
GAUSSIAN QUADRATURE NEWTON'S METHOD FOR FINDING 

ROOTS OF NONLINEAR EQUATIONS 

A Thesis 

G. H. J. Lane! 

Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

Industrial Mathematics 

Department of Mathematics 

Faculty of Graduate Studies 

University of Sri Jayewardenepura 

October 2002 



DECLARATION 

I hereby certify that this project report is my own work and it has never been submitted 

for any degree program. 

Date:. cc 

G. H. J. Lanel 



We approve the Masters degree in Industrial Mathematics thesis of G. H. J. Lanel. 

Date:?...................  
Prof. Sunethra Weerakoon 

Principal Supervisor 

Department of Mathematics 

University of Sri .Jayewardenepura. 

DateS ....... / .... ...........  

Dr. G. K. Watugala 

Supervisor 

Department of Mechanical Engineering 

University of Moratuwa. 

Mr. H. K. G. de Z. Amarasekera 

Supervisor 

B. Sc.; M. Phil. (Sri Jayewardenepura). 

38 Gunananda Mawatha, 

Panadura. 



ABSTRACT 

In this research we approximate the area under the curve appearing in the Newton's 

theorem by 2-point Gaussian quadrature formula. With the help of that we present an 

improvement to Newton's method for root finding. This iterative method converges to 

the root much faster and we have proved that it is third order convergent. The Established 

theory is supported by computed results by applying the new method to a wide range of 

functions and comparing it with the Newton's method and evaluating the computational 

order of convergence. 

Algorithms constructed were implemented by using the computer language Turbo 

and mathematical package Maple (version 6) was used for graphics. 

Keywords: Newton's formula, Gaussian quadrature, Iterative methods, Order of 

convergence, Function evaluations. 
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CHAPTER 1 

INTRODUCTION 

Problem of solving nonlinear equations may arise in many situations. Let us discuss such 

a case. The growth of large populations can be modeled over a short periods of time by 

assuming that the population grows continuously with time at a rate proportional to the 

number of individuals present at that time. If we let M(t) denote the number of 

individuals at time t and a denote the constant birth rate of the population, the population 

satisfies the differential equation 

dM(t) =aM(t) 
dt 

This model is valid only when the population is isolated with no immigration from 

outside the community. If immigration is permitted at a constant rate b, the differential 

equation governing the situation becomes 

whose solution is 

dM(t) 
=aM(t)+b 	 (1.2) 

di' 

M(t) = Moeu 	 —1) 	 (1.3) 
a 

Suppose a certain population contains five million individuals initially, those 700,000 

individuals immigrate into the community in the first year, and that 1,600,000 individuals 

are present at the end of one year. Determination of the birth rate of this population 

necessitates solving for a in the equation 

l0e' +(e —l)=16. 

The numerical methods are used to find approximations to solutions of equations of this 

type (1.4), when the exact solutions cannot be obtained by algebraic methods. 



The problem is called a root finding problem and it consists of finding values of the 

variable x that satisfy the equationf(x) = 0, for a given functionf A solution to this 

problem is called a zero of f or a root of f(x) = 0. This is one of the oldest numerical 

approximation problems and yet research is continuing actively in this area even at 

present. The most popular procedure is the Newton-Rapshon method, basically developed 

by Issac Newton over 300 years ago. 

Newton's method, which approximates the roots of a nonlinear equation in one variable 

using the value of the function and its derivative, in an iterative fashion, is probably the 

best known and most widely used algorithm and it converges to the root quadratically. 

In this study we suggest an improvement to the iterations of Newton's method. 

Derivation of Newton's method involves an indefinite integral of the derivative of the 

function and the relevant area is approximated by a rectangle. In the proposed method we 

approximate this indefinite integral by applying a Gaussian Quadrature formula instead 

of a rectangle, thereby reducing the error in the approximation. It is shown that the order 

of convergence of the new method is three, and computed result supports this theory. 

Even though we have shown that the order of convergence is three, in several cases, 

computational order of convergence is even higher. For most of the functions we tested, 

the order of convergence for Newton's method was less than two and for the new method 

it was always close to three. 

It is also shown that for quite a number of nonlinear functions the number of iterations 

required for the new method is less than that of the Newton's method. 
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CHAPTER 2 

PRELIMiNARIES 

Mean Value Theorem 2.1 

If fc C[a, h] andf is differentiable on (a, b), then a number c, a <c <b, exists such 

that 

f' (c) = 
f(b) - f(a) 

b—a 
(2.1) 

Intermediate Value Theorem 2.2 

If f c C[a, b] and k is any number between f(a) and f(b), then there exists c in (a, b) 

for which f(c) k. 

Taylor's Theorem 2.3 

Suppose if e C,' [ a, b] and f ii+1 exists on [a, b]. Let x0  E [a, b]. For every x E [a, b], 

there exists (x) between x0  and x with 

f(x) = P,, (x) + R,(x), 

where 

P,jx) = f(x0)+f'(x0)(x—x0)+ 	
2! 	 n! 

(x—x0 ) 2  +•••+ 	 (x—x0 )' 

(2.2) 
k=O 

and 

(x - R(x) = 
(n+l)! 

Here P,, (x) is called the nt/I - degree Taylor polynomial for f about x0  and R,, (x) is 

called the remainder term associated with P,, (x). The infinite series obtained by taking 

the limit of P, (x) as n - co is called the Taylor series forT about x0 . 
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Definition 2.4: Orthogonal set of functions 

{Ø Ø ,• , } is said to be an orthogonal set of functions for the interval [a, b] with 

respect to the weight function w if 

0, whenever j k, 
JW(X)O/(X)øk(X)dX = f 	

~ 	
(2.3) 

whenever j = k. 

where ak c IR 

Definition 2.5: Lagrange interpolating polynomial 

If x0 , x 3 ,• , x, are (n + 1) distinct numbers and f is a function whose values are given at 

these numbers, then there exists a unique polynomial P of degree at most n with the 

property that 

f(xk )=P(xk ) 	for eachk=0,l,2,,n. 

This polynomial is given by 

'1 

P(x) = f(x0 )1 (x) + . .. + f(x )l, (x) = 	f(xk )',,k (x), 	 (2.4) 
k=O 

where 

(x) 
(x-xO)(x-xI)•• .(x-xk_I)(x -xk+ )(x-x,,) 

= 

(Xk - x0 )(xk - x ) . (xk - Xk_I )(xk - Xk+l ) ... (xk - x,1 ) 

' (x-x,) 
" 

!ij 	
f oreachk=0,1, 2,,n. 	 (2.5) 

(xk —x1 )  
ik 

Definition 2.6: Legendre polynomial {p,, } 

The set of Legendre polynomials {p0,p1 ,.",p} defined in the following way is 

orthogonal on [a,h] with respect to the weight function w. 

p0(x)l, p1 (x)x—B1 , 

f 
xw(x)[po(x)]'dx 

where B1 =  
fW(X)[PO(X)]2 dX 

and when k > 2, 

for each a :!~, x :~ 
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Pk(x)_(xBk)Pk_I(x)CkPk2( 	for each a :~ x:!~b, 	 (2.6) 

j Xw(x)[Pkl(X)] dx 	
j 

xw(x)pkl(x)pk2(x)dx 
where Bk 

= l 	 and Ck = 

W(X)[pk-I  (x)] dx 	 w(x)[ 	(x)]2 dx 

Definition 2.7 

A function / is Lipschitz continuous with constant y in a set X, written f E Lip (X), if 

for every x,yEX, 

If(x)—f(y)I:!~rIx—yI. 	 (2.7) 

Lemma 2.7.1 

For an open interval A, let f A -+ IR and let f E Lip7 (A). Then for any x, y e A, 

f(y)-f(x)-f(x)(y-x) 1< 
y(y-x) 	

(2.8) 
2 

Lemma 2.7.2 

For an open interval A, let f : A ->IR and letf' E Lip7 (A). Then for any x,y c A, 

If(y)—f(x)—f'(x)(y—x)I~ ilyxl 
2 	

(2.9) 

Definition 2.8 

An iterative method is said to be of order p or has the rate of convergence p, if p is the 

largest positive real number for which 

	

e, 1 I:!~cle, V,wheree =x,, —a is the error in the nh1 iterate. 	 (2.10) 

The constant c is called the asymptotic error constant. It depends on various order 

derivatives of f(x) evaluated at a and is independent of n. 

The relation 

e 1 = ce' + 0(e'') 
	

(2.11) 

is called the error equation. 



By substituting e. = x. -a for all i in any iteration method and simplifying we obtain 

the error equation for that method. The value of p thus obtained is called the order of this 

method. 

Definition 2.9 

Let a be a root of the functionf(x) and suppose that x 1 , x,, and x,, 1  be the consecutive 

iterations closer to the root, a. 

Then the Computational Order of Convergence p can be approximated by: 

In (x,, 1  - a) 

(x, - a) 
p 

	

	 (2.12) 

In 
(x —a) 

(x,,..1  - a) 

Definition: 2.10: Stopping criteria 

We have to accept an approximate solution rather than the exact root, depending on the 

precision (e) of the computer. So we adopt following stopping criteria for computer 

programs. 

if(x,,+)I< 

Ix,,+1  -x,, 

Definition 2.11: A function of two variables 

LetA c R. A function f of two variables is a nile that assigns to each ordered pair (x,y) 

in A, a unique real number denoted byf(x,y). The set D is the domain of f and its range 

is the set of values that f takes on, that is {f(x,y) I (x,y) E Al. We often write 

z = f(x,y) to make explicit the value taken on by fat the general point (x,y). The 

variables x andy are independent variables and z is the dependent variable. 



Definition 2.12: Gradient of a function 

A continuous function f 1R2  -> IR is said to be continuously differentiable at 

x = (x, y)T e 1R2 , if f, (x, y) and f1. (x, y) exist and continuous. The gradient of f at 

(x,v) is then defined as 

Vf(x,y) = [f(x,y),j,(x,y)]T 
	

(2.13) 

Lemma 2.12.1 

Let f R2  -> IR he continuously differentiable in an open convex set A c 1R2  Then, for 

x =(x,y)T  cA and nonzero perturbation p =(p1,p2)T eR2  the directional derivative 

of f at x in the direction p, denoted by 

f 
Df(x) = Df(x,y) = lim 

(x+hp1,y+hp2)—f(x,y) 
 

h 

exists and is equal to Vf(x)T  .p. for any x, x + p E A 

J(x+p) = f(x) + JVf(x + tp)T .pdt 	 (2.14) 

and there exists z E (x, x + p) such that 

f(x+p) =f(x)+Vf(z)7 
	

(2.15) 

Proof: 

We simply parameterize falong the line through x and x + p as a function of one variable 

g:R—*IR, 9:(0=f(x+tp)=f(x - f- tp1 ,y+tp2 ) 

and apply calculus of one variable to the function g. 

Differentiating with respect to I 

9'(t)=f1(x+tp1 ,y+tp2 )p1  +f(x+rp1 ,y+Ip2 )p2  

= \7f(x + tp1 ,y + tp2 )7  

=Vf(x+tp)T .p 	 (2.16) 

Then by the fundamental theorem of calculus or Newton's theorem, 
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g(1) = g(0) + Jg' (t)dt 

which, by the definition of g and (2.16), is equivalent to 

f(x+ p) = f(x) + JVf(x + tp)T .p di 

and proves (2.14). Finally, by the mean value theorem for functions of one variable, 

g(1) = g(0) + g' (c), 	(0, 1) 

which by the definition of g and (2.16), is equivalent to 

f(x+ p) = f(x)+Vf(x+çp)T .p 	ç E (0,1) 

and proves (2.15). 

Definition 2.13 

A continuously differentiable function f : FR2 -> FR is said to be twice continuously 

differentiable at x E FR2, if (a2f/axx)(x) exists and is continuous, 1 :~ i, j :~ 2. The 

Hessian off at x is then defined as the 2 x 2 matrix whose (i, J)th element is 

- a2 f(x) 
\72f(x),1 

- 

1:~ i,j :!~ 2 	 (2.17) 

Clairaut's Theorem 2.14 

Suppose f is defined on A c FR2 that contains the point (a,b). If the functions f and 

are both continuous on A, then 

fX),(a,b) = 
	 (2.18) 

Definition 2.15 

A continuous function F : JR2 - FR2 is continuously differentiable at x E FR2 if each 

component function f(x,y) and g(x,y) is continuously differentiable at x. The 

derivative of F at x is called the Jacobian of F at x, and its transpose is sometimes called 

the gradient ofF at x. 

N. 


