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ABSTRACT 

Infection diseases and epidemics f'all in to the category of time-dependent 

dynamical systems. In this thesis we considers a mode for measles dynamics involving 

three coupled nonlinear ordinary differential equations. 

This system of ODE's cannot he solved analytically. But number of qualitative 

properties can be derived. The model is judged on how accurate it simulates the 

biological properties of measles epidemics. A number of possible refinements are 

pointed out. 

Special emphasize is focused on the basic reproduction rate, because that is the 

key term of eradicating an epidemic from a society. Various numerical experiments are 

conducted for the model for various basic reproduction rates. 

Finally, with the help of available data, suggestions are made, using regression 

analysis, about the vaccination program me. 

vi 



Chapter 1 

Introduction 

1.1 Continuous Population Models 

The increasing study of realistic and practically useful mathematical mod-

els in population biology, whether we are dealing with a human population 

with or without its age distribution, population of an endangered species, 

bacterial or viral growth and so on, is a reflection of their use in helping to 

understand the dynamic processes involved and in practical predictions. [71 

Mathematical epidemiology is one of the major areas in population hi-

ology, which uses mathematical modelling in their studies. Many different 

models have been used in epidemiology. These includes descriptive growth 

curves, epidemic simulations and to recently, models more in line with those 

developed in theoretical epidemiology for viral or bacterial diseases directly 
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transmitted from one person to another or transmitted by an intermediate 

host like mosquitos. 

The growth curve most widely used to describe and compare epidemic 

progress is the logistic model 

dY 

G rY
dt 

1— )1 

where Y represents the quantity of disease, r is a disease rate parameter, 

and K is the maximum quantity of disease or "carrying capacity". When Y 

is measured as a proportion in disease assessments, K = 1. From a disease 

dynamic perspective, it is preferable to represent diseases as the amount of 

infectious individuals. 

Epidemic infectious diseases have accompanied mankind since the begin-

nings of history and are still of major concern. The discovery of penicillin 

and other antibiotics and the rise of vaccination programmes have not al-

ways succeeded in the extinction of infectious diseases while new ones are 

ever appearing, like AIDS to name just one. Thus, the modelling of epi-

demic processes is as important as ever, not only to understand the nature 

of diseases but also to help formulating appropriate vaccination strategies to 

fight the illnesses. 

Measles is among the best documented human diseases, as far as popula- 
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tion dynamics are concerned, and thus ideally suited to the testing of math-

ematical models. Furthermore, measles is still a relevant illness, not only 

in developing countries, where a large number of children die after measles 

infection, usually due to reduced immunity and attracted secondary diseases, 

but also in developed nations. 

The modelling of epidemics was among the first cases of mathematics en-

tering the fields of biology and medicine. The differential equations involved 

in the models, how ever, usually cannot be solved analytically and thus one 

has to rely on numerical methods. 

The model investigated in this thesis, called the SEIR Model, is far too 

simplified to simulate the dynamics of measles adequately. Nevertheless, it 

captures the essence of microparasitic interaction that builds the foundation 

of the disease. More sophisticated models are readily formulated but will 

usually still have the simple SEIR. Model at their core. Hence it makes sense 

to understand the dynamics of this model before turTling to more compli-

cated and, hopefully, more realistic approaches. Furthermore, since a lot of 

the qualitative properties of the SEIR Model can be derived analytically, the 

numerical methods can be tested quite easily on how good they approximate 

the true behaviour of the system. It may then be estimated that a method 

which performs well on the simple model does so on a more sophisticated 

approach. 



Chapter 2 

Epidemiological Models 

2.1 Simple Epidemic Models and Practical 

Applications 

In the classical, but still highly relevant models we consider here the total 

population is taken into be constant. If a small group of infected individuals 

is introduced into a large population, a basic problem is to describe spread 

of the infection within the population as a function of time. Of course this 

depends on a variety of circumstances, including the actual disease involved, 

but as a first attempt at modelling directly transmitted diseases we make 

some not unrealistic general assumptions. 

Consider a disease which, after recovery, confers immunity which, if lethal, 
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includes deaths: dead individuals are still counted. Suppose the disease 

is such that the population can be divided into three distinct classes: the 

susceptible, S, who can catch the disease, the infective, I, who have the 

disease and can transmit it, and the removed class, R, namely, those who have 

either had the disease, or are recovered, immune or isolating until recovered. 

The progress of individuals is schematically represented by 

S — I —*R. 

Such models are often called SIR models. The number of classes depend 

on the disease. SI models, for example, have only susceptible and infected 

classes while SEIR models have a susceptible class, 8, a class in which the 

disease is latent, E, an infectious class, I, and a recovered or dead class, R. 

This kind of models are sometimes called compartment models and can be 

used to model effectively some epidemics, such as Measles, Mumps, Chicken 

pox, Smallpox. [41 

Today the theoretical framework most commonly used to mimic the dy-

namics of viral and bacterial infections is one based on the division of the 

human population into categories containing susceptible, infected who are 

riot yet infectious (latcnt), infectious individuals and those who are recovered 

and immune. Models based on this type of framework do not explicitely de- 

11 



scribe changes in parasite population size. They simply mirror the dynamics 

of the number of infected people without reference to the abundance of or-

ganisms within each individual. 

It is conventional to assume that the size(or density) of the human popu-

lation, N, remains roughly constant, or at least changes on a time scale that 

is long compared to all other time scales of interest in an epidemiological 

context. 

This model also assumes that individuals mix at random within the pop-

ulation, age and sex are not crucial variables. Obviously, these assumptions 

are unrealistic; notwithstanding, the model is able to rescue the familiar cycle 

of population childhood infections. 
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Figure 2.1: Schematic representation of the flow of hosts through the com-
partments. 

Note that hosts both die and reproduce at the per capita rate /1. It is 

assumed that nobody dies of measles, therefore the infected hosts do not 

experience a higher mortality rate. Recovered individuals do not flow back 

into the susceptible compartment, as life- long immunity is supposed. 

2.1.1 The SEIR Model 

The SEIR Model is obtained by 'translating' the compartmental model 

proposed above into mathematical terms. It consists of three coupled, non-

linear, ordinary differential equations 
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