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ABSTRACT 

A deterministic compartment model is derived with the aim of studying the dynamics of 

the Dengue virus fever which emerged as an epidemic in Sri Lanka for the past few 

decades. The model is based on the epidemiological behavior of the dengue virus in the 

human body. The host population is subdivided into a set of distinct compartments. 

namely, Susceptible (5), Dengue fever infected (I), Dengue hemorrhagic fever infected 

(I-I) and recovered(R). 

Considering the rate of flux of individuals between compartments a system of ordinary 

differential equations is derived for the description of the dynamic of S. I, H and R, 

respectively. Taking the total population as the characteristic scale, the dimensionless 

form of the system is obtained. Then the existence and uniqueness of the solution of the 

system is established examine the conditions of Picard-Lindelof theorem. The stability 

analysis reveals that the system contains two equilibrium points namely disease free sate 

and endemic state. And also the system stability at these equilibrium points can be 

justified by observing the behavior of the reproduction number. 

The model parameters involved in the system are estimated by approaching different 

statistical techniques depending on their nature. Details of Dengue virus fever in 

Gampaha district for past few years are used for the determination of parameters. 

We numerically simulate the solution of SlUR model, with respect to the global error, 

by means of the fourth order Runge-Kutta method. The numerical solution of SlUR 

model shows that it takes nearly five or six months to spread dengue fever all over the 

area. Between ninth and eleventh month the maximum number of patients are infected 

and after eighteen or nineteen months the disease disappear. 
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Chapter One 

kiltI] 1II[I)l 

Dengue is an African word meaning hone hreaking. The dengue which is a member of 

the virus family Flaviviridae was first reported as an epidemics fever in 1779-1780 in 

Asia. Africa. and North America with the simultaneous outbreaks. The dengue viruses 

and their mosquito vector have had a worldwide distribution in the tropics for more than 

200 years. The dengue fever is a mosquito borne disease caused by dengue virus. It is 

rapidly expanding in most tropical and subtropical region in the world. Dengue fever 

may occur in people of all ages who are exposed to infected mosquitoes during the rainy 

seasons. 

Dengue Fever, the member of virus family Flaviviridae has been one of the most 

important resurgent diseases in the tropical and sub tropical countries in the world. 

Since the distribution of both viruses and mosquitoes are occurred in the urban and 

suburban regions around the country the dengue fever outbreaks rapidly afiecting the 

young and the old, the rich and the poor in highly densely populated areas. 

The prime aim of the paper is to develop a mathematical model to describe the dynamic 

of the dengue fever and predict future situation as the measures of approximated 

numerical representation. 

The dengue infected individuals in the model are identified as Dengue Fever or Dengue 

Hemorrhagic Fever patients. With respect to the factors that influence the affect of the 

virus, it behaves at different levels in a human body. Thus the symptoms and disease 

characteristics of an infected body may differ accordingly. The individuals at a certain 

level of virus affection with similar symptoms are considered to be a compartment. 



With the idea of developing a compartmental model for the dengue epidemiological 

disease, the host population is initially divided into distinct compartments according to 

the epidemiological status of the dengue fever. The number of compartments in the 

model is determined by the environmental factors and other biological views of the 

virus along with the symptoms of the infected human body. The SlI-IR model consists of 

four distinct epidemiological compartments for the individuals in susceptible, Dengue 

Fever, Dengue Hemorrhagic Fever, and Recovery states. At the model inception all 

individuals in the system are assigned to one of these compartments according to their 

symptoms on the infected body. By the time passing if the symptoms are differed they 

will be moved to the next respective compartment of the model. The flux of these 

individuals between model compartments is interpreted by the model parameters. The 

dynamics of the population size is another important factor in epidemiological models. 

In the cases of dengue fever the population size is assumed to be at a constant level 

because the model is employed for the short period of time. And then the birth and 

death rates are adjusted accordingly. Under this phenomenon the behavior of these 

compartments is interpreted by the system of differential equations. The parameters are 

estimated by the data collected from the real world cases such that the model can 

describe the dynamics of the physical phenomenon and to make a prediction of future 

situation of the fever. At last the model validity is checked over the medical data 

gathered from MOH offices in the district since there may be discrepancies between 

model solutions and physical observations. 

The chapter one describes the overview of developing a compartmental model for the 

dengue epidemic disease. 

The chapter two describes Hierarchical Epidemiological Models 



The chapter three describes the basics of the dengue fever and the symptoms to 

distinguish the level of Deiigue Fever individuals. Furthermore the methods of 

controlling the virus transmission and methods of prevention to reduce the infectious 

individuals will be discussed. 

The chapter four describes the dynamics of the epiderniological model SIHR and its 

stability. The infectious period of an individual in a compartment is identified as to 

follow an exponential distribution. And also the concept reproduction ratio of 

epidemiological model is observed as a threshold value in the endemic diseases. 

The chapter live describes the new model SIHR by dividing the host population in to 

four compartments according to the epidemiological states of the dengue virus. 

The chapter six describes the existence and the uniqueness of the solutions at the 

equilibrium points. A reproduction ratio which is a threshold value of the SIHR model 

is defined as a combination of model parameters. 

The chapter seven describes the estimation process of the identified parameters of the 

SIHR dengue epidemiological model. The parameter estimations are implemented over 

DF/DHF data collected from the office of Deputy Provincial director of Health Service-

Gampaha District. 

The chapter eight describes the numerical approximations of the SIHR system for the 

period of twelve months ahead. The fourth order Runge-Kutta method is employed as a 

tool of approximation method of the SIHR system. Move over in this chapter describes 

the variation of error in the model data derived by the Runge-Kutta method. 

The chapter nine describes the dynamics of the dengue fever based on the 

characteristics of SIHR epidemiological model. And also this chapter remarks the 
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validity of predicting the future behavior of the dengue fever for the period of six 

months ahead. 

Developing of such mathematical model it will be more important measurement to 

address disease patterns, evaluate and interpret data for critical decision-making and 

program customization to access infectious diseases. Since the mathematical models 

have become important tool in prediction as numerical measures of the spread, it is 

believed that the control program can anticipate the probable outcome in the 

implementation of pre-design action plans. 
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Chapter Two 

2 HIERARCHICAL EPIDEMIOLOGICAL MODELS 

Mathematical modeling is an essential tool in studying a diverse range of such diseases. 

Basic aims in studying Mathematical modeling of infectious disease can be dated back 

to 1760 when Daniel Bernoulli evaluated the effectiveness of variation of healthy 

people with smallpox virus. In 1960 Hamer formulated and analyzed a discrete time 

model in his attempt to understand the recLirrence of measles epidemics. His model may 

have been the first to assume that the incidence (number of new cases per unit time) 

depend on the product of the densities of the susceptiblcs and infectives. Ross was 

interested in the incidence and control of malaria, so he developed differential equation 

models for malaria as a host vector disease in 1911. The other deterministic 

epidemiology models were then developed in papers by Ross and Hudson, Martin and 

Lotka. [24]. 

Starting in 1926 Kermack and McKendrick published papers on epidemic models and 

obtained the epidemic threshold result that the density of susceptibles must exceed a 

critical value in order for an epidemic outbreak to occur[8]. Mathematical epidemiology 

seems to have grown exponentially starting in the middle of the 20th century (the first 

edition in 1957 of Bailey's book [5] is an important landmark), so that a tremendous 

variety of models have now been formulated, mathematically analyzed, and applied to 

infectious diseases. The review of the literature shows rapid growth of epidemiological 

model. The recent models have involved aspects such as passive immunity, gradual loss 

of vaccine and disease-acquired immunity, stages of infection, vertical transmission, 

disease vectors, macro parasitic loads, age structure, social and sexual mixing groups, 



spatial spread, vaccination, quarantine, and chemotherapy. Special models have been 

formulated for diseases such as measles, rubella. chickenpox. whooping cough. 

diphtheria, smallpox, malaria, onchocerc iasis. ii lariasis. rabies, gonorrhea, herpes, 

syphilis, and lily/AIDS. 

At the beginning of last century, a series of deterministic compartment models such as 

MSEIR. MSEIRS, SEIR, SEIRS, SIR, SIRS, SEI. SEIS, SI and SIS have been proposed 

based on the flow patterns between the compartments. However, there was a hiatus in 

epidemiological modeling until the beginning of the 20t1  century (1911), with the 

pioneers of Hamer[ 12] and Ross[24] on measles and malaria respectively. Most models 

developed later try to incorporate other factors into the models. These factors include 

variation of population size and age-structure. Two important developments recently are 

the discretization of the model so that statistical method can be applied directly in the 

estimation of the parameters. 

Over the past century, there has been broadly studied of the epidemics modeling. One of 

the well-known mathematical models of epidemics is the susceptible- infectious-

removed (SIR) model originally formulated by Kermack and McKendrick. In 1927, 

Kermack and McKendrick derived the celebrated threshold theorem, which is one of the 

key results in epidemiology[20]. It predicts, depending on the transmission potential of 

the infection the critical fraction of susceptibles in the population that must be exceeded 

if an epidemic is to occur. This was followed by the classic work of Bartlett[61, who 

examined models and data to expose the factors that determine disease persistence in 

large populations. 



Arguably. the first landmark book on mathematical modeling of epiderniological 

systems was published by Bailey that led in part to the recognition of the importance of 

modeling in public health decision making. 

In last two decades, infectious diseases have gained increasing recognition as a key 

component in the dynamics epidemic diseases prevailing in populations reviewed in 

Anderson and May 1991, Grenfell and Dobson in 1995[101. 

A number of diseases are endemic in animal populations, that is, they are persistent and 

almost never go locally extinct. We can use the word endemic according to the 

epiderniological tradition, which is unrelated to the bio-geographic usage. The 

interaction between hosts and their endemic parasites has been modeled intensively. 

Both host—parasite and reduced host abundance can result from such interactions 

(Anderson 1978, May) Endemism (local persistence) depends on parasite vital rates, 

host abundance and host reproduction 

Dana A. Focks, Eric Daniels, Dan G. Haile AND James E. Keesling have developed a 

pair of stochastic simulation models that describe the daily dynamics of dengue virus 

transmission in the urban environment. Their goal had been to construct comprehensive 

models that take into account the majority of factors known to influence dengue 

epidemiology. The models have an orientation toward site-specific data and are 

designed to he used by operational programs as well as researchers. The first model, the 

container-inhabiting mosquito simulation model (CIMSiM), a weather-driven dynamic 

life-table model of container-inhabiting mosquitoes such as Aedes aegypti, provides 

inputs to the transmission model and the dengue simulation model (DENSIM) is the 

second model to a description and validation of the entomology models. 
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