Geographic Information System to Manage the Communication Cable Network in Sri Lanka Air Force Base Katunayake

By

Thusitha Chandranath Maduwage

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree in Master of Science in Geographic Information Systems and Remote Sensing on 18 August 2014

DECLARATION

The work described in this thesis was carried out by me under the supervision of Ven. Dr. Pinnawala Sangasumana and Mr Prabath Malavige and a report on this not been submitted in whole or in part to any university or any other institution for anther Degree/Diploma.

Signature of the Candidate

08 04 2015-Date

DECLARATION OF SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Certified by:

Supervisors:

Dr. (Rev) Pinnawala Sangasumana Head/Senior Lecturer Department of Geograpgy University of Sri Jayewardenaepura Nugegoda Sri Lanka

23 04 2015

Date

Mr. Prabhath Malavige Head GIS Premises Section Sri Lanka Ports Authority Colombo Sri Lanka

23/04/2015

Date

ACKNOWLEDGEMENT

I have completed my research study as fulfilment of requirement of the academic activities of Master of Science in Geographic Information Systems and Remote Sensing degree programme of University of Sri Jayewardenepura in field of communication cable management projects. This accomplishment was a possibility because my commitment was supplemented by the contribution of few others, whose expertise and guidance I used during the pursuit of the study.

At first I would like to place on record my gratitude to my supervisor, Ven. Dr. Pinnawala Sangasumana (Head/Geography, Coordinator- M.Sc. in GIS & RS), Academic staff of M.Sc. in GIS & RS for generously sharing his expertise and experiences with me during the research study. Further I wish to express my especial thanks and sincere gratitude to Mr Prabath Malavige, Academic staff of M.Sc. in GIS & RS for his invaluable guidance, encouragements, patience and precious time that he offered to me. And, I was guided step by step from the beginning and I am deeply impressed with his wealth of knowledge and dedication to academic research.

I thank Prof. Krishan Deheragoda who motivated me towards this endeavour by extending his valuable guidance during reviews from the inception.

I am deeply grateful to the Commanding Officer, Electronics and Telecommunication Engineering Wing, Sri Lanka Air Force Base, Katunayake for granting authority to

i

study about the present underground caballing systems to making this project activity a possibility.

I also wish to make special mention of all those, who have helped me in numerous ways, especially in conducting the field research, obtaining cable paths and in preparing primary data and so on. The list is too long to mention here. They have really kept me at easy to attend my research work.

Finally, thanks to my beloved wife and two daughters for their continual support not just throughout this project, but throughout my education as well.

TABLE OF CONTENTS

Table of Contents	iii
List of Tables	vi
List of Figures	vii
List of Abbreviations	ix
Abstract	x
1 INTRODUCTION	1
1.1 Background	1
1.2 Problem Definition	8
1.3 Objectives	8
1.4 Methodology	9
1.5 Study Area	10
1.6 Scope and Limitations	13
2 LITERATURE REVIEW	14
2.1 Introduction	14
2.2 Network	14
2.3 Geographic Information System (GIS	5) 18
2.4 GIS and Internet Technology	25
2.5 Web GIS	29
2.6 GIS in Previous Studies of Communi	ication 31
Network Management	

3 METHODOLOGY	33	
3.1 Data Collection and Preparation	33	
3.2 The Geodatabase	42	
3.3 ArcGIS Map Servers	48	
3.4 Project Procedure	48	
3.5 Software and Tools Used	52	
3.6 Hardware Accessories Used	52	
4 RESULTS ANALYSIS		
4.1 Introduction	53	
4.2 Initial Feature Classes	54	
4.3 Buffer Analysis	63	
4.4 Map Server	66	
5 CONCLUSION AND RECOMMENDATIONS		
5.1 Conclusion	76	
5.2 Recommendations	78	
REFERENCES		
ANNEXES	81	
Annex – 1 Telecommunication Cable types and Usage	81	
Annex – 2 Optical Fiber Cable types and usage	83	
Annex – 3 Telecommunication Equipment & Accessories Feature Class	86	

Annex – 4 Telecommunication Cable types and	87
usage Feature Class	
Annex – 5 Telecommunication Cable damages	88
and joints Feature Class	
Annex – 6 Information Technology Equipment &	89
Accessories Feature Class	
Annex – 7 Optical Fiber Cable types and usage	90
Feature Class	
Annex – 8 Fiber cable damages and joints Feature	91
Class	
Annex – 9 Fiber cable patched locations Feature	92
Class	
Annex – 10 Underground Power Cables Feature	93
Class	
Annex – 11 Duct Lines Feature Class	94
Annex – 12 Manholes Feature Class	95
Annex – 13 Telecommunication Cable Buffer	96
Feature Class	
Annex – 14 Optical Fiber Cable Buffer Feature	97
Class	
Annex – 15 Underground Power Cables Buffer	98
Feature Class	

v

LIST OF TABLES

Table 3 – 1	Telecommunication Equipment & Accessories Details	36
Table 3 – 2	Telecommunication Cable Damages and Joints	37
Table 3 – 3	Information Technology Equipment & Accessories Details	38
Table 3 – 4	Fiber Cable Damages and Joints	39
Table 3 – 5	Fiber Cable Patched locations	40
Table 3 – 6	Underground Power Cable Network	41
Table 3 – 7	Duct Lines Details	42
Table 3 – 8	Man Holes Details	43
Table 3 – 9	The list of Feature Classes	46

LIST OF FIGURES

Figure 1 – 1	Main entrance of the SLAF Base Katunayake	2
Figure 1 – 2	SLAF Establishments in Sri Lanka	3
Figure 1 – 3	SLAF Intranet	4
Figure 1 – 4	Optical Fiber Network at SLAF Base Katunayake	6
Figure 1 – 5	Network Diagram - SLAF Base Katunayake	7
Figure 1 – 7	Study Area - SLAF Base Katunayake (Index Map)	11
Figure 1 – 8	Study Area - SLAF Base Katunayake	12
Figure 2 – 1	The ESRI Geodatabase architecture	21
Figure 2 – 2	Example of a location based service	25
Figure 2 – 3	3 Tier Architecture	26
Figure 2 – 4	GIS linkage to the WWW	27
Figure 3 – 1	Major Network Types at SLAF Base Katunayake	33
Figure 3 – 2	Telecommunication Network	34
Figure 3 – 3	Information Technology Network	37
Figure 3 – 4	Common Network Features	40
Figure 3 – 5	Base Map imagery of Study Area	47
Figure 3 – 6	Methodology in brief	50
Figure 3 – 7	Web Server Deployment Plan	51
Figure 3 – 8	Hardware Accessories Used	52
Figure 4 – 1	Telecommunication Equipment & Accessories Feature	54
	Class	
Figure 4 – 2	Telecommunication Cable types and usage Feature Class	55

Figure 4 – 3	Telecommunication Cable damages and joints Feature	56
	Class	
Figure 4 – 4	Information Technology Equipment & Accessories Feature	57
	Class	
Figure 4 – 5	Optical Fiber Cable types and usage Feature Class	58
Figure 4 – 6	Fiber cable damages and joints Feature Class	59
Figure 4 – 7	Fiber cable patched locations Feature Class	60
Figure 4 – 8	Underground Power Cables Feature Class	61
Figure 4 – 9	Duct Lines Feature Class	62
Figure 4 – 10	Man Holes Feature Class	63
Figure 4 – 11	Telecommunication Cable Buffer Feature Class	64
Figure 4 – 12	Optical Fiber Cable Buffer Feature Class	65
Figure 4 – 13	Underground Power Cables Buffer Feature Class	66
Figure 4 – 14	Map Service preview web page	68
Figure 4 – 15	ArcGIS Server Manger displaying Image Service	69
Figure 4 – 16	Image Service preview	70
Figure 4 – 17	Basemap selection in ArcGIS Viewer for Flex –	71
	Application Builder	
Figure 4 – 18	Operational Layers selection in ArcGIS Viewer for Flex –	72
	Application Builder	
Figure 4 – 19	Underground Communication Cable Network Web Site	74
Figure 4 – 20	Underground Communication Cable Network Web Site	75

LIST OF ABBREVIATIONS

1	Air Force Headquarters	-	AFHQ
2	Binary Large Objects	-	BLOB
3	Environmental Systems Research Institute		ESRI
4	Common Gateway Interface (CGI)	-	CGI
5	Global Positioning System	-	GPS
6	GPS Exchange Format	-	GPX
7	Hypertext Mark-up Language	-	HTML
8	Information Technology	-	IT
9	Institute of Electrical and Electronics	-	IEEE
	Engineers		
10	Joint Photographic Experts Group	-	JPEG
11	Local Area Network	-	LAN
12	Red Green Blue	-	RGB
13	Relational Database Management System	-	RDBMS
14	Royal Air Force	-1	RAF
15	Shortest Path Analysis	-	CPA
16	Sri Lanka Air Force		SLAF
17	Structured Query Language	 8	SQL
18	Tagged Image File Format	1 20	TIF
19	Uniform Resource Locator		URL
20	Wide Area Network		WAN
21	World Wide Web	- 1	WWW

Geographic Information System for Manage the Communication Cable Network in Sri Lanka Air Force Base Katunayake

Thusitha Chandranath Maduwage

ABSTRACT

The purpose of this research study is to analyse the management issues and threats involvements for the underground cables of existing Local Area Network (LAN) system in the Sri Lanka Air Force Base Katunayake. During the study the researcher has found the drawbacks of the present manual management system and the difficulties that the staff faces in carrying out day to day duties. Furthermore the researcher has being able to analyse and propose an improved and high sophisticated model with Geographic Information System (GIS). This will eventually enhance the capabilities of the network management and thereby maintain the entire network with minimum downtime.

At present the Sri Lanka Air Force (SLAF) has interconnected all the Air Force establishments scattered around the country to an Intranet. All of these Air Force establishments have their own local area network to connect each and every user to SLAF Intranet. The scope of this research was limited to the SLAF Base Katunayake due to the complexity of the area of interest and the time restrictions. However, considering the similarity between the other SLAF establishments' LANs, the proposed GIS model can be utilized as a prototype to implement GIS based network management system. Furthermore the proposed GIS model can be utilized in the other service establishments such as Sri Lanka Army, Sri Lanka Navy and Sri Lanka Police.

х

CHAPTER 1

1 INTRODUCTION

1.1 Background

Sri Lanka Air Force (SLAF) is a large scale service organisation established to protect sovereignty, integrity and independence of Sri Lanka. During the period of colonization and when the country was under the ruling of British, the air force operated in Ceylon was a part of Royal Air Force (RAF). The SLAF was established in 1951 subsequent to the independence in 1948. The SLAF used to continue with the administrative setup and infrastructure build by British while continuing improvements to meet demanding needs.

The Sri Lanka Air Force Base Katunayake is the largest Air Force Base in Sri Lanka with having approximately 1000 acres of land coverage. It was established in1940 as a Royal Air Force Base and used as a transit base by the RAF and other commonwealth countries. The Base was handed over to the Royal Ceylon Air Force on the 02nd of March 1951.

The SLAF Base Katunayake consists of 26 lodger formations including four flying formations and other supporting formations. This Base has been the hub of providing Administrative, Logistics and Engineering services to all other Bases, Stations, Units and Formations in the north and east in their formative stage and continues to provide the bulk of operational requirements and engineering support up to date.

Figure 1 - 1: Main entrance of the SLAF Base Katunayake

1.1.1 SLAF Communication Network

The SLAF consist of an Air Force Headquarters (AFHQ) and 27 other SLAF establishments around the country. All of these Air Force establishments are interconnected through the microwave telecommunication links using modern communication technology equipment.