Investigation of Electron Transport in Nanostructured Semiconductor Heterojunctions by Using Dye-Sensitized Solid-State Solar Cells

by

Pitigala Kankanamage Don Duleepa Padmal Pitigala

Thesis submitted to the University of Sri Jayawardanapura for the award of the Degree of Master of Philosophy in Physics on 2006

DECLARATION

The work described in this thesis was carried out by me under the supervision of Prof. K Tennakone and Prof. D. A. Tantrigoda and a report on thesis has not been submitted in whole or in part of any university or any other institution for another Degree/Diploma.

De_____

Signature of the candidate

23/07/2007

Date

I/We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the for the purpose of evaluation

(Signature)

23/07/2007 (Date)

Prof. K. Tennakone

Institute of Fundamental Studies,

Hantana Road,

Kandy, Sri Lanka.

.....

(Signature)

25.07.2007

(Date)

Prof. D. A. Tantrigoda

Department of Physics,

University of Sri Jayawardanapura,

Nugegoda, Sri Lanka.

DEDICATION

ТО

MY FATHER

MY MOTHER

AND

MY WIFE

CONTENTS

DECLER	ATION	1	
DEDICA	TION		
i			i
LIST OF	FIGUR	ES & TABLES	vi
ACNOW	LAGEN	/ENT	xv
ABBRIV	ATION	S	xvii
ABSTRA	CT		xix
CHAPTE	R 1		1-34
Introducti	on		1
1.1	Electr	on behavior in a crystal structure	1
	1.1 .1	Formation of covalent bonds	2
	1.1.2	Formation of metallic bonds	2
	1.1 .3	Formation of energy bands in a crystal	3
1.2	Condu	actors semiconductors and nonconductors	4
1.3	Charg	e carriers in a semiconductors	5
1.4	Fermi	-Dirac distribution function	9
	1.4 .1	Fermi Energy (W _F)	9
1.5	Deger	neration of semiconductors	11
1.6	Juncti	ons in a solids	12
	1.6 .1	Metal-metal junction	13
	1.6 .2	Metal-semiconductor junctions	14
	1.6 .3	Semiconductor-semiconductor junctions (p-n junctions)	17

	1.7	Crysta	allinity in semiconductors	18
	1.8	Semic	conductor-light interaction	19
	1.9	Photo	voltaic cells	20
		1.9 .1	Metal-Schottky junction solar cells	21
		1.9 .2	Semiconductor-electrolyte junction solar cells.	21
	1.10	Dye s	ensitized solar cells	23
		1.10 .1	Electron transport in DS Solid-State Solar Cell	23
		1.10 .2	Properties of n-TiO ₂	26
		1.10.3	p-type semiconductors.	27
	1.11	Theor	ies equations related to solar cell devises.	28
		1.11 .1	Basic equations of device physics	29
		1.11 .2	Application of basic equations to homojunction	
			solar sells.	30
		1.11.3	Alternation of the device physics derivations for	
			Dye sensitized systems (heterojunctions)	31
CI	HAPTE	R 2		25 50
	Ema			33-32
	Experi	imental	and Characterization Methodology	35
	2.1	Metho	odology	35
		2.1 .1	Preparation of conducting glass to deposition	
			nanocrystaline TiO ₂ films	35
		2.1 .2	Preparation of TiO ₂ colloid for compact TiO ₂ Films	36
		2.1 .3	Preparation of CuI powder and CuSCN powder	36
			2.1.3.1 Preparation of CuI powder	36

			2.1.3.2 Preparation of CuSCN powder	37
		2.1 .4	CuSCN and CuI deposition technique	37
			2.1.4.1 Deposition of CuSCN Films	37
			2.1.4.2 Deposition of CuI Films	37
		2.1 .5	Dyes and Dye Solutions	38
		2.1 .6	Coating a monolayer of dye on the semiconductor surface	38
2	2.2	Fabric	ation of Dye sensitized solid state solar cell	39
2	2.3	Measu	rements and calculations	40
		2.3 .1	IV characteristics	41
		2.3 .2	Photocurrent action spectra and IPCE	45
		2.3 .3	Fluorescence	46
		2.3.4	Mott-Schottky Plot	47
		2.3 .5	Dark IV plots (Rectification cuves)	48
CHAPTER 3 53-7				53-75
Electron transport in heterojunctions with two dyes 53			53	
3	8.1	Introdu	action	53
3	3.2	Experi	mental	55
3	3.3	Results	s and Discussion	58
3	3.4	Conclu	ision	74
CHAPTER 4 76-94			76-94	
Electron transport in a dye-semiconductor multilayed -				
	sen	nicondu	actor nanostructures	76

	4.1	Introduction	76
	4.2	Experimental	78
	4.3	Results and Discussion	80
	4.4	Conclusion	93
CI	HAPTE	R 5	95-108
El	ectron c	onduction in a nanostructure based on extremely thin -	
	ab	sorbat layer of polythiocyanogen.	95
	5.1	Introduction	95
	5.2	Experimental	96
	5.3	Results and Discussion	98
	5.4	Conclusion	108
CHAPTER 6			109-120
St	rategy t	o enhancing the electron transport properties of CuSCN	109
	6.1	Introduction	109
	6.2	Experimental	110
	6.3	Results and Discussion	112
	6.4	Conclusion	120
CHAPTER 7 121-			121-123
The addressable arias in future 121			121

REFERENCES

124-131

APPENDICES 1

132-134

LIST OF FIGURES and TABLES

Figure

Page No

Figure 1.1	Plot of inter atomic energy vs atomic spacing. W ₀ -bonding	
	energy and r_0 is the separation of two atoms.	1
Figure 1.2	Illustration of energy band formation with the increment of	
	number of atoms	3
Figure 1.3	Illustration of Energy bands in a metal, semiconductor and an	
	insulator.	4
Figure 1.4	Illustration of the electron-hole mobility (intrinsic conduction)	
	in a semiconductor (a) in a crystal lattice structure (b) in	
	energy band structure.	6
Figure 1.5	Illustration of the Si lattice and energy band diagram doped	
	with (a) Group III (Boron) and (b) Group V (Phosphorus)	
	Atoms.	8
Figure 1.6	Fermi-Dirac function at absolute zero temperature (T=0K)	
	and at higher temperatures (T>0K).	10
Figure 1.7	Energy diagrams of Degenerated p-type and n-type	
	semiconductor.	11
Figure 1.8	Energy band diagrams of two metals (a) before and (b) after	
	contact with each other	13
Figure 1.9	Band diagram of n-type semiconductor-metal junction where	
	(a) $\Phi_{\rm m} < \Phi_{\rm s}$ and (b) $\Phi_{\rm m} > \Phi_{\rm s.}$	15
Figure 1.10	Band diagram of p-type semiconductor-metal junction where	

	(a) $\Phi_{\rm m} > \Phi_{\rm s}$ and (b) $\Phi_{\rm m} < \Phi_{\rm s}$.	16
Figure 1.11	Energy band diagram of a p-n junction.	18
Figure 1.12	A schematic diagram of a photo electrochemical solar cell	
	(PEC).	22
Figure 1.13	An energy band diagram of the DSS Solar Cell.	25
Figure 1.14	Illustration of recombination paths in a dye sensitized Solar	
	Cell. (a) Recombination of CB electron with hole in the VB	
	(b) Recombination pf CB electron with dye cation	25
Figure 2.1	Schematic diagram illustrating the cross section of a dye	
	sensitized photovoltaic cell of heterostructure configuration of	
	n-type semiconductor / Dye / p-type semiconductor.	40
Figure 2.2.	(a) Illustration of schematic diagram of the IV setup and (b)	
	A diagram of a Basic IV setup	42
Figure 2.3	illustration of a typical IV curve with maximum power point	
	marked on it.	43
Figure 2.4	Figure illustrating the angel of the sun for different AM	
	conditions.	44
Figure 2.5	Action spectra and IPCE curve of a DSSC with a double dye	
	system.	45
Figure 2.6	Illustration of excitation of electrons by absorbing photons and	
	emmision of radiation due to diexcitation.	47
Figure 2.7	Mott-Schotky plot of (a) p-type semiconductor (b) n-type	
	semiconductor	48
Figure 2.8	Illustration of band bending when the semiconductor	

	electrode is biased different voltages	50
Figure 2.9	Illustration of a Mott-Schottky setup	51
Figure 2.10	Dark I-V (rectification) characteristic curve	52
Figure 3.1	Schematic diagrams showing the construction of the cell	
	$TiO_2/D_1-D_2/CuSCN.$	57
Figure 3.2	(I) I-V characteristics of (a) $TiO_2/MV/CuSCN$ (b) TiO_2/TA -	
	MV/CuSCN and (II) Photocurrent action spectra of (a)	

59

62

64

Figure 3.3 Schematic diagrams illustrating possible configurations of double-dye solid-state solar cells, (I) homogenously mixed thick layer two dyes (II) a monolayer consisting of two non-interacting dye molecules coupled to n and p-type semiconductors (III) dye layer consisting of two electronically coupled dye molecules bonded on opposites sides to n and p-type semiconductors (circles indicate two types of dye molecules).

TiO₂/MV/CuSCN (b) TiO₂/TA-MV/CuSCN

- Figure 3.4 Schematic energy level diagram indicating the relative positions of conduction bands (CB) and valence bands (VB) of TiO₂ and CuSCN and ground and excited levels of the D₁ and D₂ (a) charge transfer on excitation of D₁ (b) charge transfer on excitation of D₂.
- Figure 3.5 Photocurrent action spectrum of (a) TiO₂/MC-MV/CuSCN (b)TiO₂/MC/CuSCN (c) TiO₂/MV/CuSCN 68

- Figure 3.6 Photocurrent action spectrum of the cells (a) TiO₂/BR/CuSCN 69 (b) TiO₂/BR-IR786/CuSCN.
- Figure 3.7 Structural unit in the double dye system n-type semiconductor/ D_1-D_2/p -type semiconductor (B = bridge connecting the 71 chromophores).
- Figure 3.8 Schematic diagram indicating possible intermediate stages of charge injection to n-type (boxes on right) and p- type (boxes on left) semiconductors when dye molecules D1 (circles on left) and D_2 (circles on right) are excited (a) excitation of D_1 followed by electron transfer between two dye molecules and subsequent electron injection of n-type material and holes to the p-type material. (Similar steps occur when D2 gets excited) (b) Possible electron transfer schemes when carrier injection to the semiconductor is the initial step.
- Figure 3.9 Rectification curves of the cells with dyes (a) MV (b) MC (c) MC-MV
- Figure 4.1 Diagram illustrating the construction of the photovoltaic cell of heterostructure configuration (a) $TiO_2/D_1/CuSCN/D_2/$ CuSCN (b) $TiO_2/D_1/CuSCN/D_2/CuSCN/D_3/CuSCN$.
- I-V characteristics of the cells, [a] $TiO_2/D_1/CuSCN$ [b] Figure 4.2 TiO₂/CuSCN/D₂/CuSCN [c] TiO₂/D₁/CuSCNS/D₂/CuSCNS, where D_1 = Fast Green, D_2 = Acridine Yellow. 82
- Photocurrent action spectra of the cells [a] TiO₂/D₁/CuSCN Figure 4.3 [b] TiO₂/CuSCN/D₂/CuSCN [c] TiO₂/D₁/CuSCN/D₂/CuCNS 83

72

73

Figure 4.4 Energy level diagram showing the band structure in $TiO_2/CuSCN/D/CuSCN$, ground (S^o) and excited (S*) levels of the dye D and the modes of electron-hole transfer when the dye is photo-excited.

85

86

89

98

99

- Figure 4.5 Energy level diagram showing the band structure in $TiO_2/D_1/CuSCN/D_2/CuSCN$, the positions of the ground (S^o₁, S^o₂) and excited (S^{*}₁, S^{*}₂) levels of the two dyes (D₁, D₂). The dyes D₁ (FG) and D₂ (AY) anchored to TiO₂ and CuSCN respectively
- Figure 4.6 (i) Absorption spectrum of aqueous solutions of (a) D₃ =
 Acridine Yellow (b) D₂= Rhodamine 6G (c) D₁= Fast Green;
 (ii) Photocurrent action spectrum of the cell
 TiO₂/D₁/CuSCN/D₂/CuSCN/D₃/ CuSCN.
- Figure 4.7 An energy level diagram showing the conduction and valence band edges of TiO₂ and CuSCN and the ground (S_1^0, S_2^0, S_3^0) and excited (S_1^*, S_2^*, S_3^*) levels of the dyes D₁, D₂, D₃. (D₁= Fast Green, D₂ = Rhodamine 6G, D₃ = Acridine Yellow). 90
- Figure 4.8 I-V characteristics of the 3-dye cell $TiO_2 / D_1 / CuSCN/D_2 / CuSCN/D_3 / p-CuSCN.$ 92
- Figure 5.1 Schematic diagram of the Construction of the photovoltaic cell with (SCN)_n layer.
- Figure 5.2 FT-IR spectrum of the polythiocyanogen scraped off from a film deposited on conducting tin oxide glass (T=Transmittance).

X

Figure 5.3	The Mott-Schottky plot for a film of polythiocyanogen	
	deposited on conducting glass. Measurement frequency:	
	(a)1.5kHz, (b) 1.0 kHz.	101
Figure 5.4	Absorption spectrum of a polythiocyanogen film and	
	photocurrent action spectrum of the cell $TiO_2/[SCN]_n/CuI$	102
Figure 5.5.1	SEM picture of bare conducting tin oxide glass surface	103
Figure 5.5.2	SEM picture of polythiocyanogen deposited on conducting tin	
	oxide glass surface.	103
Figure 5.5.3	SEM picture of bare nanocrystalline TiO ₂ film	104
Figure 5.5.4	SEM picture of polythiocyanogen deposited on a	
	nanocrystalline film of TiO ₂ .	104
Figure 5.6	I-V characteristics of the cell $TiO_2/[SCN]_n/CuI$ measured at	
	1000 Wm ⁻² , 1.5AM illumination.	105
Figure 5.7	Schematic energy level diagram of conduction and valance	
	band positions of TiO_2 , $[SCN]_n$ and CuI.	106
Figure 5.8	Dark IV (rectification curve) for the cell $TiO_2/[SCN]_n/CuI$	107
Figure 6.1	Graph of Time variation of the sheet resistance of the CuSCN	
	films when they are inserted into a N2 atmosphere containing	
	(a) Cl_2 (b) Br_2 (c) I_2	113
Figure 6.2	Graph of Change in sheet resistance of the CuSCN films doped	
	with (a) I_2 (b) Br_2 (c) Cl_2 when kept in a N_2 atmosphere	115
Figure 6.3	Fluorescence spectrum of (a) CuSCN film on glass (b)	
	CuSCN film on glass exposed to Cl ₂ . Inset: Energy level	
	representation of the (SCN) ₂ impurity level in CuSCN.	116

xi

- Figure 6.4 I-V characteristic of the cell TiO₂/Ru-dye/ CuSCN (a) before exposure to (SCN)₂ solution in CCl₄. (b) after exposure to (SCN)₂ solution in CCl₄.
- Figure 6.5 Mott-Schottky plots of a CuSCN film on CTO glass (a) before exposure to (SCN)₂ solution (b) after exposure to (SCN)₂ solution. 119

Schemes

Page No

- Scheme 3.1 Anchoring of the sodium salt of trihydoxybenzoic acid to TiO₂ and attachment of methyl violet cation by replacement of Na+ 59
 Scheme 3.2 The mode of anchoring of mercurochrome to TiO₂ and attachment of methyl violet cation by replacement of Na⁺. 65
 Scheme 3.3 The mode of anchoring of bromopyrogallol red to TiO₂ and
 - attachment of IR 786 cation by replacement of Na^+ . 66

Tables

Page No

60

Table 3.1 Short-circuit photocurrent (Isc), open-circuit voltage (Voc), efficiency (η), fill-factor (FF) and peak (620 nm) incident photon to photocurrent conversion efficiency (IPCE) of TiO₂/MV/CuSCN and TiO₂/TA-MV/CuSCN

- Table 3.2 Incident photon to photocurrent conversion efficiencies
 (IPCEs) of the cells (1) TiO₂/ MC-MV/ CuSCN (2) TiO₂/
 MC/ CuSCN (3) TiO₂/ MV/ CuSCN at peak absorption 67 wavelengths of the two dyes.
- Table 3.3 Incident photon to photocurrent conversion efficiencies (IPCEs) of the cells (1) TiO₂/ BR-IR786/ CuSCN (2) TiO₂/ BR/ CuSCN (3) TiO₂/ IR786/ CuSCN at peak absorption 68 wavelengths of the two dyes.
- Table 3.4 Open-Circuit Voltage (V_{oc}), Short-Circuit Photocurrant (I_{sc}),
 Fill factor (FF) and Energy conversion efficiencie (η) of the
 cells (1) TiO₂/ MC- MV/ CuSCN (2) TiO₂/ MC/ CuSCN (3)
 TiO₂/ MV/ CuSCN (4) TiO₂/ BR- IR786/ CuSCN (5) TiO₂/ 70
 BR/ CuSCN (6) TiO₂/ IR786/ CuSCN.
- Table 4.1Short circuit photocurrent (I_{sc}), open-circuit voltage (V_{oc}), FillFactor (FF) and efficiency (η) of photovoltaic cells of81different configurations
- Table 4.2 Incident photon to photocurrent conversion efficiencies
 (IPCEs) of different heterostructure configurations at the peak
 absorption wavelengths of the two dyes D₁ (FG, 650nm) and 83
 D₂ (AY, 470 nm).
- Table 4.3Short-circuit photocurrents (Isc), open-circuit voltages (Voc)and efficiencies of dye-sensitized solid-state photovoltaic cellsof different configurations (D_1 = Fast Green, D_2 = Rhodamine936G, D_3 = Acridine Yellow).

xiii

Table 6.1 The short-circuit photocurrent (Isc), open-circuit voltage (Voc), efficiency (η), and fill factor (FF) of the cells TiO₂/Dye/CuSCN before and after SCN doping of CuSCN 118 film.

ACKNOWLEDGMENTS

I wish express my most sincere thanks and gratitude to my supervisor, Prof. K. Tennakone; the project leader of the Condensed Matter Physics Project and the Director of Institute of Fundamental Studies, Kandy, for his guidance, valuable advice, encouragement and emotional support given to me throughout my research period.

I wish to convey my appreciation and thanks to my supervisor Prof. D. A. Tantrigoda, Professor of Physics, Department of Physics, University of Sri Jayawardanapura, for the guidance and advice given to me during the period of the study.

I whish to convey my grateful thanks to Dr. V. P. S Perera, Visiting Scientist, Institute of Fundamental Studies, Kandy and Senior Lecturer, Open University of Sri Lanka, Nawala, and he is also my colleague in early period of my work; for his guidance and encouragement given to me. Also I wish to thank Dr. Perera especially for proof reading and valuable advice.

I whish to express my appreciations to Dr. P. M. Sirimanna, Project Leader of the Nano Science Project, Institute of Fundamental Studies, Kandy, for his help and kind advise given to me in the latter period. My grateful thanks are also due to Dr. G. R. A. Kumara, and Dr. I. R. M. Kottegoda for helping me to obtain the SEM pictures and FTIR measurements of my samples.

I am also very much grateful to my colleagues Ms. M. K. I. Senevirathna and Mr. E. V. A. Premalal, Research Assistants of the Condensed Matter Physics project, Institute of Fundamental Studies, Kandy, for their continues support paid on me in writing the thesis. Also I wish to convey my thanks to former research assistants Mr. P. V. V. Jayaweera and Ms. K. M. P. Bandaranayaka for the support given to me in the initial period of my work.

I would like to convey my thanks Mr. W.G. Jayasekara, the laboratory technician of the condensed matter physics project for the help given to me in varies ways in completion of this thesis. Also I wish to thank all the other research and nonresearch staff members of the I. F. S. for there intentional or unintentional support given to me in completion of my work.

ABBREVIATIONS

AY	- Acradin Yellow
AM	-Atmospheric mass
BR	-Bromopyrogaloll Red Dye
CB	-Conduction Band
Cu	-Copper
DS	-Dye Sensitized
DSPEC	-Dye sensitized photo electro chemical solar cell
DSSSC	-Dye sensitized solid state cell
D	-Diffusion coefficient / Dye molecule
Di	-Ground state or ground state energy level dye molecules of the i^{th} dye
	layer
D _i *	-Exited state or exited state energy level dye molecules of the i th dye
	layer.
e	-electron
FF	-Fill Factor
FG	-Fast Green
Ge	-Germanium
h	-hole
i.e.	-That is
K.E	-Kinetic energy
CuI	-Copper Iodide.
CuSCN	-Copper thiocyanate

CuSCN	-Thick layer of p-type semiconductor Copper thiocyanate
CuSCN	-Thin layer of p-type semiconductor Copper thiocyanate
MC	-Mercurochrome dye
MV	-Methyl Violet dye
P.E	-Potential energy
S	-Sulpher
SC	-Solar Cell
SCE	-Standard Calomel Electrode
CSN	-thiosyanate ion
S ⁰	-Ground State Energy
S*	-Exited State Energy
Si	-Silicon
TiO ₂	-Titanium Dioxide
τ	-recombination time
VB	-Valence Band
W	-work
wt	-weight

Investigation of electron transport in nanostructured semiconductor heterojunctions by using dye-sensitized solid-state solar cells

Pitigala Kankanamage Don Duleepa Padmal Pitigala

ABSTRACT

In this study an attempt has been made to understand the electron transport phenomenon in nanostructure heterojunctions with a view to solve the problems related to recombination and the narrow spectral response of dye sensitized solid state solar cells.

It has been reported in literature that attempts to broaden the spectral response by using multiple dyes have resulting in decreasing photocurrent due to concentration quenching and sub monolayer chelation. However it was revealed that if the two dyes are bonding ionically together with each other, it gives better spectral response and a higher photocurrent. Two such double dye systems are discussed in this work. The Mercurochrome-Methyl violet system shows a spectral response from about 500nm to 650nm, with a 4.6 mAcm⁻² photocurrent density. The Bromopyrogallol red-IR786 system shows a spectral response extended to infrared region in addition to the increase in the photocurrent. The rectification characteristic curves of these systems also show suppression of the recombination too.

It was also investigated the possibility of using dye-semiconductor multilayers for this purpose and found to yield reasonably acceptable results. It was found that the two dyes Fast green and Acridine yellow when used in the multistructure give an efficiency of 1.67% which is significantly higher than there individual efficiencies. The problem arises when the system extended to more than two dyes is also studied.

Application of a barrier to recombination too is an effective methodology to enhance the performance of a solar cell. The polymer polythiocyanogen is found highly stable and resistant to heat and chemical action. A barrier for recombination is constructed by depositing polythiocyanogen in the heterojunction to study the performance. The polymer polythiocyanogen also acts as the sensitizer of the solar cell.

Conductivity of the p-type semiconductor in the solid state dye sensitized solar cell is also important to its performance. Copper (I) thiocyanate is an important p-type semiconductor satisfying the high band-gap requirements of the above solar cells. However the conductivity of this material is not sufficiently high. The conductivity of solid CuSCN was altered by exposing it to halogen gases and SCN⁻ ions in CCl₄. The latter method is found more suitable for doping of CuSCN films in the heterojunction of dye-sensitized solid-state solar cells. A photocurrent of 9.0 mAcm⁻² was achieved by doping CuSCN with SCN⁻ ions and it is more than 300% increase in the photocurrent.