COMPARATIVE STUDY OF MICROHABITAT UTILIZATION BY SEEDLINGS OF CANOPY DOMINANT TREE SPECIES IN TROPICAL RAIN FORESTS OF SRI LANKA

BY

RANASINGHE DISANAYAKALAGE SHERLY SHELTON RANATHUNGA

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Forestry on Tropical Forest Ecology.

"We certify that the candidate has incorporated all corrections, additions and amendments recommended by the examiners".

Internal Supervisor

Signature: BW/894

External supervisor Signature:

Prof. P.M.S Ashton

Professor of Silviculture and Forest Ecology,

School of Forestry and Environmental Studies,

'Yale University,

360, Prospect Street,

New Haven, CT 06511,

USA.

Date: 15 M August 2014

DECLARATION

The work describe in this thesis was carried out by me under supervision of Prof. B.M.P Singhakumara and Prof. P.M.S. Ashton and a report on this has not been submitted in whole prin part to any University for another degree.

R.D.S.S. Ranathunga

B.Sc. Special (Forestry and Environmental Science)

15th August 2014

Date

We certify that the above statement made by the candidate is true and this thesis is suitable for submission to the university for the purpose of evaluation.

Internal supervisor

Signature: BMP.8RLY

Prof. B.M.P Singhakumara,

Professor of Forestry & Environmental Science,

Department of Forestry and Environmental Science,

University of Sri Jayewardenepura,

Gangodawila, Nugegoda,

Sri Lanka.

Date: 13 Sept 2013

External supervisor

Signature:

Prof. P.M.S Ashton

Professor of Silviculture and Forest Ecology,

School of Forestry and Environmental Studies,

"Yale University,

360, prospect Street,

New Haven, CT 06511,

USA. Date: August 202013

TABLE OF CONTENTS

TABLE O	FCONTENTS	i
LIST OF TABLES		iv
LIST OF FIGURES		vii
LIST OF	PLATES	x
ACKNOW	VLEDGEMENT	xi
ABBREV	IATIONS	xii
DEDICAT	TION	xiii
ABSTRAG	CT	xiv
CHAPTE	R 1: INTRODUCTION	01
1.1	General Introduction	02
	R 02: LITERATURE REVIEW	10
	variation in light availability, seedling growth, seedling mortality	10
	vory in tropical lowland rain forests	
2.1	Tree fall gaps in tropical forest	11
	2.1.1 Gap formation and gap characteristics	11
	2.1.2 Gaps maintain species diversity in forests	12
2.2	Light environments in tropical forests	12
	2.2.1 Light quality and quantity	12
	2.2.2 Whole-plant light requirements	13
	2.2.3 Light environments and seedling growth	14
2.3	Height increment of seedlings indicates competition for light	16
2.4	Interactions among species distribution and topographic gradients	17
2.5	Seedling mortality	18
	2.5.1 Reasons for seedling mortality in tropical forests	18
	2.5.2 Drought effects to seedling mortality	20
	2.5.3 Seedling mortality in different topographic positions	21
2.6	Herbivory	22
	2.6.3 The interaction of seedling community with herbivores	22
	2.6.2 The effects of the light environment on herbivory	23
	2.6.1 Herbivory along a forest elevation gradient	25
CHAPTE	R 03: LITERATURE REVIEW	
Foliar mo	rphological and physiological plasticity along a natural light	26
gradient		
3.1	Introduction	27
	3.1.1 Sun and shade leaves	28
3.2	Leaf morphological variations in different environments	29

			20
	12-12-2-22030	Leaf size	29
		Leaf length to leaf width ratio	31
		Petiole length and petiole diameter	32
		Length of drip-tip	33
		Plant branching and branching patterns	33
3.3		fic leaf area	35
3.4		fic leaf weight	37
3.5	Leaf d	lry matter content	38
3.6	Influe	nce of light level and elevation to stomata	39
3.7	Leaf (Chlorophyll concentration	42
СНАРТЕ	R 04: S	TUDY OBJECTIVE AND HYPOTHESIS	45
4.1	Study	objective and hypothesis	46
	4.1.1	Study objective	46
		Hypothesis	46
		Overarching Hypotheses	46
4.2	Study		47
4.3		species	50
СНАРТЕ	R 05: N	IETHODS AND MATERIALS	54
5.1		imental design	55
2.11	5.1.2	Selecting gaps and understory sites for the study	55
		Seedling planting and establishment	55
5.2		ing growth and mortality measurements	56
5.2	5.2.1		56
		Seedling mortality	56
5.3		herbivory measurement	56
5.4		urement of leaf functional traits	57
5.4	5.4.1	Leaf area, leaf length, leaf width, petiole length and length of drip-tips	57
	5.4.2	Leaf weight measurement	58
5.5		anatomical measurements	59
5.6		ro- Photometric measurement	60
5.7		tical interference	61
СНАРТЕ	D 06. D	RESULTS - GROWTH AND MORTALITY	62
6.1		th measurements	63
0.1	6.1.1	Annual height increment	63
	6.1.2	Root collar diameter increment	69
		Leaf increment	74
		Branch increment	77
	6.1.5		79
6.2			87
0.2	rierbi	vory damage	0/

ii

	6.2.1	Index of herbivory	87
СНАРТЕІ	R 7: RE	SULTS - LEAF MORPHOLOGY	92
7.1 Leaf morphology measurements		93	
		Leaf area	93
	7.1.2	Leaf length	98
		Leaf width	102
	7.1.4	Petiole length	106
	7.1.5	Length of drip-tip	110
7.2	Derive	ed morphological parameters	114
	7.2.1	Leaf shape index	114
	7.2.2	Specific leaf area	119
		Specific leaf weight	123
		Leaf dry matter content	127
	7.2.5	Leaf water content	131
CHAPTEI	R 8: RF	ESULTS - LEAF ANATOMY	135
8.1	Stoma	atal measurements	136
	8.1.1	Stomatal density	136
	8.1.2	Stomatal length	140
	8.1.3	Stomatal index	144
8.2	Leaf p	pigment concentration	148
	8.2.1	Chlorophyll a concentration	148
	8.2.2	Chlorophyll b concentration	152
	8.2.3	Total chlorophyll concentration	157
	8.2.4	Chlorophyll <i>a/b</i> ratio	162
CHAPTE	R 09: D	ISCUSSION	167
9.1	Introd	luctions	168
9.2	Above	e ground growth performance and mortality	170
9.3			180
9.4	Leaf a	anatomy and structure	192
CHAPTE	R 10: C	CONCLUSION	204
10.1	Concl	usion	205
10.2	Recor	nmendation to further studies	208
	REFI	ERENCES	209

LIST OF TABLES

Table: 5.1	Summary of study sites in different elevations.	55
Table: 6.1	Analysis of variance on height increment of seedling in micro-sites at selected elevations.	65
Table: 6.2	Mean height increment (cm) of species at selected elevations with years after planting.	66
Table: 6.3	Mean height increment (cm) of species in micro-sites with years after planting.	66
Table: 6.4	Mean height increment (cm) of species with years after planting.	67
Table: 6.5	Analysis of variance on root collar diameter increment of seedling data over an 10 years period.	71
Table: 6.6	Mean root collar diameter increment (cm) of study species at elevations, micro-sites and year after planting	72
Table: 6.7	Analysis of variance on leaf increment (cm) of seedlings in micro-sites at selected elevations.	75
Table: 6.8	Mean number of leaves increment on species, micro-sites) and year after planting.	76
Table: 6.9	Analysis of variance on branch increment of seedlings in micro-sites at selected elevations.	78
Table: 6.10	Mean branch increment of species in micro-sites with years after planting.	78
Table: 6.11	Analysis of variance on Arcsine of % mortality of seedlings in micro-sites at selected elevations.	82
Table: 6.12	Mean mortality on micro-sites with years after planting.	83
Table: 6.13	Mean mortality on species in micro-sites with years after planting.	84
Table: 6.14	Mean mortality on elevations with years after planting.	85
Table: 6.15	Analysis of variance on IH in micro-sites at selected elevations.	89
Table: 6.16	Mean of IH combining species in micro-sites at selected elevations.	89
Table: 6.17	Summary of regression coefficient among IH of each species and PPF (molm $^{-2}s^{-1}$).	90
Table: 7.1	Analysis of variance on natural log transformed leaf area (cm ²) of species in micro-sites at different elevations.	95
Table: 7.2	Leaf area (cm ²) combining species combining species in micro-sites at selected elevations.	95

Table: 7.3	Summary of regression coefficient among natural log transformed leaf area (cm ²) of each species and PPF (molm ^{2} s ⁻¹).	96
Table: 7.4	Analysis of variance on natural log transformed leaf length (cm) of species in micro-sites at different elevations.	99
Table: 7.5	Leaf length (cm) combining species combining species in micro-sites at selected elevations.	99
Table: 7.6	Summary of regression coefficient among natural log transformed leaf length (cm) of each species and PPF (molm ^{2} s ⁻¹).	100
Table: 7.7	Analysis of variance on natural log transformed leaf width (cm) of species in micro-sites at different elevations.	103
Table: 7.8	Leaf width (cm) combining species combining species in micro-sites at selected elevations.	104
Table: 7.9	Summary of regression coefficient among natural log transformed leaf width (cm) of each species and PPF (molm ^{2} s ⁻¹).	104
Table: 7.10	Analysis of variance on natural log transformed Petiole length (mm) of species in micro-sites at different elevations.	107
Table: 7.11	Petiole length (mm) combining species combining species in micro-sites at selected elevations.	107
Table: 7.12	Summary of regression coefficient among natural log transformed Petiole length (mm) of each species and PPF (molm ^{-2} s ^{-1}).	108
Table: 7.13	Analysis of variance on natural log transformed Drip-tip length (mm) of species in micro-sites at different elevations.	111
Table: 7.14	Drip-tip length (mm) combining species combining species in micro-sites at selected elevations.	111
Table: 7.15	Analysis of variance on natural log transformed LSI of species in micro-sites at different elevations.	116
Table: 7.16	LSI combining species combining species in micro-sites at selected elevations.	116
Table: 7.17	Summary of regression coefficient among natural log transformed LSI of each species and PPF (molm ⁻² s ⁻¹).	117
Table: 7.18	Analysis of variance on natural log transformed SLA (mm ² mg ⁻¹) of species in micro-sites at different elevations.	120
Table: 7.19	SLA (mm ² mg ⁻¹) combining species combining species in micro-sites at selected elevations.	120
Table: 7.20	Summary of regression coefficient among natural log transformed SLA (mm ² mg ⁻¹) of each species and PPF	121

 $(molm^{-2}s^{-1}).$

	(monin o).	
Table: 7.21	Analysis of variance on natural log transformed SLW (mgcm ⁻²) of species in micro-sites at different elevations.	124
Table: 7.22	SLW (mgcm ⁻²) combining species combining species in micro-sites at selected elevations.	124
Table: 7.23	Summary of regression coefficient among natural log transformed SLW (mgcm ⁻²) of each species and PPF (molm ⁻² s ⁻¹).	125
Table: 7.24	Analysis of variance on natural log transformed LDMC (gg ⁻¹) of species in micro-sites at different elevations.	128
Table: 7.25	LDMC (gg ⁻¹) combining species combining species in micro-sites at selected elevations.	128
Table: 7.26	Summary of regression coefficient among natural log transformed LDMC (gg^{-1}) of each species and PPF (molm ⁻² s ⁻¹).	129
Table: 7.27	Analysis of variance on natural log transformed LWC (%) of species in micro-sites at different elevations.	132
Table: 7.28	LWC (%) combining species combining species in micro- sites at selected elevations.	132
Table: 7.29	Summary of regression coefficient among natural log transformed LWC (%) of each species and PPF (molm ⁻² s ⁻¹).	133
Table: 8.1	Analysis of variance on natural log transformed SD (mm ⁻²) of species in micro-sites at different elevations.	137
Table: 8.2	SD (mm ⁻²) combining species combining species in micro- sites at selected elevations	137
Table: 8.3	Summary of regression coefficient among natural log transformed SD (mm ⁻²) of each species and PPF (molm ⁻² s ⁻¹).	138
Table: 8.4	Analysis of variance on natural log transformed SL (μ m) of species in micro-sites at different elevations.	141
Table: 8.5	SL (μ m) combining species combining species in micro-sites at selected elevations.	142
Table: 8.6	Summary of regression coefficient among natural log transformed SL (μ m) of each species and PPF (molm ⁻² s ⁻¹).	142
Table: 8.7	Analysis of variance on natural log transformed SAI of species in micro-sites at different elevations.	145
Table: 8.8	SAI combining species combining species in micro-sites at selected elevations.	145
Table: 8.9	Summary of regression coefficient among natural log transformed SAI of each species and PPF (molm ⁻² s ⁻¹).	146
Table: 8.10	Analysis of variance on Chl_a (µgcm ⁻²) of species in micro-	149

sites at different elevations.

Table: 8.11	Chl_a (µgcm ⁻²) combining species combining species in micro-sites at selected elevations.	150
Table: 8.12	Summary of regression coefficient among Chl_a (µgcm ⁻²) of each species and PPF (molm ⁻² s ⁻¹).	150
Table: 8.13	Analysis of variance on Chl_b (µgcm ⁻²) of species in microsites at different elevations.	154
Table: 8.14	Chl_b (µgcm ⁻²) combining species combining species in micro-sites at selected elevations.	154
Table: 8.15	Summary of regression coefficient among Chl_b (µgcm ⁻²) of each species and PPF (molm ⁻² s ⁻¹).	155
Table: 8.16	Analysis of variance on Chl_{tot} (µgcm ⁻²) of species in micro- sites at different elevations.	159
Table: 8.17	Chl_{tot} (µgcm ⁻²) combining species combining species in micro-sites at selected elevations.	159
Table: 8.18	Summary of regression coefficient among Chl_{tot} (µgcm ⁻²) of each species and PPF (molm ⁻² s ⁻¹).	160
Table: 8.19	Analysis of variance on natural log transformed $Chl_{a/b}$ ratio of species in micro-sites at different elevations.	163
Table: 8.20	$Chl_{a/b}$ ratio combining species combining species in microsites at selected elevations.	164
Table: 8.21	Summary of regression coefficient among natural log transformed $Chl_{a/b}$ ratio of each species and PPF (molm ⁻² s ⁻).	165

LIST OF FIGURES

Figure: 6.1	Seedling height increments (cm) of canopy dominant tree seedlings in micro-sites.	68
Figure: 6.2	Root Collar Diameter (cm) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	73
Figure: 6.3	Seedling mortality of nine canopy dominant tree seedlings in micro-sites with year after planting.	86
Figure: 6.4	IH of nine canopy dominant tree seedlings in micro-sites at selected elevations.	91
Figure: 7.1	Leaf areas (cm ²) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	97
Figure: 7.2	Leaf length (cm) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	101
Figure: 7.3	Leaf width (cm) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	105
Figure: 7.4	Petiole length (mm) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	109
Figure: 7.5	Drip tip length (mm) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	112
Figure: 7.6	LSI of nine canopy dominant tree seedlings in micro-sites at selected elevations.	118
Figure: 7.7	SLA (mm ² mg ⁻¹) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	122
Figure: 7.8	SLW (mgcm ⁻²) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	126
Figure: 7.9	LDMC (gg ⁻¹) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	130
Figure: 7.10	LWC (%) of nine canopy dominant tree seedlings in micro- sites at selected elevations.	134
Figure: 8.1	SD (mm ⁻²) of of eight canopy dominant tree seedlings in micro-sites at selected elevations.	139
Figure: 8.2	SL (μ m) of of eight canopy dominant tree seedlings in microsites at selected elevations.	143
Figure: 8.3	SAI of of eight canopy dominant tree seedlings in micro-sites at selected elevations.	147
Figure: 8.4	Chl_a (µgcm ⁻²) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	151
Figure: 8.5	Chl_b (µgcm ⁻²) of nine canopy dominant tree seedlings in micro-sites at selected elevations.	156

Figure: 8.6	Chl _{tot} (µgcm ⁻²) of nine canopy dominant tree seedlings in	161	
	micro-sites at selected elevations.		

Figure: 8.7 Chl_{*a/b*} ratio of nine canopy dominant tree seedlings in microsites at selected elevations. 166

LIST OF PLATES

Plate 01:	Herbivores and herbivory damage in leaves.	240
Plate 02:	Twelve year old S. worthingtonii and M. nagassarium seedling in understory.	240
Plate 03:	Gap site and adjacent understory site at ridge topography	241
Plate 04:	Canopy gap formation and soil disturbances	241
Plate 05:	Stomata present in <i>Syzygium rubicundum</i> (a) and <i>Dipterocarpus zeylanicus</i> (b)leaf impression	242

ACKNOWLEDGEMENTS

I am greatly indebted to my supervisors, Prof. B.M.P. Singhakumara, Chair Professor Department of Forestry and Environmental Science, University of Sri Jayewardenepura and P.M.S. Ashton, Professor of Silviculture, School of Forestry and Environmental Studies, Yale University, USA, for their invaluable guidance, advice and kind encouragement given to me throughout this project. I duly appreciate their contribution so willingly given towards the final output in spite of their heavy workload.

I wish to thank Prof. H.S. Amarasekara former Head/ Department of Forestry and Environmental Science and Prof. (Mrs.) N. Bandara present Head/ Department of Forestry and Environmental Science, for allowing me to use the facilities of the department to carry out this project.

I wish to extend my thanks to Mr. P. Dias, Senior Lecturer, Department of Statistics and Computer Science and Dr. S.M.C.U.P Subasinghe Department of Forestry and Environmental Science in the University of Sri Jayewardenepura, for their support in statistical analyse. I also gratefully acknowledge Dr. (Mr.) E.P.S.K. Ediriweera, Dr. (Ms.) H.K. Gamage, and all academic staff, Department of Forestry and Environmental Science for assisting me in numerous ways during my study period.

I thank Prof. (Mrs.) Salim, Head/ Botany, Dr. Nissanka, Head/Zoology and their respective academic/ non academic staff for allowing me to carry out leaf anatomical and Chlorophyll analysis. I would like to thank Mr. I.D. Wijesingha, and Mr. S. Wettasingha, technical officers, Asoka Nishantha, Ramanika Botheju and all other non academic staff of the Department of Forestry and Environmental Science who provided friendly and conducive environment in the work place throughout the study period.

I wish to mention the assistance I received from Mr. Keerthirathna, W. Somarathna and other villagers in Kudawa, Sinharaja for facilitating the collection of field data and giving accommodation. Finally, my deepest gratitude and sincere appreciation is extended to my mother and Sepalika for their extreme patience and tolerance during the study period.

ABBREVIATIONS

Chl	Chlorophyll
Chl_a	Chlorophyll a
Chl_b	Chlorophyll b
Chla/b	Chlorophyll <i>a/b</i>
Chl _{tot}	Total Chlorophyll
cm	Centimeter
DL	Length of drip-tip
gg ⁻¹	Grams per gram
IH	Index of herbivory
LA	Leaf area
LDMC	Leaf dry matter content
LL	Leaf length
ln	Natural log
LSI	Leaf shape Index
LW	Leaf width
LWC	Leaf water content
mgcm ⁻²	Milligrams per square centimeter
molm ⁻² s ⁻¹	Moles per square meter per second
PL	Petiole length
PPF	Photosynthetic photon flux
RCD	Root collar diameter
SAI	Stomatal area index
SD	Stomatal densities
SL	Stomatal lengths
SLA	Specific leaf areas
SLW	Specific leaf weight
μm	Micrometer
D. zeylanicus	Dipterocarpus zeylanicus
M. ferrea	Mesua ferrea
M. nagassarium	Mesua nagassarium
S. disticha	Shorea disticha
S. megistophylla	Shorea megistophylla
S. trapezifolia	Shorea trapezifolia
S. worthingtonii	Shorea worthingtonii
S. makul	Syzygium makul
S. rubicundum	Syzygium rubicundum

DEDICATION

To my parents, and loving wife whose enthusiastic encouragement made me to be

successful in higher education

COMPARATIVE STUDY OF MICROHABITAT UTILIZATION BY SEEDLINGS OF CANOPY DOMINANT TREE SPECIES IN TROPICAL RAIN FORESTS OF SRI LANKA

R.D.S.S Ranathunga

ABSTRACT

Deforestation and forest degradation are more severe in the tropics that have serious consequences for species, tropical forest ecosystem services and people who depend on forests for their livelihoods. Therefore, knowledge on germination and seedling establishment is important for understanding such community processes as plant recruitment and succession, which is useful for the reforestation, and restoration of degraded forest areas. This study focused to identify variation of seedling leaf anatomy, leaf morphology, seedling growth and mortality along a gradient in light availability ranging from forest understories to small canopy gaps and elevation ranging from low elevation to high elevation in tropical rain forests of Sri Lanka.

The study was carried out at three different elevations in the wet evergreen mixed Dipterocarp rainforest of southwest Sri Lanka. The selected sites were Waga Forest Reserve (($6^{0.55}$ 'N, $80^{0.10}$ 'E: 125 ± 50 m asl), Sinharaja World Heritage Site ($6^{0.45}$ 'N, $80^{0.30}$ 'E: 580 ± 250 m asl) and Eastern region of Sinharaja ($6^{0.40}$ 'N, $80^{0.40}$ 'E: 1200 ± 200 m asl). For this study, four *Shorea* species, one *Dipterocarpus* species, two *Syzygium* species and two *Mesua* species were selected. Experiments were designed to investigate competitive outcomes of these species in different light (canopy gap and understory) and elevations (low elevation, valley, mid-slope, ridge and high elevation). The experiment comprised 5184 seedlings of nine species (16 seedlings × 9 species per plot × 2 plots per site × 14 sites).

To find out the competitive growth of the selected nine species along the light and elevation gradient, seedling height from the top of the apical shoot to the ground, root collar diameter, number of leaves and branches were measured every year. Six leaf extractions of each species in micro-sites at each elevation were prepared to determine area base Chlorophyll *a*, *b*, *a/b* ratio and total Chlorophyll using a spectrophotometric method. One hundred and eight leaf surface impressions were taken from each species in micro-sites at each elevation to analyze stomatal density and aperture length. Leaf herbivory damage and proportion of damage leaves were measured in all plots that represent the elevation gradient. Three thousand five hundred and twenty five leaves from nine species in micro-sites at all elevation were sampled and leaf morphological parameters were measured. Specific leaf area, specific leaf mass, leaf shape index, leaf dry matter content and leaf water content were derived and analyzed.

Shorea trapezifolia and S. rubicundum can be regarded as the more light demanding species, competitively superior as evidenced by their height increment, root collar diameter increment, leaves and branch increment and their morphological adjustment. On other hand *Mesua ferrea* and S. worthingtonii can be considered as more shade tolerant species and with less competitive ability as compared to other species because of their slow growth rate and high survival under low light availability. Results revealed that leaf area, leaf length, leaf width, drip tip length and petiole length of all species in canopy gaps had higher values than the respective species in the understory conditions. Shorea trapezifolia, D. zeylanicus and S. rubicundum in the canopy gaps had the highest specific leaf area. The slow growing M. ferrea, M. nagassarium and S. worthingtonii in the canopy gaps showed the highest leaf dry matter content and the lowest leaf water content. It was demonstrated that S. makul and S. rubicundum had the highest stomatal

density and regarded as drought intolerant, while *S. disticha, S. megistophylla* and *S. worthingtonii* in the gaps recorded the lowest stomatal density as an adaptation to drought or water deficient conditions.

Comparing the gaps *Dipterocarpus zeylanicus*, *M. ferrea*, *S. trapezifolia* and *S. worthingtonii* in the gap centers recorded highest Chlorophyll *a* concentration, while, *D. zeylanicus*, *M. ferrea*, *S. disticha* and *S. megistophylla* had the highest Chlorophyll *b* concentration. It revealed that the gap leaves of non-*Dipterocarp* species tended to have a higher Chlorophyll content per unit leaf area than understory leaves. However, the opposite trends were reported for *Dipterocarp* species.

This study contributes to our understanding of canopy dominant tree seedling growth response and leaf morphological and stomatal variation to the influence of light and elevation. This understanding will help to identify suitable species to plant under different light conditions and different elevations for the purpose of the development of regeneration methods for the management of tropical wet forests. In addition to that, the study facilitated the ability to rank shade tolerance and drought tolerance of each study species. Further work is necessary to understand physiological performance of these species under field conditions.