Reclaiming of Natural Rubber Latex

Product Waste by a

Mechanochemical Process for

Production of Solid Tire Treads

By

Janadara Chaminda Jayawarna

Reclaiming of Natural Rubber Latex Product Waste by a Mechanochemical Process for Production of Solid Tire Treads

By

Janadara Chaminda Jayawarna

Registration No: 5546 PS 2011012

A Research submitted to the University of Sri Jayewardenepura in partial fulfillment of the requirements for the Degree of Master of Science in Polymer Science and Technology on 30.04.2015

Declaration

"The work described in this research was carried out by me under the supervision of Dr. Dilhara G. Edirisinghe and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma"

dolgo

Signature of the Student

......

Date (30.04.2015)

"I certify that the above statement made by the candidate is true and that this project is suitable for submission to the university for the purpose of evaluation"

Duft ____

Signature of the Supervisor

Dr. Dilhara G. Edirisinghe

Head, Rubber technology and Development Department, Rubber Research Institute of Sri Lanka, Ratmalana.

30.04.2015.

Date

Table of Contents

Table of contents	
List of Tables	vi
List of Figures	vii
Acknowledgments	
Abstract	х
Co	ontents
1.0 Introduction	TION
1.2 Objectives	6
1.3 Significance	7
1.4 Scope and coverage	7
1.5 Limitation	7
	8
2.1 Definitions	8
2.2 Method of recycling, reclaiming and	devulcanisation10
2.3 Types of devulcanisation technologi	es13
2.4 Reaction mechanisms during reclam	nation of vulcanized rubber23
2.5 Different types of reclaiming proces	ses31
2.6 Natural rubber latex waste reclaiming	ng39
2.7 Uses of reclaimed rubber	42
2.8 Change of physical properties	49
2.9 Solid tyres	49
3.0 Introduction	HODS
3.1 Evnerimental	52

3.2 Reclamation experiments54
3.3 Characterization of novel reclaiming rubber
3.4 Preparation of natural rubber based solid tyre tread compound with novel
reclaimed natural rubber latex product waste
3.5 Characterization of virgin NR/ novel reclaimed rubber blend compounds60
CHAPTER 4: RESULTS & DISCUSION64
4.0 Introduction64
4.1 Characterization of reclaimed rubber
4.2 Selection of the best reclaiming agent and time for reclaiming of natural
rubber latex product waste
4.3 Properties of tyre tread compounds with natural rubber novel reclaimed rubber
blends69
CHAPTER 5 : CONCLUSIONS AND FURTHER WORK87
5.0 Conclusions 87
5.1 Suggestions for further work

List of table

Table 1.1 Rubber production in Sri Lanka by different types2
Table 1.2 Export of rubber products
Table 1.3 Sri Lanka total NR production, centrifuge rubber production, export quantity
and domestic usage of centrifuged latex (MT)4
Table 2.1: Reclaiming agents used in mechano- chemical methods
Table 2.2: Typical formulation for balloons
Table 2.3: Typical formulation for gloves
Table 3.1: Time intervals used for reclaiming of natural rubber latex product waste
by a mechanical process without reclaiming agents54
Table 3.2: Concentration of reclaiming agents used for reclaiming of natural rubber
latex product waste by a mechanical process
Table 3.3: Different concentrations of selected reclaiming agent (IPPD) used to
reclaim natural rubber latex product waste
Table 3.4: Solid tyre tread formulation -Natural rubber / novel reclaimed rubber
based tread compound formulations60
Table 4. 1: Properties of Mooney viscosity, swelling value and volume fraction of
rubber in the swollen gel of reclaimed rubber produced according to a mechanical
process
Table 4.2: Properties of reclaimed rubber produced with IPPD65
Table 4.3: Properties of reclaimed rubber produced with CBS
Table 4.4 Properties of reclaimed rubber produced with TMTD67
Table 4.5: Properties of reclaimed rubber latex produced with 1:1 CBS:TMTD
Table 4.6: Percentage retention of physico-mechanical properties after ageing80
Table 4.7: Glass transition tempretures of virgin NR/ Reclaim rubber compounds84

List of figure

Fig 2.1: Oxidation mechanism for the PH-FeCl ₂ system
Fig 2.2: Bolland oxidation mechanism (RH = Rubber hydrocarbon)25
Fig 2.3: Decomposition of peroxide by iron metals (Redox mechanism)25
Fig 2.4: Opening of sulphur crosslinks by triphenyl phosphine
Fig 2.5: Proposed reaction mechanism of crosslink and main chain scission with
disulphides
Fig 2.6:Opening of sulphur crosslinks by oxidation (ROOH Organic hydroperoxide)
Fig 2.7: Opening of sulphur crosslink by heat or shear
Fig 2.8: Opening of sulphur crosslinks by nucleophilic reagents29
Fig 2.9: Opening of sulphur crosslinks by rearrangement30
Fig 2.10: Opening of sulphur crosslinks by substitution
Figure 2.11: Cross Section of Solid tyre
Fig 4.1: Variation of Mooney viscosity of virgin NR / novel reclaimed rubber
blend compounds70
$Fig. 4.2: Variation \ of \ minimum \ torque \ with \ novel \ reclaimed \ rubber \ content71$
Fig 4.3: Variation of the maximum torque with novel reclaimed rubber content71
Fig 4.4: Variation of (maximum-minimum) torque with novel reclaimed rubber
content72
Fig 4.5: Variation of cure rate index with novel reclaimed rubber content73
Fig 4.6 : Variation of scorch time with novel reclaimed rubber content74
Fig 4.7 : Variation of cure time with novel reclaimed rubber content74
Fig 4.8: Variation of tensile strength of virgin NR/ novel reclaimed rubber blend
compounds with reclaimed rubber content
Fig 4.9 : Variation of modulus at 300% elongation of virgin NR/ novel reclaimed
rubber blend compounds
Fig 4.10: Variation of elongation at break of NR/novel reclaimed rubber blend
compounds with reclaimed rubber content
Fig : 4.11: Variation of tear strength of Virgin NR/ novel reclaimed rubber blend
with reclaimed rubber content

Fig: 4.12: Variation of hardness values of virgin NR /novel reclaimed rubber blend
compounds with reclaimed rubber content
Fig 4.13: Variation of abrasion volume loss of virgin NR/novel reclaimed rubber
blend compounds with reclaimed rubber content
Fig 4.14 Variation of rebound resilience of virgin NR/novel reclaimed rubber blend
compounds with reclaimed rubber content
Fig.4.15: Variation of Mod 300% / Mod 100% of virgin NR/ novel reclaimed rubber
blend compounds with reclaimed rubber content84
Fig 4.16 : Glass transition and flex temperatures of virgin NR/ novel reclaimed
rubber blend compounds86

ACKNOWLEDGEMENT

It gives me a great pleasure to extend my sincere gratitude for the help I received to complete this project.

My sincere thanks go to my supervisor Dr. Dilhara G. Edirisinghe for her unreserved assistance, suggestions and guidance.

I would like to express my thanks to Dr. M.A.B. Prashantha and Dr. R. Gunarathne for the valuable comments given as examiners.

Also, I express my special thanks to course coordinator Dr. Thilini Gunasekara and other lecturers who thought and guided us in the MSc. Programme, 2011. I admire their support and advice given to me.

Further, my thanks go to the management and staff of Laugfs Corporation (Rubber) Ltd. and Rubber Research Institute of Sri Lanka for providing assistance and testing facilities.

ABSTRACT

Use of reclaimed rubber in rubber compounds is a common practice to improve processability and reduce cost. The main aim of this research was to develop a novel mechanochemical reclaiming process for natural rubber latex product waste. Mechanochemical reclaiming was performed at low temperature with IPPD, an amine type antioxidant. Thereafter, virgin natural rubber (NR) was blended with the novel reclaimed rubber according to a solid tyre tread formulation. A series of virgin NR / novel reclaimed rubber composites was prepared by replacement of virgin NR with novel reclaimed rubber at 10 phr intervals; the maximum loading of the reclaimed rubber was 50 phr. Reclaimed rubber was characterised and Mooney viscosity, glass-transition temperature (Tg), cure characteristics, physico-mechanical properties and aging performance of the composites were evaluated.

Above characterisation techniques indicated that 2 phr and 5 min. wad the optimum loading and milling time, respectively for reclaiming with IPPD. Minimum and maximum torques increased with the increase of novel reclaimed rubber content, whereas scorch and cure times showed a decreasing trend with rheometer results. However, the lowest Mooney viscosity and Tg was obtained by the composite with the highest reclaimed rubber loading. There was no significant decrease in tensile strength up to 40 phr loading. Moduli, elongation at break and resilience did not vary significantly with the increase of reclaimed rubber content from 10 to 40 phr. Hardness, tear strength and abrasion volume loss of the composites prepared with 10 to 30 phr loading of reclaimed rubber were at the acceptable level for tyre treads. As the reclaiming agent was an antioxidant, the aging performance of the composites

containing reclaimed rubber was superior to that of the 100% virgin NR composite.

Results in overall indicated that the 70:30 virgin NR / novel reclaimed rubber composite would be suitable to manufacture solid tyre treads.

CHAPTER 1: INTRODUCTION

1.0 Introduction

Sri Lanka has the potential to be one of the world leading rubber product manufacturing countries due to its production of high quality raw materials, top quality grade of natural rubber (NR) with a very low level of proteins, high quality production of RSS and relatively low processing cost. A wide variety of rubber products is currently manufactured by the rubber manufacturing sector in Sri Lanka. Surgical, household, agricultural and examination gloves, balloons, hallowing masks and rubber toys are among the major products manufactured by the latex industries in Sri Lanka.

The Rubber industry in Sri Lanka has expanded significantly over the last decade and presently it produced around 152MT annually (Table 1.1). Centrifuge latex production has gone up in Year 2012 by 40%.

Table 1.1 Rubber production in Sri Lanka by different types (MT)

Year	Sheet	Sole Crepe	Latex crepe	Scrap crepe	TSR	Centrifuged latex and other	Total
2000	34,003	4512	28110	1788	3879	15344	87636
2001	30,344	3915	26112	2743	3657	19461	86236
2002	42,770	2987	20831	2185	1231	20514	90519
2003	50,015	2195	17131	3117	1193	18359	92010
2004	46,705	2035	12481	3708	2812	27000	94741
2005	50,170	2739	12914	2883	5880	29766	104352
2006	46,260	3949	20224	1606	9038	28076	109153
2007	48,875	4077	21756	1693	9564	31586	117551
2008	55,011	3937	21043	2711	10968	35573	129243
2009	54,550	5448	31670	3502	11775	29934	136880
2010	59,248	6711	52504	1842	8341	24341	152987
2011	60,699	3384	59933	1332	7981	24869	158198
2012	59,242	1,902	36,550	1,280	8,672	44,403	152,050
2013	62,800	2,379	15,373	2, 440	9,566	37,863	130,421

Source: Rubber Development Department

Sri Lanka has many leading rubber product manufacturers in the country whose products are very competitive in global markets. Some of them are Ansell Lanka (Pvt.), DSI Group, Camoplastsolideal (Pvt.) Ltd., Lalan Group, Dipped Products Ltd, Trelleborg (Pvt.) Ltd, Associated Motorways Ltd., Richard Peiris Group, etc.

In terms of export value, the rubber products industry (solid tyres, pneumatic tyres and tubes, plates, sheets and strips, surgical gloves and other gloves, floor coverings and mats, etc.) recorded a high growth from US \$ 539.91 million in the year 2008 to US \$ 889.40 million in the year 2014 (Table 1.2)

Sri Lanka can boast of international accepted products such as solideal branded industrial tyres manufactured here by Loadstar Ltd. Loadstar enjoys more than 20% of the international market. Trelleborg Lanka Ltd. also produces solid tyres to the global market. Sri Lanka in Southeast Asia which enjoys a large rubber output, developed rapidly in solid tyre manufacturing field in recent years by virtue of their advantages in resources.

USA is the largest importer of solid tyres from Sri Lanka. Belgium, Germany, Italy are the other major importers of solid tyre products. Solid industrial tyres are primarily used in material handling vehicles in areas such as airports, ports and transporting goods for storage. Sri Lanka has developed into a center for the production of solid industrial tyres. Sri Lankan solid tyre sector earned US \$ million 352 in year 2011 and US \$ million 331 in year 2012. However the quantity of solid tyre exports had come down by 15% in year 2012.

Table 1.2 Exports of Rubber Products Value in US\$ Mn

Table 1.2 Exports of Rubbel 1	v aruc II	1 000 1111					
Product	2008	2009	2010	2011	2012	2013	2014
Pneumatic & Retreated Rubber Tyres & Tubes	337.97	214.27	337.78	571.4	541.22	554.6	567.59
Industrial & Surgical Gloves of Rubber	117.22	113.87	136.92	180.98	176.34	195.4	175.93
Gaskets, Washers, Seals etc. of Hard Rubber	71.89	41.47	62.84	89.53	76.71	79.87	95.56
Rubber Plates, Sheets Rods of Vulcanized or Unhardened Rubber	10.14	12.21	17.21	39.25	59.65	54.83	47.76
Other Rubber Products	2.69	2.5	2.06	2.99	2.76	2.72	2.57
Total	539.91	384.32	556.81	884.15	856.68	887.42	889.4

(Source: Sri Lanka Customs)