 

In this study an attempt has been made to understand the electron transport phenomenon 

in nanostructure heterojunctions with a view to solve the problems related to 

recombination and the narrow spectral response of dye sensitized solid state solar cells. 

It has been reported in literature that attempts to broaden the spectral response by using 

multiple dyes have resulting in decreasing photocurrent due to concentration quenching 

and sub monolayer chelation. However it was revealed that if the two dyes are bonding 

ionically together with each other, it gives better spectral response and a higher 

photocurrent. Two such double dye systems are discussed in this work. The 

Mercurochrome-Methyl violet system shows a spectral response from about 500nm to 

650nm, with a 4.6 rnAcm 2  photocurrent density. The Bromopyrogallol red-1R786 

system shows a spectral response extended to infrared region in addition to the increase 

in the photocurrent. The rectification characteristic curves of these systems also show 

suppression of the recombination too. 
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It was also investigated the possibility of using dye-semiconductor multilayers for this 

purpose and found to yield reasonably acceptable results. It was found that the two dyes 

Fast green and Acridine yellow when used in the multistructure give an efficiency of 

1 .67% which is significantly higher than there individual efficiencies. The problem 

arises when the system extended to more than two dyes is also studied. 

Application of a barrier to recombination too is an effective methodology to enhance the 

performance of a solar cell. The polymer polythiocyanogen is found highly stable and 

resistant to heat and chemical action. A barrier for recombination is constructed by 

depositing polythiocyanogen in the heterojunction to study the performance. The 

polymer polythiocyanogen also acts as the sensitizer of the solar cell. 

Conductivity of the p-type semiconductor in the solid state dye sensitized solar cell is 

also important to its performance. Copper (I) thiocyanate is an important p-type 

semiconductor satisfying the high band-gap requirements of the above solar cells. 

However the conductivity of this material is not sufficiently high. The conductivity of 

solid CuSCN was altered by exposing it to halogen gases and SCN ions in Cd 4. The 

latter method is found more suitable for doping of CuSCN films in the heterojunction of 

dye-sensitized solid-state solar cells. A photocurrent of 9.0 mAcm 2  was achieved by 

doping CuSCN with SCN ions and it is more than 300% increase in the photocurrent. 
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