# Use of Near-Infrared Analysis for the Evaluation of Proximate Nutrients of Finger Millet (*Eleusine coracana L*.)

BIE

#### Sajeewani Waruni Ranawaka

Thesis submitted to the University of Sri Jayewardenepura as the partial fulfillment requirement for the award of the degree of Masters of Science in Food Science and Technology.

#### Department of Food Science and Technology

#### **Faculty of Graduate Studies**

University of Sri Jayewardenepura

Sri Lanka

2008

#### Declaration

The work describe in this thesis was carried out by me as partial fulfillment of the requirement for the degree of Masters in Food Science and Technology under the supervision of Prof. Arthur Bamunuarachchi, Mr. Jagath Wansapala, Department of Food Science and Technology, University of Sri Jayawardenepura and Dr. (Mrs.) P. N. Dasanayaka, Department of Botany, University of Sri Jayawardenepura and a report on this thesis has not been submitted in whole or in part of any University or any institute for another degree.

22/08/2008 Date

(Sajeewani Waruni Ranawaka)

We certify that the above statement made by the candidate is true and this thesis is suitable for submission to the University for the purpose of evaluation.

Prof. Arthur Bamunuarachchi Department of Food Science and Technology University of Sri Jayawardenepura

M:A. Jund Sprine

Mr. Jagath Wansapala Senior Lecturer Department of Food Science and Technology University of Sri Jayawardenepura

alltin. . . . . . . . . . . . . . . . .

Dr. (Mrs.) P. N. Dasanayaka

Senior Lecturer

Department of Botany

University of Sri Jayawardenepura



## Contents

|             |             |                             | Pages |      |
|-------------|-------------|-----------------------------|-------|------|
| Table of c  | ontents     |                             |       | i    |
| List of Ta  | bles        |                             |       | ix   |
| List of Fig | gures       |                             |       | xi   |
| List of Ta  | bles of Ap  | pendix (i - v)              |       | xii  |
| List of Fig | gures of Aj | ppendix (v - vii)           |       | xiii |
| Acknowle    | dgement     |                             |       | xiv  |
| Abbreviat   | ion         |                             |       | xvi  |
| Abstract    |             |                             |       | xvii |
|             |             |                             |       |      |
| СНАРТЕ      | CR 01 – IN  | TRODUCTION                  |       |      |
| 1.1         | Introdu     | iction                      |       | 1    |
| 1.2         | Objecti     | ives of the study           |       | 2    |
|             | 1.2.1       | Major Objective             |       | 2    |
|             | 1.2.2       | Minor Objectives            |       | 2    |
|             |             |                             |       |      |
| СНАРТЕ      | CR 02 - LI  | TERATURE REVIEW             |       |      |
| 2.1         | Backgr      | ound                        |       | 3    |
| 2.2         | Finger      | Millet                      |       | 3    |
|             | 2.2.1       | Taxonomy and Classification |       | 4    |

i

|     | 2.2.2  | Origin and distribution              | 5  |
|-----|--------|--------------------------------------|----|
|     | 2.2.3  | Cultivation                          | 5  |
|     | 2.2.4  | Nutritional and Therapeutic value    | 6  |
|     | 2.2.5  | Usage of Millet                      | 7  |
|     |        |                                      |    |
| 2.3 | Proxim | nate Analysis                        | 8  |
|     | 2.3.1  | Determination of Moisture            | 8  |
|     |        | 2.3.1.1 Oven-Drying Method           | 9  |
|     | 2.3.2  | Determination of Protein             | 10 |
|     |        | 2.3.2.1 Micro Kjeldhal Method        | 11 |
|     |        | 2.3.2.1.1 Digestion                  | 12 |
|     |        | 2.3.2.1.2 Neutralization             | 12 |
|     |        | 2.3.2.1.3 Titration                  | 13 |
|     | 2.3.3  | Determination of Total Fat           | 15 |
|     |        | 2.3.3.1 Werner Schmid Method         | 15 |
|     | 2.3.4  | Determination of Fibre               | 17 |
|     | 2.3.5  | Determination of Ash Content         | 19 |
|     | 2.3.6  | Conventional Food Analytical Methods | 20 |

ii

| 2.4 | NIR S | pectroscopy   |                                              | 22 |
|-----|-------|---------------|----------------------------------------------|----|
|     | 2.4.1 | Overtone      |                                              | 23 |
|     | 2.4.2 | Combina       | tion bands                                   | 24 |
|     | 2.4.3 | Diffuse R     | eflectance                                   | 25 |
|     |       | 2.4.3.1 H     | Reasons for using Diffuse Reflectance in NIR | 26 |
|     | 2.4.4 | Basic Nea     | r-Infrared Analytical System                 | 27 |
|     | 2.4.5 | Relations     | nip of Absorbance and Reflectance            | 28 |
|     | 2.4.6 | Kubelka       | and Monk Method                              | 29 |
|     | 2.4.7 | NIR Spec      | etra and factors that effect NIR spectra     | 30 |
|     | 2.4.8 | Advantage     | es of NIR analysis                           | 32 |
|     | 2.4.9 | Usage of 1    | NIR Technology                               | 33 |
| 2.5 | Stati | stical Analys | sis                                          | 33 |
|     | 2.5.1 | Single Ter    | m Regression                                 | 33 |
|     | 2.5.2 | Interpretat   | ion of accuracy of NIR Model                 | 34 |
|     |       | 2.5.2.1       | Standard Error of Performance                | 34 |
|     |       | 2.5.2.2       | Coefficient of Correlation                   | 34 |
|     |       | 2.5.2.3       | Coefficient of Determination                 | 35 |
|     |       | 2.5.2.4       | Ratio of SEP to SD <sub>x</sub>              | 36 |

iii

# CHAPTER 03 -METHODOLOGY

| 3.1 | Sample   | Selection  |                                          | 37 |
|-----|----------|------------|------------------------------------------|----|
| 3.2 | Sample   | Preparatio | n                                        | 39 |
| 3.3 | Near Int | frared Sca | nning                                    | 39 |
|     | 3.3.1    | Material   | S                                        | 39 |
|     | 3.3.2    | Method     |                                          | 39 |
| 3.4 | Proxin   | nate Analy | zsis                                     | 40 |
|     | 3.4.1    | Determi    | nation of Moisture                       | 41 |
|     |          | 3.4.1.1    | Materials                                | 41 |
|     |          | 3.4.1.2    | Method                                   | 41 |
|     |          | 3.4.1.3    | Calculation of Moisture Content          | 41 |
|     |          | 3.4.1.4    | Calculation of Dry Material Content      | 41 |
|     |          |            |                                          |    |
|     | 3.4.2    | Micro k    | Kjeldhal Method                          | 42 |
|     |          | 3.4.2.1    | Materials                                | 42 |
|     |          | 3.4.2.2    | Chemicals                                | 42 |
|     |          | 3.4.2.3    | Method                                   | 43 |
|     |          |            | 3.4.2.3.1 Preparation of Sodium sulphate |    |
|     |          |            | solution                                 | 43 |
|     |          |            | 3.4.2.3.2 Preparation of Indicator       | 44 |

|   |             | 3.4.2.3.3 Preparation of 4% Boric acid solution | 44  |
|---|-------------|-------------------------------------------------|-----|
|   |             | 3.4.2.3.4 Preparation of 0.01 M HCl             | 44  |
|   |             | 3.4.2.3.5 Preparation of NaOH                   | 44  |
|   |             | 3.4.2.3.6 Preparation of 0.02 M oxalic acid     | 44  |
|   |             | 3.4.2.2.7 Standardization of NaOH               | 45  |
|   |             | 3.4.2.3.8 Standardization of HCl                | 45  |
|   |             | 3.4.2.3.9 Calculation of concentration of NaOH  | 45  |
|   |             | 3.4.2.3.10 Calculation of concentration of HCl  | 45  |
|   | 3.4.2.4     | Calculation of Protein Content (W.b.)           | .46 |
|   | 3.4.2.5     | Calculation of Protein Content (D.b.)           | 46  |
|   |             |                                                 |     |
| V | Verner Schr | nid Method                                      | 47  |
|   | 3.4.3.1     | Materials                                       | 47  |
|   | 3.4.3.2     | Chemicals                                       | 47  |
|   |             |                                                 |     |

3.4.3

| 3.4.3.3 | Method                             | 47 |
|---------|------------------------------------|----|
| 3.4.3.4 | Calculation of Fat Content on W.b. | 48 |
| 3.4.3.5 | Calculation of Fat Content on D.b. | 48 |

| 3.4.4 | Determinatio     | on of Fibre                       | 49 |
|-------|------------------|-----------------------------------|----|
|       | 3.4.4.1          | Materials                         | 49 |
|       | 3.4.4.2          | Chemicals                         | 49 |
|       | 3.4.4.3          | Method                            | 50 |
|       | 3.4.4.4          | Calculation of Fibre Content W.b. | 50 |
|       | 3.4.4.5          | Calculation of Fibre Content D.b. | 50 |
| 3.4.5 | Determinatio     | n of Ash Content                  | 51 |
|       | 3.4.5.1          | Materials                         | 51 |
|       | 3.4.5.2          | Method                            | 51 |
|       | 3.4.5.3          | Calculation of Fibre Content W.b. | 52 |
|       | 3.4.5.4          | Calculation of Fibre Content D.b. | 52 |
|       |                  |                                   |    |
| 3.5   | Instrument Cali  | bration                           | 52 |
|       |                  |                                   |    |
|       | -                |                                   |    |
| 3.6   | Statistical Anal | lysis                             | 52 |

vi

## **CHAPTER 04 – RESULTS AND DISCUSSION**

| 4.1 | Moisture Content of Kurakkan Samples of Calibration set    | 53 |
|-----|------------------------------------------------------------|----|
| 4.2 | Protein Content of Kurakkan Samples of Calibration set     | 54 |
| 4.3 | Total Fat Content of Kurakkan Samples of Calibration set   | 55 |
| 4.4 | Crude Fibre Content of Kurakkan Samples of Calibration set | 56 |
| 4.6 | Ash Content of Kurakkan Samples of Calibration set         | 57 |
| 4.7 | The Calibration                                            | 58 |
| 4.7 | The Validation                                             | 59 |
|     | 4.7.1 NIR Predicted Moisture Content of Validation set     | 60 |
|     | 4.7.2 NIR Predicted Protein Content of Validation set      | 63 |
|     | 4.7.3 NIR Predicted Total Fat Content of Validation set    | 65 |
|     | 4.7.4 NIR Predicted Fibre Content of Validation set        | 67 |
|     | 4.7.5 NIR Predicted Ash Content of Validation set          | 69 |
|     |                                                            |    |

4.8 Estimation of Nutrition composition of Finger Millet 72

| CHAPTER 05 – CONCLUSIONS     | 73 |
|------------------------------|----|
| CHAPTER 06 - RECOMMENDATIONS | 74 |
| REFERENCES                   | 75 |
| Appendix i                   | 77 |
| Appendix ii                  | 78 |
| Appendix iii                 | 79 |
| Appendix iv                  | 80 |
| Appendix v                   | 81 |
| Appendix vi                  | 82 |
| Appendix vii                 | 88 |
| Appendix viii                | 86 |
| Appendix ix                  | 90 |
| Appendix x                   | 91 |
| Appendix xi                  | 92 |

## List of Tables

| Table 2.2.4 | Nutritional Values of Finger Millet                      | 4  |
|-------------|----------------------------------------------------------|----|
| Table 2.2   | Guidelines for the interpretation of r                   | 35 |
| Table 2. 3  | Guidelines for the interpretation of r <sup>2</sup>      | 35 |
| Table 2. 4  | Guidelines for the interpretation of RPD                 | 36 |
| Table 3.1   | The details of the finger millet Calibration set         | 38 |
| Table 4.1   | Moisture Content of Calibration set                      | 53 |
| Table 4.2   | Protein Content of Calibration set                       | 54 |
| Table 4.3   | Total Fat content of Calibration set                     | 55 |
| Table 4.4   | Crude fibre content of Calibration set                   | 56 |
| Table 4.5   | Ash content of Calibration set                           | 57 |
| Table 4.6   | The calculated statistical values for calibrated models. | 58 |
| Table 4.7   | The moisture, protein, fat, fibre and ash content        |    |
|             | of validation set                                        | 59 |
| Table 4.8   | NIR Predicted Moisture Content of Validation set         | 60 |
| Table 4.9   | The Validation Statistics for Moisture                   | 61 |
| Table 4.10  | NIR Predicted Protein Content of Validation set          | 63 |

| Table 4.11 | The Validation Statistics for Protein                | 64 |
|------------|------------------------------------------------------|----|
| Table 4.12 | NIR Predicted Fat Content of Validation set          | 65 |
| Table 4.13 | The Validation Statistics for Fat                    | 66 |
| Table 4.14 | NIR Predicted Fibre Content of Validation set        | 67 |
| Table 4.15 | The Validation Statistics for Fibre                  | 68 |
| Table 4.16 | NIR Predicted Ash Content of Validation set          | 69 |
| Table 4.17 | The Validation Statistics for Ash                    | 70 |
| Table 4.18 | Estimation of Nutrition Composition of Finger Millet | 72 |

х

# List of Figures

| Figure 2.1 | Spikelets arrangement of a Finger Millet panicale        | 4  |
|------------|----------------------------------------------------------|----|
| Figure 2.2 | Semi micro Kjeldal apparatus                             | 13 |
| Figure 2.3 | Electromagnetic Spectrum                                 | 23 |
| Figure 2.4 | Regular reflectance on surface of mirror type            | 26 |
| Figure 2.5 | Diffuse reflectance on surface of matt type              | 26 |
| Figure 2.6 | Basic near infrared analytical system                    | 27 |
| Figure 2.7 | Spectra of wheat of three different particle sizes       | 30 |
| Figure 2.8 | The spectra of water and ground wheat with               |    |
|            | two levels of moisture                                   | 31 |
| Figure 4.1 | Scatter Plot of NIR predict value Vs Reference           |    |
|            | value for Moisture                                       | 62 |
| Figure 4.2 |                                                          |    |
| Figure 4.2 | Scatter Plot of NIR predict values Vs Reference          | 64 |
|            | value for Frotenn                                        | 04 |
| Figure 4.3 | The scatter plot of the NIR prediction data Vs Reference |    |
|            | data for fibre                                           | 68 |
| Figure 4.4 | The scatter plot of the NIR prediction data Vs           |    |
|            | Reference data for ash                                   | 67 |

# List of Tables of Appendix (i- v)

| Appendix i   |                                                                |    |
|--------------|----------------------------------------------------------------|----|
| Table i      | The statistical analysis report of the raw results of Moisture | 77 |
|              |                                                                |    |
| Appendix ii  |                                                                |    |
| Table ii     | The statistical analysis report of the raw results of Protein  | 78 |
|              |                                                                |    |
| Appendix iii |                                                                |    |
| Table iii    | The statistical analysis report of the raw results of Fat      | 79 |
|              |                                                                |    |
| Appendix iv  |                                                                |    |
| Table iv     | The statistical analysis report of the raw results of Fibre    | 80 |
|              |                                                                |    |
| Appendix v   |                                                                |    |
| Table v      | The statistical analysis report of the raw results of ash      | 81 |
|              |                                                                |    |

## List of Figures of Appendix (vi -viii)

Appendix vi

Figure vi Calibration Samples

Appendix vii

Figure vii The NIR spectrums of the calibration samples. 88

Appendix viii

Figure viii NIR absorption Bands

89

82

#### Acknowledgement

First and foremost I wish to express my deepest gratitude to my project supervisor Professor Arthur Bamunuarachchi for his valuable advice and for reading the manuscript and guidance needed through out this study and sparing his valuable time to success this study.

I wish to express my sincere thanks to my project supervisor Dr. Nilanthi Dasanayaka Senior Lecturer, Department of Botany, University of Sri Jayawardenepura for supplying me specimens of different varieties of finger millet samples and complete knowledge about samples and for reading the manuscript and sparing her valuable time and encouragement in bringing this study to a successful completion.

I owe my sincere gratitude to my project supervisor Mr. Jagath Wansapala, Senior Lecturer, Department of Food Science and Technology, University of Sri Jayawardenepura for his valuable advice and guidance through out this study and for reading the manuscript and sparing his valuable time in bringing this study to successful completion.

I wish to express my sincere gratitude to Dr. K.K.D.S. Ranaweera, Head of the Department of Food Science and Technology, University of Sri Jayawardenepura and all the academic staff and non- academic staff of the Department of Food Science and Technology for their kind assistance given to me in this study.

I wish to extend to my sincere thanks to the staff members of the Plant Genetic Resources Center, Gannoruwa, for providing specimens of different varieties of finger millet seed samples.

I would like to express my sincere thanks to Dr. Damitha Rajapaksha Senior Research Officer of the Food and Agro unit of Industrial Technology Institute for giving me facilities in the preparation of samples.

I owe my grateful thanks to Dr. D.P. Gunarathne, Consultant; Gold Coin Feed Mills Ltd and Mr. Francis Fernandes, General Manger, Gold Coin Feed Mills Ltd and Mrs. Sumudu Dissanayake, Chemist, Gold Coin Feed Mills Ltd and Miss Piumi Thushari, Chemist, Gold Coin Feed Mills Ltd for facilitating the using of Foss NIR System Model 5000 Spectrometer.

Finally I like to thank Mr. H. P. P. S. Somasiri, Senior Research Officer, Industrial Technology Institute for supporting me with technical details of instrument operating and calibrating method.

# List of Abbreviations

| NIR            | - | Near-Infrared Reflectance                                       |
|----------------|---|-----------------------------------------------------------------|
| Nm             | - | Nanometers                                                      |
| PGRC           | - | Plant Genetic Resources Center                                  |
| ICRISAT        | ÷ | International Crop Research Institute for the Semi-Arid Tropics |
| RARS/AK        | - | Regional Agricultural Research Station Agonakolapalassa         |
| d.b.           | - | Dry basis                                                       |
| w.b.           | - | Wet basis                                                       |
| Ν              | - | Number of Calibration Samples                                   |
| X              | - | Mean value of the Reference data                                |
| Y              | - | Mean value of the NIR predict data                              |
| SEP            |   | Standard error of performance                                   |
| $SD_x$         | - | Standard deviation of reference values                          |
| $SD_y$         | - | Standard deviation of NIR predicted values                      |
| RPD            | - | Ratio of SEP to SD <sub>x</sub>                                 |
| r              | - | Coefficient of correlation                                      |
| b              | - | Regression coefficient                                          |
| a              | - | Regression intercept                                            |
| R <sup>2</sup> | - | Coefficient of determination                                    |
| VR             | - | Variance                                                        |

xvi

# Use of Near-Infrared Analysis for the Evaluation of Proximate Nutrients of Finger Millet (*Eleusine coracana L.*) Sajeewani Waruni Ranawaka

#### ABSTRACT

Near Infrared Reflectance spectroscopy (NIR) is a sophisticated and accurate analytical technique for rapid determination of nutrient composition. The purpose of this study was to develop calibration models using NIR reflectance spectroscopy for determination of the Proximate Nutrients of finger millet grains. The morphologically different finger millet samples were selected as the calibration sets. Grains were grinded into fine particles by using Retsch Mill with 500 µm screen size. NIR (1100 nm - 2500 nm) reflectance spectra for all those samples were obtained. The reference data were analyzed using conventional methods; Micro Kjeldahl method, forced-Air Oven method, Werner Schmid method, Dry ashing and the method of crude fiber determination. A mathematical relationship was developed between spectral data and analytical data. The application of multivariate calibration algorithms and statistical methods were used to evaluate the efficiency and accuracy of the calibrated models by means of a validation set. These calibrated models generated excellent prediction results. R<sup>2</sup> values of moisture, protein, fibre and ash were 95.4 %, 98.7 %, 94.9 % and 91.0 % respectively while SEP value for those models were 0.1719, 0.1925, 0.1561 and 0.1435 respectively. These results led to the conclusion that developed NIR models can be used for accurate proximate analysis of finger millet grains.