# An Optimal Production Process to Maximize Profit Based on Data from a Factory Producing Orthodox Tea

By

### Meemanage Buddhipani Yashodha Perera

Thesis submitted to the University of Sri Jayewardenepura for the award of

the Degree of Master of Science in Industrial Mathematics in 2008

The work described in this thesis was carried out by me under the supervision of Prof. Sunethra Weerakoon and Mr. D. D. Ananda Gamini and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

M. B. Y. Perera (GS/MSc/IM/2875/06)

Signature 03.10.2008 Date

Signature

Date

October 032

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Prof. Sunethra Weerakoon

Coordinator

PG Diploma/M.Sc. in Industrial Mathematics

Department of Mathematics

Faculty of Applied Science

University of Sri Jayewardenepura

Nugegoda.

Mr. D.D. Ananda Gamini

Senior Lecturer

Department of Statistics and Computer Science

Faculty of Applied Science

University of Sri Jayewardenepura

Nugegoda.

DDX

Signature 03/00,

Date



# **Table of Contents**

| Table  | e of Contents                               | i    |
|--------|---------------------------------------------|------|
| List o | of Tables                                   | vi   |
| List o | of Figures                                  | viii |
| List o | of Formulas                                 | ix   |
| Ackr   | nowledgement                                | x    |
| Abst   | ract                                        | xi   |
| Cha    | pter 1 Introduction                         | 01   |
| 1.1    | Теа                                         | 01   |
| 1.2    | Tea Plant                                   | 01   |
| 1.3    | History of Tea                              | 02   |
| 1.4    | Ceylon Tea                                  | 02   |
| 1.5    | Tea Industry in Sri Lanka                   | 03   |
|        | 1.5.1 Tea Production                        | 03   |
| 1.6    | Colombo Tea Auctions                        | 04   |
| 1.7    | Tea Exports                                 | 04   |
| 1.8    | Quality of Tea                              | 04   |
| 1.9    | Tea Grades                                  | 05   |
| Cha    | pter 2 Project Background                   | 06   |
| 2.1    | Raigamkorale Tea Shakthi Tea Factory        | 06   |
|        | 2.1.1 Facelift for Raigamkorale Tea Factory | 06   |
| 2.2    | The Factory Process                         | 08   |
|        | 2.2.1 Withering                             | 08   |

|     | 2.2.2  | Rolling                                                            | 09 |
|-----|--------|--------------------------------------------------------------------|----|
|     | 2.2.3  | The Rolling Program                                                | 10 |
|     | 2.2.4  | Fermentation                                                       | 12 |
|     | 2.2.5  | Drying                                                             | 12 |
|     | 2.2.6  | Sifting                                                            | 13 |
|     | 2.2.7  | First and Second Dhools                                            | 13 |
|     | 2.2.8  | Third Dhool                                                        | 14 |
|     | 2.2.9  | Big Bulk                                                           | 16 |
|     | 2.2.10 | Packing                                                            | 17 |
| 2.3 | Objec  | tives                                                              | 17 |
|     | 2.3.1  | Overall Objective                                                  | 17 |
|     | 2.3.2  | Specific Objectives                                                | 18 |
| Cha | pter 3 | Literature Review                                                  | 19 |
| 3.1 | Thin   | Layer Modelling of Black Tea Drying Process                        | 19 |
| 3.2 | Effec  | t of Enzyme Inactivation by Microwave and Oven Heating on          |    |
|     | Prese  | rvation Quality of Tea                                             | 20 |
| 3.3 | An In  | vestigation on the Production of Construction Brick with Processed |    |
|     | Wast   | e Tea                                                              | 21 |
| 3.4 | Auto   | matic Endpoint Determination for Batch Tea Dryers                  | 21 |
| 3.5 | The I  | mpact of Processing Techniques on Tea Volatiles                    | 22 |
| 3.6 | Tea i  | s a Better Drink than Water                                        | 23 |
| 3.7 | Bene   | fits of Tea in Reducing Diseases                                   | 23 |

| Cha | pter 4  | Data Collection                                     | 25 |
|-----|---------|-----------------------------------------------------|----|
| 4.1 | Collect | ion of Factory Data                                 | 25 |
| 4.2 | Data G  | athered from the Factory Officer and Labourers      | 25 |
| 4.3 | Collect | ion of Data from Monthly Accounts                   | 26 |
| 4.4 | Collect | ion of Auction Data                                 | 27 |
| 4.5 | Collect | tion of Data from Sri Lanka Tea Board               | 27 |
| 4.6 | Data C  | ollected from Other Tea Factories                   | 28 |
|     |         |                                                     | 20 |
| Cha | pter 5  | Analysis of Data                                    | 29 |
| 5.1 | Analys  | sis of Production Data of All Tea Grades            | 29 |
| 5.2 | Analys  | sis of Production Data of Best Tea Grades           | 31 |
| 5.3 | Analys  | sis of Production Data of All Tea Grades Separately | 32 |
|     | 5.3.1   | BOP1                                                | 32 |
|     | 5.3.2   | FBOP1                                               | 33 |
| Cha | apter 6 | Methodology                                         | 34 |
| 6.1 | Select  | ion of the Method                                   | 34 |
| 6.2 | Introd  | uction of Constraints                               | 34 |
|     | 6.2.1   | Total Production                                    | 35 |
|     | 6.2.2   | First and Second Dhools                             | 37 |
|     | 6.2.3   | Third Dhool                                         | 40 |
|     | 6.2.4   | Big Bulk                                            | 43 |
|     | 6.2.5   | FBOPF SP and FBOPF EX SP                            | 44 |
|     | 6.2.6   | Pekoe and Pekoe1                                    | 44 |
|     | 6.2.7   | FBOP and FBOP1                                      | 45 |

|                           | 6.2.8   | The Upper Bound and Lower Bound Values                         | 45  |
|---------------------------|---------|----------------------------------------------------------------|-----|
| 6.3                       | The M   | lodel                                                          | 46  |
|                           | 6.3.1   | Assumptions                                                    | 48  |
| Cha                       | pter 7  | <b>Results and Discussion</b>                                  | 49  |
| 7.1                       | Testir  | ng the Model Using Given Lower Bound and Upper Bound Values    | 50  |
| 7.2                       | Testin  | ng the Model with Different Lower Bound Values                 | 52  |
| 7.3                       | Maki    | ng Lower Boundary Zero for All the Off Grades                  | 54  |
| 7.4                       | Maki    | ng Lower Boundary Zero for the Grades Having Lower Prices      | 56  |
| 7.5                       | Maki    | ng Lower Boundary Zero for All the Tea Grades                  | 59  |
| 7.6                       | Testi   | ng the Model for the Data of January, 2008                     | 63  |
| 7.7                       | Testi   | ng the Model for the Data of February, 2008                    | 65  |
| 7.8                       | Testi   | ng the Model by Reducing the Big Bulk and Increasing the Third |     |
|                           | Dhoc    | 1                                                              | 67  |
| 7.9                       | Testi   | ng the Model Using LINDO Optimization Software                 | 72  |
| Ch                        | apter 8 | Conclusion                                                     | 69  |
| Chapter 9 Recommendations |         | 75                                                             |     |
| Re                        | ference | 5                                                              | 76  |
| Ар                        | pendix  | I (Monthly Accounts)                                           | 77  |
| Ар                        | pendix  | II (Weight of Production as Percentage of Tea Shakthi          |     |
|                           |         | Tea Factory)                                                   | 91  |
| Ар                        | pendix  | III (Graphs for Production of Each Tea Grade)                  | 97  |
| An                        | nendiv  | IV (Graphs for Yearly Production as Percentages)               | 103 |

| Appendix V (Production Data of Other Tea Factories)                        | 108 |
|----------------------------------------------------------------------------|-----|
| Appendix VI (Graphs for Production Data of Other Tea Factories)            | 112 |
| Appendix VII (Calculation of the Production Cost per kilogram of Made Tea) | 114 |
| Appendix VIII (Data taken from Lanka Commodity Brokers Limited)            | 115 |
| Appendix IX (Monthly Production of Tea Shakthi Tea Facory)                 | 121 |
| Appendix X (LINDO program outputs)                                         | 125 |

## List of Tables

| Table 1.1: Tea grades produced in low grown orthodox manufacturing process       | 05 |
|----------------------------------------------------------------------------------|----|
| Table 4.1: Production in weights of tea grades as Percentage values of different |    |
| orthodox tea manufacturing factories                                             | 28 |
| Table 6.1: Low grown orthodox tea grades                                         | 35 |
| Table 6.2: Percentage values of each tea grade containing in each dhool          | 36 |
| Table 6.3: Percentage values of grades in each fraction of first and second      |    |
| dhools divided during the sifting process                                        | 38 |
| Table 6.4: Percentage values of grades in each fraction of third dhool divided   |    |
| during the sifting process.                                                      | 42 |
| Table 7.1: Tea grade prices of March, 2008                                       | 49 |
| Table 7.2: The output of TORA program for weight of each grade in percentages    |    |
| for the model 7.1                                                                | 50 |
| Table 7.3 : Sensitivity analysis for the model 7.2                               | 52 |
| Table 7.4: The output of TORA program for weight of each grade in percentages    |    |
| for the model 7.2                                                                | 54 |

| Table 7.5 : Sensitivity analysis for the model 7.2                              | 56 |
|---------------------------------------------------------------------------------|----|
| Table 7.6: The output of TORA program for weight of each grade in percentages   |    |
| for the model 7.3                                                               | 58 |
| Table 7.7: The output of TORA program for weight of each grade in percentages   |    |
| for the model 7.4                                                               | 61 |
| Table 7.8: The output of TORA program for weight of each grade in percentages   |    |
| for the model 7.5                                                               | 64 |
| Table 7.9: The output of TORA program for weight of each grade in percentages   |    |
| for the model 7.6                                                               | 66 |
| Table 7.10: The output of TORA program for weight of each grade in percentages  |    |
| for the model 7.7                                                               | 68 |
| Table 7.11 : The output of TORA program for weight of each grade in percentages |    |
| for the model 7.8                                                               | 70 |

# List of Figures

| Figure 2.1 : Withering Troughs                               | 08 |
|--------------------------------------------------------------|----|
| Figure 2.2 : Rolling Machine                                 | 09 |
| Figure 2.3 : Rolling Program                                 | 10 |
| Figure 2.4 : Humidifier                                      | 12 |
| Figure 2.5 : Colour Separator                                | 17 |
| Figure 5.1 : Analysis of Production Data for All Tea Grades  | 30 |
| Figure 5.2 : Analysis of Production Data for Best Tea Grades | 31 |
| Figure 5.3 : Tea Grade BOP1 Produced in Each Month           | 32 |
| Figure 5.4 : Tea Grade FBOP1 Produced in Each Month          | 33 |

Formula 6.1: Calculation of the Bought Leaf Price (i)

Formula 6.2: Calculation of the Bought Leaf Price (ii)

34

35

#### Acknowledgement

I express my sincere gratitude to my supervisor Prof. Sunethra Weerakoon, Coordinator of the Industrial Mathematics program, Department of Mathematics, Faculty of Applied Science, for giving her guidance and assistance towards a successful completion of this research. Further I express my sincere appreciation to my supervisor Mr. D. D. Ananda Gamini, Senior Lecturer, Department of Statistics and Computer Science, Faculty of Applied Science, for his guidance and assistance throughout my research. I also would like to thank both of my supervisors for spending their valuable time in visiting the factory and going through the entire process without complains for having to sacrifice their weekend.

I express my gratitude to Mr. Kudabanda, General Manager, Tea Shakthi Fund, who offered me the industrial placement with all the facilities. I specially thank Mr. S. P. Edirisinghe, Manager, Mr. M. A. F. N. Fernando, Factory Officer, and Mr. C. Geoffrey, Chief Clerk, and all other staff members of Tea Shakthi Tea Factory, Horana for giving me necessary information to complete my research successfully.

I also thank factory officers of Sunils tea factory, Ingiriya, New Diyagala tea factory, Deniyaya, D and T tea factory, Rathnapura, Bandarahena tea factory, Kalawana, and New Batuwangala tea factory, Deniyaya, for giving their information about the production.

Further I thank Mr. Ravi de Silva, Manufacturing Advisor, Lanka Commodity Brokers for giving the auction data for each tea grade.

#### Abstract

The profit of the Tea Shakthi tea factory was calculated by using different production values for all tea grades produced in orthodox tea manufacturing processes. The results indicated that the production of more grades with different production values than the current factory process will increase the profit of the factory by 80%.

A linear programming model was constructed to maximize the profit of the factory by assuming that the total production of the factory was exactly 21.5%. However it varies slightly with the monthly production and the quality of green leaf. For convenience, the cost of producing one kilogram of tea is taken to be a constant by averaging all costs reported. The results obtained will depend on both of these factors but they will not greatly affect the solution because the values taken are reliable and very close to the actual values of the relevant month.

To increase the profit, it is required to change the actual manufacturing process at certain stages and it was revealed that the suggested changes are viable under the existing conditions according to the available sources.

#### Chapter 1

#### Introduction

This chapter mainly deals with the history and general knowledge of tea production and the usage of the end product and hence mostly contains quotations.

#### 1.1 Tea

Tea is the most popular non-intoxicating beverage in the world. The three main categories of tea are black, green, and oolong. Within each of these categories there are many varieties. Tea bags were introduced in the twentieth century, and it is the most popular form people like to use.

#### 1.2 Tea Plant

The tea plant is an evergreen of the Camellia family that is native to China, Tibet and northern India. There are two main varieties of the tea plant. The small leaf variety, known as Camellia sinensis, thrives in the cool, high mountain regions of central China and Japan. The broad leaf variety, known as Camellia assamica, grows best in the moist, tropical climates found in Northeast India and China. The plant produces dark green, shiny leaves and small, white blossoms.[3]

#### 1.3 History of Tea

Tea was first discovered by the Chinese emperor Shennong in 2737 BC. When the emperor on a trip to a distant region, he and his army stopped to rest and a servant began to boil water for him to drink. A dead leaf from a wild tea bush fell into the water and it turned a brownish colour and presented to the emperor. The emperor drank it and found it very refreshing, and tea was born. During the period of Chinese emperor Tang Dynasty, tea became a popular drink in China. The legends tell that tea spread along with Buddhism. [3]

#### 1.4 Ceylon Tea

Prior to 1960s, main foreign exchange earner in Sri Lanka was coffee and today tea has taken this position and Sri Lanka is the world's third biggest exporter of tea. The two men responsible for this transformation are James Taylor and Sir Thomas Lipton.

In 1866 the first seeds were planted at Loolecondera by James Taylor the person who introduced tea cultivation to Sri Lanka. The first shipment of Ceylon tea had reached the London auctions in 1875. In 1890, Sir Thomas Lipton bought tea estates from Sri Lanka and sent tea to Britain and at present also his company produces best quality tea. [4]

Ceylon tea from Sri Lanka, acclaims as the best tea in the world has its inherent unique characteristics and reputation running through more than a century. The influence of climate conditions of its plantation imparts to the product a variety of flavors and aromas, synonymous with quality.