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DETERMINATION OF ZEROS USING FINITE DIFFERENCE NEWTON'S 

METHOD IN THE ABSENCE OF THE CLOSED FORM OF THE FUNCTION 

H. K. G. DE Z AMARASEKERA 

ABSTRACT 

Finite Difference Newton's (FDN) method is the one point iteration scheme 

introduced in [14] to approximate single roots of nonlinear equations. Proposed scheme 

replaces the derivative of the function in Newton's method by appropriately chosen forward 

or backward difference formulae. In this study the same method is applied to functions of 

two variables and later it is extended to functions of several variables. It is proved that 

the method is second order convergent. Computational evidence provided here, not 

only supports the theory but goes beyond that suggesting it is not necessary to have the 

initial guess within a sufficiently close neighbourhood for the convergence of the proposed 

method. As problems, such as looping which effect Newton's method, can be 

overcome with the proposed method by 	choosing suitable stepsizes, finite 

difference Newton's method provides convergent results even for functions 

which do not converge with Newton's iterations. 

The main objective here is to determine the roots of a function whose closed 

form is not known, while only a discrete set of function values is available. 

Of all the available interpolation techniques, natural cubic splines seem to 

produce best approximations for such functions in the case of functions of one variable. We 

adopt both FDN method introduced in [14] and the Newton's method as one point iteration 
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schemes, to approximate the root of the constructed spline function. As a means of testing, 

we apply the suggested procedure to several sets of data generated by various types of 

(known) functions. 

Furthermore, we try to approximate the roots of two simultaneous nonlinear 

equations {f1 (x, y) = 0 ; f2(x,y) = 0} using only the values of the functions in a rectangular 

domain {D=(x1 ,y1 )/a:!~,xf~-b;c!~yj d,i=O,1,...,n; j=O,1,...,m}.Eventhough 

we are unaware of the closed forms of the above functions, to apply FDN method we need 

the values of those functions at arbitrary points. Thus we use bicubic Lagrange surface patch 

interpolation method to approximate the functions within each of the square grid containing 

16 node points. 

We apply these last two procedures to several sets of data generated by 

various types of (known) functions getting very encouraging results. 

It is best if one can check for himself! herself for the suitable combinations of 

the most accurate interpolation technique and the most efficient iterative technique, for the 

root finding problem he / she encounters. To serve this purpose, we develop a computer 

software package which can handle the major procedures discussed in this thesis. 

Algorithms constructed were implemented by using the Turbo Pascal (Ver. 7.0) and later 

were converted to Microsoft Visual Basic (Ver 6.0). 

Keywords : Nonlinear equations, Newton's method, Difference approximations, Finite 

difference Newton's method, Order of convergence, Cubic splines, Lagrange interpolation, 

Bilinear, Biquadratic, Bicubic. 
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Chapter 1 

iNTRODUCTION 

Researchers frequently encounter systems of nonlinear equations as a result of 

modeling many physical processes. Newton's iterative method is the most widely used 

numerical scheme to find roots of systems of nonlinear equations. This method has three 

major drawbacks. 

Necessity to differentiate the functions (which sometimes could be cumbersome) and 

feed them into the computer. 

Inability to implement the algorithms when there are no closed forms for the 

functions of our concern. That is when there is only a discrete set of function values. 

Necessity to evaluate partial derivatives for the Jacobian matrix at each iterative step. 

To overcome these difficulties, Finite Difference Newton's (FDN) method was introduced by 

Weerakoon[ 14] for nonlinear equations of one variable. Our objective here is to extend it to 

two-dimensions by replacing the 2x2 Jacobian matrix of Newton's method by appropriate 

fmite difference approximations (either forward or backward approximations), without 

slowing down the process of convergence. It is shown that the suggested method converges 

quadratically and this theory is supported by computational results. 

We apply the method to several functions such as polynomials, trigonometric 

and exponential functions and for all those cases, suggested method converges as fast as 

Newton's method and sometimes even faster. 

We are fortunate to be able to extend the suggested FDN method even to 

functions of several variables, by providing the proof of second order convergence for 

functions of several variables. 
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Our next objective here is, to approximate the roots of an unknown function 

using only a set of discrete values (xo , yo) , (xi Yi),. . . , (x , yr,) available. For all available 

methods of finding roots of a nonlinear equation, we should know the function values at 

arbitrary points of the domain. Hence we have to look for a function approximation method 

which makes use of the available data optimally. We use natural cubic spline interpolation to 

approximate the function within the interval and apply both Newton's method and the FDN 

method using the approximated function. We check this procedure by applying it to several 

sets of data generated by various types of (known) functions and the results seem to be very 

encouragmg. 

To compare spline interpolants with actual functions, we apply both Newton's 

method and the FDN method to actual functions and the interpolants with the same initial 

guesses. Results obtained for the spline interpolant and for the actual function were very 

close. Further, when the initial guess is somewhat away from the root, FDN method seems to 

converge much faster, suggesting that in the circumstances FDN is the best method to use. 

Furthermore, as an extension of the above method we try to approximate the 

roots of two simultaneous nonlinear equations { f1(x,y) = 0 ; f2(x,y) = 0) using only the 

values of the functions in a rectangular domain{D=(x,y)/a:5-x:~b ; c:!:-y:5d, 

i = 0,1,. . ., n ; j = 0,1,. . ., m }. Even though we are unaware of the closed forms of the 

above functions, to apply FDN method we need the values of those functions at arbitrary 

points. Thus we use bicubic Lagrange surface patch interpolation method to approximate the 

functions within each of the square grid (each grid contains 16 node points) and apply the 

FDN method to the approximated functions. We apply this procedure to several sets of data 



generated by various types of (known) functions and we also apply the FDN method using 

the closed forms of those functions with the same initial guesses and compare the results. 

Results for the surthce interpolants and for the actual functions seem to be very close, 

suggesting the validity of the bicubic interpolant approach. This encourages applying this 

procedure to discrete sets of data without knowing the closed forms of the functions. 
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Chapter 2 

Finite Difference Newton's method for functions of two variables 

2.1 Introduction 

Finite Difference Newton's (FDN) method was introduced by Weerakoon[14] 

for nonlinear equations of one variable. The objective here is to extend it to two-dimensions 

by replacing the 2x2 Jacobian matrix of Newton's method by appropriate finite difference 

approximations (either Forward or Backward approximations), without slowing down the 

process of convergence. It is shown that the suggested method converges quadratically and 

this theory is supported by computational results. 

We apply the method to several functions such as polynomials, trigonometric 

and exponential functions and for all those cases, suggested method converges as fast as 

Newton's method and sometimes even faster. 

2.2 Preliminaries 

Definition(2.2.1) A continuous function f: IR" -> IR is said to be continuously differentiable 

(C) at xcIR'', if (of /xj(x) exists and is continuous, i = 1, 2.....n ; the gradient off at x is 

then defmed as 

VJ(x) = [t(x)/ôxi ,. . ., ôJ(x)/ôx ]T  

A functionf is said to be C' in an open region Dcii', denotedfeC'(D), if it is C' at every 

point mD. 
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Detinition(2.2.2) A continuous function F: R1' _ 	is C' at xeIR' if each component 

functionj, i = I,. ., in is C' at x. The derivative ofF at x is sometimes called the Jacobian 

(matrix) of F at x, and its transpose is sometimes called the gradient F at x. The common 

notations are: 

F'(x)E IRm) , F'(x), = f(x)/ax, F'(x) = J(x) = VF(x)T 

F is said to be C1  in an open set DciR' , denoted FEC(D), if F is C' at every point in D. 

Definition(2.2.3) 

1ff is a function of two variables, its partial derivative with respect to x and y are the 

functionsf andj defined by 

f(x+h,y)—f(x,y) 
h->O 	 h 

fy(x , y) = 
h -O 

f(x, y + h) - f(x , y) 

h 

To give a geometric interpretation of partial derivatives, we should understand that 

the equation z = f(x , y) represents a surface S (the graph off). If /(a, b) = c then the point 

P(a, b, c) lies on S. The vertical plane y = b intersects S in a curve C, (in other word, Ci  is the 

trace of S in the plane y = b). Likewise the vertical plane x = a intersects S in a curve C2. 

Both of the curves C, and C2  pass through the point P (see figure 2.2.1). 

Notice that the curve C1  is the graph of the function g(x) =flx, b), so the slope of its tangent 

T, at P is g'(a) f(a, b). The curve C2  is the graph of the function G(y) =j(a, y), so the 

slope of its tangent T2  at P is G'(b) =f(a , b). 
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Figure 2.2.1 

Thus the partial derivatives f(a, b) and./,(a, b) can be interpreted geometrically as the slope 

of the tangent lines at P(a, b, c) to the traces C1  and C2  of S in the planes y = b and x = a. 

Definition(2.2.4) 

Suppose a surface has equation z = fix , y), where f has continuous first partial 

derivatives, and let P(a, b , c) be a point on S. As in the previous definition, let C1  and C2  be 

the curves obtained by intersecting the vertical planes y = b and x = a with surface S. Then 

the point P lies on both C1  and C2. Let T1  and T2  be the tangent lines to the curves C1  and C2  

at the point P. Then the tangent plane to the surface S at the point P is defined to be the plane 

that contains both of the tangent lines T1  and T2  (see figure 2.2.1). 

It can be shown that if C is any other curve that lies on the surface S and 

passes through P, then its tangent line at P also lies in the tangent plane. Therefore, we can 
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