Large Bowel Fermentation :Its Role in Release of Gut Hormone and Appetite Control

by

Priyadarshika Hettiarachchi

Ph.D.

2009

Large Bowel Fermentation :Its Role in Release of Gut Hormone and Appetite Control

by

Priyadarshika Hettiarachchi

Thesis submitted to the University of Sri Jayewardenepura for the award of the degree of Doctor of Philosophy in Physiology on 6th October 2009.

"We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation."

Prof A.R.Wickremasinghe. Department of Public Health, Faculty of Medicine, University of Kelaniya.

Prof .G.S. Frost, Department of Metabolic Medicine, Imperial College, London.

Prof. S.D. Jayaratne, Department of Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura.

28/9/2009 Date.

28.9.09 Date.

Date. 29/9/2

TABLE OF CONTENTS	Page No.
TABLE OF CONTENTS	i
LIST OF TABLES	xiii
LIST OF FIGURES	xix
AKNOWLEDGEMENT	xx
ABSTRACT	xxiii
1 INTRODUCTION	1
1.1 Appetite	1
1.1.1 Satiety	2
1.1.2 Hunger	2
1.2 Central Control of Appetite	3
1.3 Peripheral Control of Appetite	4
1.3.1 Long term regulators	5
1.3.1.1 Leptin	5
1.3.1.2 Insulin	6
1.4 Role of the gut peptides	6
1.5 Meal initiation	7
1.6 Meal related satiety signals	8
1.7 Gut fermentation	8
1.7.1 Regional differences in the bacterial activities of	8

different parts of the colon

	1.8 Justification	12
	1.9 General Objective	14
	1.9.1 Specific Objectives	14
	1.10 Hypothesis	14
2	LITERATURE REVIEW	15
	2.1 Role of the different parts of the gastrointestinal system in controlling appetite	15
	2.2 Appetite regulation in the brain	17
	2.2.1 Mechanism of hunger and satiety	17
	2.3 The arcuate nucleus	19
	2.4 The current concept	23
	2.5 Gut Hormones	24
	2.5.1 PYY	27
	2.5.1.1 PYY after colectomy	31
	2.5.2 Glucagon like peptide (GLP-1)	32
	2.5.3 Insulin	35
	2.5.4 Leptin	36
	2.6 Bowel fermentation	38
	2.6.1 Fermentation to detect transit time	38
	2.6.2 Factors affecting colonic fermentation	38

2.6.3 Colonic fermentation and gut hormones	39
2.6.4 Colonic fermentation to detect gastrointestinal motility	40
2.6.5 Bacterial fermentation in colectomised patients	41
2.6.6 Fermentation, gut hormones and satiety	42
2.7 Visual analogue scale	43
2.8 Summary	45
3 METHODOLOGY	46
3.1 Study Setting	46
3.2 Study Design	46
3.3 Study Subjects	46
3.3.1 Inclusion criteria-subjects who had undergone surgery	47
3.3.2. Exclusion criteria-subjects who had undergone surgery	47
3.3.3 Inclusion criteria-controls	48
3.3.4.Exclusion criteria-controls	48
3.4 Sample size	48
3.5 Sampling technique	49
3.6 Data collection instruments	50
3.6.1 Dutch eating behaviour questionnaire (DEBQ)	50
3.6.1.1 Pre-testing of DEBO	50

3.6.2 Three-day diet diary	51
3.6.3 Visual analogue scale (VAS)	51
3.6.4 Hydrogen breath analyzer	52
3.7 Screening of subjects	52
3.8 Training of assistants	53
3.9 Breakfast meal	53
3.10 Buffet lunch meal	54
3.10.1 Rice	54
3.10.2 Red lentil curry	54
3.10.3 Tuna fish curry	55
3.10.4 Brinjal curry	56
3.10.5 Salad	57
3.11 Pilot study	57
3.12 Data collection	57
3.12.1 Phase 1	58
3 12 1 1 Measurement of height and weigh	59

iv

3.12.1.2 Maintaining a diet diary	59
3.12.1.3 Measurement of appetite	59
3.12.1.3.1 Hunger and satiety	59
3.12.1.3.2 Palatability, taste, pleasantness of meals	60
3.12.1.3.3 Energy intake based on 3-day diet diary, the buffet lunch meal and the breakfast meal	60
3.12.1.4 Breath hydrogen excretion	60
3.12.1.5 Processing of blood samples	61
3.13 Phase 2	61
3.13.1 Assays for gut peptide concentrations	61
3.13.1.1 Measurement of plasma PYY concentrations	62
3.13.1.2 The buffer	63
3.13.1.3 PYY label	63
3.13.1.4 PYY antibody	63
3.13.1.5 PYY standard	63
3.13.1.6 PYY assay tubes	63
3.13.1.7 Separation of the assay	66

V

	3.13.2 Measurement of plasma GLP-1 concentration	66
	3.13.2.1 The buffer	66
	3.13.2.2 GLP-1 label	66
	3.13.2.3 GLP-1 antibody	67
	3.13.2.4 GLP-1 standard	67
	3.13.2.5 Separation of the assay	67
	3.13.3 Plasma glucose concentrations measurement	68
	3.14 Analysis of data	68
	3.15 Ethical aspects	69
4	RESULTS	70
	4.1 Description of the Sample	70
	4.2 Pre testing of the Dutch Eating Behavior Questionnaire (DEBQ)	71
	4.3 3-day nutrient intake recorded in diet diaries of subjects and	76
co	ntrols	
	4.4 Energy Intake at the Buffet Meal	79
	4.5 Hunger Levels	80
	4.6 Satiety Levels	83
	4.7 Palatability, taste and pleasantness of meals	84
	4.8 Breath hydrogen concentrations	86

4.8.1 Differences between fasting and postprandial breath hydrogen	86
4.8.1.1 In subjects	86
4.8.1.2 In controls	87
4.8.2 Breath hydrogen concentrations in subjects and controls	88
4.9 Hormone Assay	90
4.9.1 Characteristics of the sample selected for hormone assay	90
4.10 GLP1 concentrations	90
4.11 PYY concentrations	93
4.12 Differences in GLP1 concentrations after the standard meal as	96
a percent of baseline values	
4.13 Difference in PYY concentrations after the standard meal as a	96
percent of baseline values	
4.14 Incremental area under the curve for plasma GLP1	99
concentrations in subjects and controls	
4.15 Incremental area under the curve for plasma PYY	100
concentrations in subjects and controls	
4.16 Plasma glucose concentrations	101
4.17 Breath hydrogen concentrations and hunger levels	102
4.17.1 In subjects	102
4.17.2 In controls	103

4.18 Breath hydrogen concentration and satiety levels	105
4.18.1 In subjects	105
4.18.2 In controls	105
4.19 Correlations between taste, pleasantness, palatability, energy	108
intake of the meals and BMI, and breath hydrogen	
concentrations	
4.19.1 In subjects	108
4.19.2 In controls	108
4.20 Correlations between breath hydrogen, PYY and GLP	111
concentrations and percent difference in the PYY,GLP1	
concentrations after the standard meal	
4.20.1 In subjects	111
4.20.2 In controls	111
4.21 Correlations between breath hydrogen, IAUC for GLP1 and	116
PYY concentrations after the standard meal	
4.21.1 In subjects	116
4.21.2 In controls	116
4.22 Correlations between GLP1 concentrations, IAUC for GLP1	119
and hunger levels	
4.22.1 In subjects	119
4.22.2 In controls	119

4.23 Correlations between PYY concentrations, and hunger	125
levels	
4.23.1 In subjects	125
4.23.2 In controls	125
4.24 Correlations between GLP1 concentrations, and satiety	130
levels	
4.24.1 In subjects	130
4.24.2 In controls	130
4.25 Correlations between PYY concentrations, and satiety	131
levels	
4.25.1 In subjects	131
4.25.2 In controls	131
5. DISCUSSION	141
5.1 Appetite measurements	141
5.1.1 Managing external influences on appetite	141
5.1.2 Satiety	142
5.1.3 Hunger levels	143
5.2 Gut peptide concentration	144
5.2.1 GLP1 concentrations	144

5.2.2 PYY concentrations

5.2.3 PYY percent difference from baseline value at selected time 146 points and the IAUC for PYY

5.3 Bowel fermentation as detected by breath hydrogen ¹⁴⁷ concentrations,

5.4 Association between breath hydrogen excretion and gut ¹⁴⁸ peptide concentrations

5.4.1 Association between breath hydrogen excretion, and GLP1 and **148** PYY concentrations

. 5.4.2 Association between breath hydrogen excretion and appetite ¹⁵¹ levels

5.5 GLP1 and appetite levels 154

5.6 PYY and appetite levels 154

5.7 Energy intake	155
5.7.1 The breakfast and the buffet meal	155
5.7.2 Three day diet diary	156
5.7.3 Palatability, taste, pleasantness	156
5.8 Plasma glucose concentrations	158
5.9 Summary	159
5.10 Limitations of the study	161
6 CONCLUSIONS	163
6.1 The subjective level of satiety of healthy adults and colectomised subjects	163
6.2 Hunger levels of healthy adults and colectomised subjects	163
6.3 Changes in the GLP1 concentrations following a standard	163
carbohydrate meal in healthy adults and in colectomised subjects	

6.4 Changes in the PYY concentrations following a standard 164 carbohydrate meal in healthy adults and in colectomised subjects

6.5 Breath hydrogen excretion in healthy adults and in colectomised 164 subjects

165 6.6 Correlation between breath hydrogen excretion, PYY and GLP1 concentrations and appetite

165

168

Palatability, taste, pleasantness

6.8	Blood glucose concentration	166
6.9	Future studies	166

7. REFERENCES

6.7

xii

8. LIST OF APPENDICES

Appendix 1	List of communications, awards	222
Appendix 2	Dutch eating behaviour questionnaire	224
Appendix 3	Dutch eating behaviour questionnaire, Sinhala	227
Appendix 4	Three -day diet diary	230
Appendix 5	Three -day diet diary, Sinhala	241
Appendix 6	Visual analogue scale to measure hunger and satiety	247
Appendix 7	Visual analogue scale measuring palatability, taste,	248
	pleasantness	
Appendix 8	Visual analogue scale measuring palatability, taste,	249
	pleasantness, Sinhala	
Appendix 9	Visual analogue scale to measure hunger and satiety Sinhala	250
Appendix 10) Consent form.	251
Appendix 1	Three-day macronutrient intake recorded in diet diaries of	252
	colectomised subjects.	
Appendix 1	2 Three-day vitamin intake recorded in diet diaries of	255
	colectomised subjects	
Appendix 13	The Total 3 Days Intake of Macronutrients in Diet Diaries of	258
	Controls	
Appendix 1	4 The Total 3 Day Intake of Vitamins in Diet Diaries of	259
	Controls	
Appendix 15	The intake of carbohydrate, protein and fat in the buffet meal	260

LIST OF TABLES Page	No.
Table 3.1. The amounts of standard, sample, labelled hormone, antibody,	65
and buffer in different assay tubes	
Table 4.1 Age and BMI of subjects who had undergone surgery and	70
controls.	
Table 4.2 Responses to the in DEBQ questionnaire among obese people	72
visiting a gymnasium	
Table 4.3 Responses to the DEBQ questionnaire among pre intern female	e 73
medical officers who were dieting	
Table 4.4 Responses to the DEBQ questionnaire among patients admitted	74
to the Cancer Institute, Maharagama	
Table 4.5Responses to the DEBQ among normal subjects	75
Table 4.6 Comparison of 3-day macronutrient intake of subjects controls	77
Table 4.7 Comparison of 3-day vitamin intake of subjects and controls	78
Table 4.8 Energy Intake at the buffet meal in subjects and controls	79
Table 4.9 Hunger levels of subjects and controls	81
Table 4.10 Satiety levels in subjects and controls	83
Table 4.11 Palatability, taste and pleasantness of the breakfast and buffet	85
meals in subjects and controls	

Table 4.12 Fasting and postprandial breath hydrogen concentrations in86subjects

Table 4.13 Fasting and postprandial breath hydrogen concentrations in	87
controls	
Table 4.14 Breath hydrogen concentrations in subjects and controls	88
Table 4.15 Characteristics of subjects and controls on whom hormone assays	90
were carried out	
Table 4.16 GLP1 concentrations in subjects and controls	92
Table 4.17 PYY concentrations in subjects and controls	93
Table 4.18 Differences in GLP1 concentrations between baseline and selected	97
time points following the standard meal as a percent of baseline values in	
subjects and controls	
Table 4.19 Differences in PYY concentrations between baseline and selected	98
time points following the standard meal as a percent of baseline values in	
subjects and controls	
Table 4.20Incremental area under the curve for plasma GLP1	99
concentrations in subjects and controls	
Table 4.21.Incremental area under the curve for plasma PYY concentrations	100
in subjects and controls	
Table 4.22 Plasma glucose concentrations in subjects and controls	101
Table 4.23 Correlations between breath hydrogen concentrations and	102
hunger levels at different time points among subjects	
Table 4.24 Correlations between breath hydrogen concentrations and hunger	104
levels among controls	

XV

Table 4.25 Correlations between breath hydrogen concentrations and satiety106levels at different time points among subjects

Table 4.26 Correlations between breath hydrogen concentrations and satiety107levels at different time points among controls

Table 4.27 Correlations between breath hydrogen concentrations at different109time points and taste pleasantness, palatability of meal, energy intake andBMI among subjects who had undergone bowel surgery

Table 4.28 Correlations between breath hydrogen concentrations at different110time points and taste, pleasantness, palatability of meals, energy intake andBMI among controls

Table 4.29 Correlations between breath hydrogen, GLP1, concentrations and112percent difference in the GLP1 concentrations with the baseline values, afterthe standard meal in subjects who had undergone large bowel surgeryTable 4.30 Correlations between breath hydrogen, GLP1, concentrations113and percent difference in the GLP1 concentrations with the baselineafter the standard meal in controls

Table 4.31..Correlationsbetween breath hydrogen, PYY,114concentrations and percent difference in the PYY concentrations114with the baseline values, after the standard meal in subjects who had114undergone large bowel surgery114

 Table 4.32 Correlations between breath hydrogen concentrations, PYY
 115

 concentrations and percent difference in the PYY concentrations
 115

 with the baseline values, after the standard meal in controls
 115

Table 4.33 Correlations between breath hydrogen concentrations, IAUC				
for PYY and GLP1	concentrations in subjects who have undergone			
large bowel surgery				

Table 4.34 Correlations between breath hydrogen concentrations, IAUC118for PYY and GLP1 concentrations in controls

Table 4.35 Correlations between GLP1 concentrations and hunger levels at121different time points among subjects who had undergone large bowelsurgery .

Table 4.36 Correlations between IAUC for GLP1 concentrations in subjects122who have undergone large bowel surgery and hunger levels

Table 4.37 Correlations between GLP1 concentrations and hunger levels at123different time points among controls

Table 4.38 Correlations between IAUC for GLP1 concentrations and124hunger levels in controls

Table 4.39 Correlations between PYY concentrations and hunger levels at126different time point subjects who had undergone large bowel surgery

Table 4.40 Correlations between IAUC for PYY concentrations and hunger127levels at different time pointssubjects who had undergone large bowelsurgery

Table 4.41 Correlations between PYY concentrations and hunger levels at128different time points among controls

Table 4.42 IAUC for PYY concentrations and hunger levels at different129time points among controls

Table 4.43 Correlations between GLP1 concentrations and satiety levels at132

different time points among subjects who had undergone large bowel surgery Table 4.44 Correlations between IAUC for GLP1 concentrations and satiety 133 levels at different time points among who had undergone large bowel surgery Table 4.45 Correlations between GLP1 concentrations and satiety levels at 134 different time points among controls

Table 4.46 Correlations between IAUC for GLP1 concentrations and satiety135levels at different time points among controls

 Table 4.47 Correlations between PYY concentrations and satiety levels at
 136

 different time points among subjects who had undergone large bowel
 surgery

Table 4.48 Correlations between IAUC for PYY concentrations and satiety137levels at different time points among subjects who had undergone largebowel surgery

Table4.49Correlations between PYY concentrations and satiety levels at138different time points among controls

Table 4.50 Correlations between IAUC for PYY concentrations and satiety140levels at different time points among controls

Table 4.51 Summary of Results

1

LIST OF FIGURES

Page No:

Figure 3.1 Radio immunoassay technique	62
Figure 4.1 Energy Intake at the Buffet meal	80
Figure 4.2 Hunger levels in subjects and controls	82
Figure 4.3 Satiety Levels in subjects and controls	84
Figure 4.4 Breath hydrogen concentrations in subjects and controls	89
Figure 4.5 GLP1 concentrations in subjects and the controls	91
Figure 4.6 PYY concentrations in subjects and the controls	94
Figure 4.7 Differences in GLP1 concentrations after the standard meal as a	95
percent of baseline values	
Figure 4.8 Differences in PYY concentrations after the standard meal as a	96
percent of baseline values	
Figure 5.1 Figure 5.1 Schematic representation of the possible roles of the	162
large bowel in producing satiety, hunger & taste	

ACKNOWLEDGEMENTS

I wish to record my sincere gratitude for my supervisors:

*Prof .A. R.Wickremasinghe, Dean , Faculty of Medicine, University of Kelaniya, Sri Lanka, for guiding me from the time of writing the proposal until the end, training on data presentation and to critically evaluating the results;.

*Prof.. Gary S. Frost, Dept of Metabolic Medicine, Imperial College, London. for helping me in designing the project, planning the work, making available the resources in the Department of Nutrition and Dietetics, Imperial College, UK.

*Prof. S. D. Jayaratne, Department of Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka, for helping me, guiding, and encouraging, throughout the study.

My special thanks are due to :

Prof.Kumudu Wijewardena Dean Faculty of Graduate studies, and Prof E.R. Janz and Prof Sriyani Ekanayake the chairpersons of the board of study in Medical Sciences of the Faculty of Graduate Studies of the University of Sri Jayewardenepura for assisting me in administrative matters related to this study.

Dr. Kevin G. Murphy and Dr. Michael Patterson of the Department of Metabolic Medicine, Imperial College Faculty of Medicine, Hammersmith Campus, London, UK. for giving the necessary training in radioimmunoassay techniques.

Prof .Kemal I Deen, Department of Surgery, Faculty of Medicine, University of Kelaniya, Dr. Aloka A Pathirana Department of Surgery, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka for helping in recruiting subjects and for giving permission to use the skills labs of Department of Surgery in collecting blood samples.

Late Rev Waganthale Rahula Thero of the Welfare Centre, Cancer Institute, Maharagama, for helping to recruit controls;

Dr.Mahendra Perera, Consultant Oncologist, Cancer Institute Maharagama, SriLanka for helping in identifying inclusion and exclusion criteria of cancer patients;

Mrs. Geethani Ratnayaka, Enterostomal Therapist, Department of Surgery, Faculty of Medicine, University of Kelaniya and Mrs. Janaki Balasuriya, Technical Officer Department of Physiology, Faculty of Medicine, University of Sri Jayewardenepura, for assistance given in sample collection;

University of Sri Jayewardenepura (Grant no: Asp/6/Re/2003/11) and the Commonwealth Commission, UK (grant no: LKCN-2002-93) for providing financial support carry out the study in Sri Lanka and at the Metabolic Medicine Department, Imperial College, UK.

I am also grateful to the following :

Prof Stephen R. Bloom, Head, Department of Metabolic Medicine, Imperial College, UK, for helping me to select patients for hormone assay, giving permission to do the Radioimmunoassay assay in the Laboratory of the Department of Metabolic Medicine, Imperial College, UK;

Jenee Lee, Joanna Milton, and Sandra Ellis Research Dieticians, Department of Nutrition & Dietitics, Hammersmith Hospital, UK, for aassisting me to identify

xxi

meals, optimal conditions for sample storage, in introducing the DEBQ, 3-day diet diary, dietary questionnaire, visual analogue scale, food composition tables and accessing databases;

Prof Narada Warnasuriya, Former Dean, Faculty of Medical Sciences and Former Vice Chancellor, University of Sri Jayewardenepura and Prof A.V.Suraweera for translating the Dutch eating behaviour questionnaire and the three day diet diary to Sinhalese to retranslate the translated Sinhalese version of the Dutch eating behaviour questionnaire to English;

Dr.Gemunu Rambukwella, pre-intern medical officer, Department of Physiology University of Sri Jayewardenepura for assistance given in type setting the manuscript;

All members of the academic staff of the Department of Physiology, especially Dr.K.Ruberu,Dr D.M.S Fernando, Dr.R. Pieris-John, Dr. S.W.Wimalasekera for helping me in pre-testing the Dutch eating behaviour questionnaire and encouraging me throughout the study;

Members of the non-academic staff - Mrs. Anusha Seneviratne, Mr. Sudath Kumara, Mr. Sunil Jinadasa and Mr. Susith Silva for assistance given in serving meals and during data collection.

My heartfelt gratitude to my parents, husband, my son Samitha, and to my daughter Sapuni for their support, encouragement and patience throughout the study.

ABSTRACT

The aim of this study was to determine the effect of large bowel fermentation on gut hormone release and appetite control. Seventy six colectomised (surgical resection of any extent of the large intestine ie colon and rectum) subjects with a history of a carcinoma of the colon, and currently in complete remission were compared with age, sex and BMI matched controls. A standard breakfast meal and lactulose followed by an ad libitum lunch was provided. Breath hydrogen concentrations, and hunger and satiety levels were recorded at -30 min, 60 min, 120 min, 180 min, 240 min, 300 min from the time of the breakfast meal. Hunger and satiety levels were recorded at 330 min as well. Blood samples were obtained from a sub-sample of subjects to determine PYY and GLP1 concentrations by radioimmuno assay at -30 min, 60 min, 120 min and 180 min. Comparisons were done using independent sample t-tests and Mann Whitney U statistics. Correlational analyses were done using Pearson and Spearman correlation coefficients. The energy intake of subjects at the buffet meal was significantly less than that of the matched controls (p<0.001). In general, in the subjects, the hunger levels were lower than the controls before the buffet meal, but statistically significant only at 180 minutes (p=0.004). Although previous experiments suggest the large bowel to be a satiety producing organ, in this study after removal of parts of large bowel, satiety remained unchanged at most time points implying that factors that are produced by altered bowel length maintain satiety and reduce the hunger levels. In general, the mean GLP1 and PYY and the incremental area under the curve (IAUC) for plasma GLP1 and PYY concentrations in subjects were higher than that of the controls but the differences were not statistically significant. In the subjects, the differences in GLP1 concentrations between baseline and 60 min following the standard meal as a percent of baseline values were higher as compared to that of the controls (p=0.014). Differences in PYY concentrations between baseline, and 60 min and 120 min following the standard meal as a percent of baseline values in the subjects was higher than controls respectively (p=0.009 and p=0.039). The IAUC for plasma PYY the concentrations were significantly higher in the subjects than in the controls between -30-60 min and 60-120 min. Generally, the breath hydrogen concentration was higher in the subjects than in the controls, and significant at 60 min (p=0.019) and 120 min (p=0.021). Gut fermentation in colectomised subjects occurred at a higher rate at certain time points coinciding with changes in PYY and GLP1 concentrations. Breath hydrogen concentrations at 120 min, 180 min and 270 min were significantly correlated with the IAUC for GLP1 between 60-120 min. This implies that, in subjects, factors produced during bowel fermentation may account for the significant reduction in the energy intake, lower hunger levels at 180 min and in the maintenance of satiety. The findings of this study corroborates the findings of the few human studies that show a relationship between bowel fermentation, gut hormone concentrations and, hence, appetite. Subjects perceived taste (p=0.001), pleasantness (p=0.011) and palatability (p=0.026) of the breakfast meal was significantly less than that in the controls. These suggest that orosensory signals may be less effective when a standard meal is taken and the factors produced as a result of fermentation or elevated PYY and the GLP1 decrease palatability. There was no significant difference in the perception of taste, pleasantness and palatability of the buffet meals between the subjects and controls suggesting that the orosensory inputs play a greater role in the sense of palatability than the influence from either the colon or the rectum.