DEVELOPMENT OF ISO 22000 BASED FOOD SAFETY ASSURANCE SYSTEM FOR SRI LANKAN ORTHODOX BLACK TEA INDUSTRY

BY C. V. K. LOKUNARNGODAGE

M. Phil

2015

Development of ISO 22000 Based Food Safety Assurance System for Sri Lankan Orthodox Black Tea Industry

By C. V. K. Lokunarngodage

Thesis submitted to the University of Sri Jayewardenepura for the award of the degree of Master of Philosophy in Food Science & Technology on 2015.

DECLARATION

The work described in this thesis was carried out by me under the supervision of Dr. Indira Wickramasinghe, Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura and Prof. K. K. D. S. Ranaweera, Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, and a report or this has not been submitted in whole or part to any other university or any other institution for another degree.

C. V. K. Lokunarangodage Date: 24/06/2016

We certify that the candidate is submitting this thesis with all corrections, additions and amendments attended in accordance with the comments and suggestions made by the examiners.

mahia

Signature Supervisor

Supervisor Prof. K. K. D. S. Ranaweera Dr. Indira Wickramasinghe Senior Lecturer Senior Lecturer Department of Food Science & Technology Department of Food Science & Technology Faculty of Applied Sciences Faculty of Applied Sciences University of Sri Jayewardenepura University of Sri Jayewardenepura Gangodwila, Nugegoda, Gangodwila, Nugegoda, Sri Lanka. Sri Lanka.

Signature

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

India

Signature Supervisor Dr. Indira Wickramasinghe Senior Lecturer Department of Food Science Faculty of Applied Sciences

fim

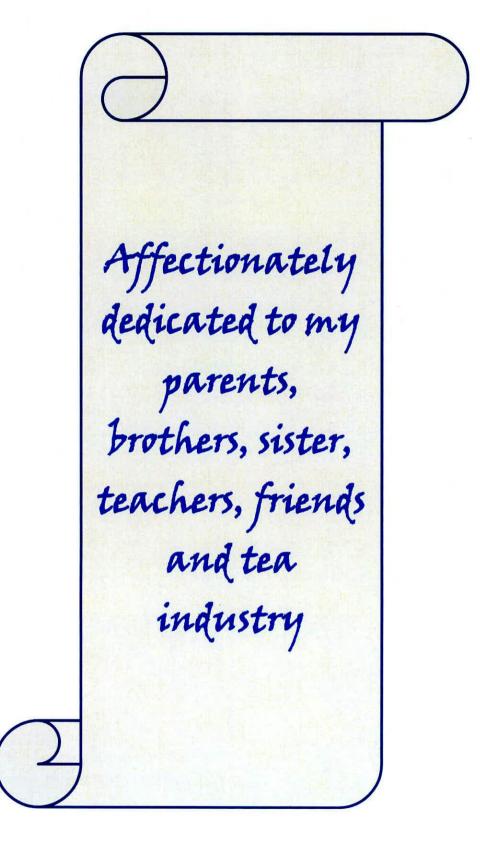
Prof. K. K. D. S. Ranaweera Senior Lecturer

Department of Food Science & TechnologyDepartment of Food Science & TechnologyFaculty of Applied SciencesFaculty of Applied Sciences

University of Sri Jayewardenepura

Gangodwila, Nugegoda,

Sri Lanka.


University of Sri Jayewardenepura

Gangodwila, Nugegoda,

Sri Lanka.

Signature

Supervisor

TABLE OF CONTENT

Table of	Content	i
List of Tables		v
List of Figures		vi
Acknowledgement		viii
Abbreviation		x
Abstract		xi
CHAPT	ER 1: INTRODUCTION	01
CHAPT	ER 2: LITERATURE REVIEW	08
2.1	Introduction to tea	08
2.1.1	Ecology of growing tea	08
2.1.2	Botany of commercial tea plant	09
2.2	History of Ceylon tea	10
2.3	Sri Lankan tea statistics	12
2.4	Problems encountered in Sri Lankan tea industry	14
2.5	The cost of production	14
2.6	Non-financial barriers in tea industry	15
2.7	-	
2.7.1		
2.7.2	7.2 Withering	
2.7.3	Disruption/Rolling	19
2.7.4	Oxidation/Fermentation	21
2.7.5	Firing	23
2.7.6	Grading	
2.7.7	Bulking	25
2.7.8	Packing	25
2.7.9	Tea Brewing	26
2.8	Traceability in tea supply chain	26
2.9	Evolution of ISO standards	29
2.9.1	ISO 9000:2008	31
2.9.2	Food safety and standards	32
2.9.3	HACCP	36
2.9.4	What is ISO 22000:2005?	37
	An integrated food safety management system	
2.10	Tea Standards	50
2.10.1	ISO 3720:2011	50
2.10.2	SLS Standards	51
2.10.3	Product Certification Scheme for Tea (PCST)	52
2.10.4	SLTB Standards	53
2.11 5S and Ceylon tea		55

2.12	Good manufacturing practices	58
CHAPTEF	R 3: MATERIALS AND METHODS	63
3.1	Gap analysis and internal auditing	63
3.2	Impact of HACCP based FSMS in Sri Lankan tea industry	70
3.3	Evaluation of food safety violation and generic model development	72
3.4	Synchronization of 5S in ISO 22000:2005	74
3.5	Traceability constrains in tea manufacturing process	74
3.6	Bridging the gap in fermentation	76
3.6.1	The tea polymerizer trolley – wire frame drawings	77
3.7	Dissemination of information	80
СНАРТЕВ	R 4: RESULTS AND DISCUSSION	81
4.1	Gap Analysis and Audits	81
4.1.1	Food safety violations in low grown orthodox black tea	82
7.1.1	manufacturing process	02
4.1.1.1	Section I: Organization and management responsibilities	83
4.1.1.2	Section II: Establishment design and facilities	87
4.1.1.2.1	Location and surrounding	89
4.1.1.2.2	Design and layout	89
4.1.1.2.3	Drainage and waste disposal	91
4.1.1.2.4	Sitting of equipment	92
4.1.1.2.5	Condition of floor	92
4.1.1.2.6	Condition of walls, doors and windows	93
4.1.1.2.7	Condition of ceilings and lights	94
4.1.1.2.8	Air quality ventilation	95
4.1.1.2.9	Water supply	95
4.1.1.3	Section III: Storage facilities	98
4.1.1.4	Section IV: Distribution facilities	101
4.1.1.5	Section V: Cleaning	104
4.1.1.5.1	Cleaning schedule documentation	105
4.1.1.5.2	Approved food grade detergents in use	105
4.1.1.5.3	Cleaning materials controlled including data sheets	105
4.1.1.5.4	Availability and condition of cleaning equipment and methods	106
4.1.1.5.5	Separate areas for tray and equipment	106
4.1.1.5.6	Adequate space for equipment to dry	107
4.1.1.5.7	Training of cleaners	107
4.1.1.5.8	Supervision and monitoring	107
4.1.1.5.9	Physical checks and bacteriological swabs taken	107
4.1.1.5.10	Clean-as-you-go and good housekeeping	108
4.1.1.6	Section VI: Pest control system	108

4.1.1.6.1	Special reporting type service	110
4.1.1.6.2	Pest control records including bait plans, labels and dating	110
4.1.1.6.3	Baiting and proofing standards including monitoring systems	111
4.1.1.6.4	Fly killer's position and condition	111
4.1.1.6.5	Good perimeter controls	111
4.1.1.6.6	Storage and housekeeping standards	111
4.1.1.7	Section VII: Personnel hygiene	112
4.1.1.7.1	General	112
4.1.1.7.2	Health status	113
4.1.1.7.3	Illness and injuries	113
4.1.1.7.4	Personnel cleanliness	113
4.1.1.7.5	Personnel behaviours	115
4.1.1.7.6	Visitors	115
4.1.1.8	Section VIII: Quality assurance system	116
4.1.1.8.1	General	116
4.1.1.8.2	Finish product specifications	118
4.1.1.8.3	Microbiological testing	118
4.1.1.8.4	Temperature control	118
4.1.1.8.5	Calibration	119
4.1.1.8.6	Product recall system	119
4.1.1.8.7	The Traceability	119
4.1.1.8.8	The 5S applications in tea industry	119
4.2	Impact of HACCP based FSMS in Sri Lankan tea industry	121
4.3	Food safety violations in low grown black tea industry	125
4.3.1	The Pareto analysis	125
4.3.2	The Generic model development	128
4.4	5S Application and efficiency in tea industry	137
4.4.1	Synchronization of 5S with ISO 22000:2005	138
4.5	Traceability in orthodox black tea manufacturing process	148
4.6	Bridging the gap in fermentation	162
	 Tea Polymerization Trolley (TPT) 	
4.6.1	The tea polymerizer trolley – specifications	166
4.6.2	Working of the equipment	167
4.6.3	Inventions	168
4.6.4	TPT's advantages over current practices in tea fermentation	169
4.7	dissemination of information	170
4.8	Limitation to the research	171
CHAPTE	R 5: CONCLUSION	173
RECOMM	IENDATION	178
REFERENCES		179

APPENDICES

Appendix I List of Publications and Communications Made from Thesis		Ι
Appendix II	Separately Submitted	III
ISO 22000:2005 Food Safety Management System	1 2	
A Generic Model for Black Tea Manufacturing		
Appendix III		IV
GMP Evaluation I		V
GMP Evaluation II		IX
Employee Knowledge Evaluation Questions		XIII
GMP Guidelines		XVI
ISO 22000 Gap Analysis Report Format		XXXVII
ISO 22000 FSMS Internal Audit Format		XLVII

LIST OF TABLES

Table 4.1 Descriptive Statistics: O&MR, ED&F, SF, DF, Cleaning,	82
PCS, PH, QAS, Total	
Table 4.2 Spearman Rho: O&MR, ED&F, SF, DF, Cleaning,	83
PCS, PH, QAS, Total	
Table 4.3: Impact of implementation of HACCP based FSMS on	123
food safety assurance of Sri Lankan in tea industry	

LIST OF FIGURES

Figure 2.1: Risk based management model (RBMM)	43
Figure 2.2: three layer model of ISO 22000:2005	44
Figure 2.3: ISO 22000 documentation pyramid	46
Figure 3.1: Open structure of the trolley	77
Figure 3.2: Front view of a half section of the trolley	77
Figure 3.3: Single cage	78
Figure 3.4: Front view of a GN pan with holdup brackets on a cage	78
Figure 3.5: Two side holdup bracket	79
Figure 3.6: Single side holdup bracket	79
Figure 3.7: Perforated gastronome pan	79
Figure 3.8: Records and hygrometer reading panel	79
Figure 4.1: Results achieved by individual tea factories	81
Figure 4.2: Comparison of scores on factors considered for food safety	84
violations in low grown orthodox black tea manufacturing process	
Figure 4.3: Statistical summary of organization and management responsibility	86
Figure 4.4: Statistical summary of establishment design and facilities	87
Figure 4.5: Compliance scores achieved in all tea factories of the sample	88
Figure 4.6: No proper scheduled cleaning for draining systems	91
Figure 4.7: Some of the poor floor conditions observed	93
Figure 4.8: Typical examples of ceilings & lights at poorly scored factories	94
Figure 4.9: Some of the water usage equipment, methods and gaps identified	96
Figure 4.10: Gaps identified in storage facilities	97
Figure 4.11: Statistical summary of storage facilities	98
Figure 4.12: Fermentation methods and their hygienic problems	99
Figure 4.13: Collection of GL and transport of made tea to the market	102
Figure 4.14: Statistical summary of distribution facilities	103
Figure 4.15: Statistical summary of cleaning	104
Figure 4.16: A typical cleaning method in operation	108
Figure 4.17: Summary statistics for pest control systems	109
Figure 4.18: Pest and the host animals are common in tea factories	110
Figure 4.19: Bad personnel behaviours observed	114
Figure 4.20: Statistical summary of personnel hygiene	115
Figure 4.21: Statistical summary of quality assurance systems	117
Figure 4.22: Impact of HACCP based FSMS in Sri Lankan tea industry	122
Figure 4.23: Contribution of food safety violations from evaluated sectors	126
Figure 4.24: Comparison of good manufacturing practices compliances	127
and noncompliances	
Figure 4.25: A possible approach to ISO 22000 decision tree model	133
Figure 4.26: 5S adaptation in tea industry and success	137
Figure 4.27: Typical 5S Applications in Tea Industry	139

Figure 4.28: Documentation Pyramid	141
Figure 4.29: One of the very good work instructions observed	142
During Evaluations	
Figure 4.30: Constraints and compliances of traceability	149
in low grown orthodox black tea supply chain	
Figure 4.31: Implementation probability of traceability	150
in low grown orthodox black tea supply chain	
Figure 4.32: Graphical representation of generic process flow chart	154
for the 1st dhool sifting program of orthodox black tea	
Figure 4.33: Graphical representation of generic process flow chart	155
for the 2nd and 3rd dhool sifting program of orthodox black tea	
Figure 4.34: Graphical representation of generic process flow chart	156
for the big bulk sifting program of orthodox black tea	
Figure 4.35: A typical blending operation	160
Figure 4.36: Comparison temperature rise of TPT with other methods	164
Figure 4.37: Tea Polymerizer Trolley	166
Figure 4.38: The TPT operating at a production facility	168

ACKNOWLEDGEMENT

At the outset of this thesis of a research endeavor conducted as a partial fulfillment of an M. Phil in Food Science and technology, first and foremost, I would like to thank my supervisors, Dr. Indira Wickramasinghe and Prof. K. K. D. S. Ranaweera for their help, guidance, and generous support throughout the course of my M. Phil study as well as for their assistance during the research formulation and conduct while providing rich knowledge of quality, safety and operational management and methodology approaches.

Also, I would like to thank Prof. S. B. Navaratne, for his invaluable advice for approaches and methods in research of food safety management system in the initial research stage.

I would like to thank Dr. Duminda Kuruppuarachchi for his invaluable assistance during the statistical analysis and selection of analysis methods.

I would especially like to express my gratitude to University of Sri Jayewardenepura for its support to enable me to do field work and collect data and information for this thesis and to the graduate administrative staff in the Faculty of Graduate Studies for their administrative support and help.

Several tea manufacturing organizations contributed non-financially to my research, and without them it would have been virtually impossible to complete this thesis. In addition, I would like to specially make my gratitude to Mr. M.R.M Rafi (Pathma Group), Mr. Manoj Wijekoon, Mr. M.M. Sumudu Priyanjith at Whilehena Tea Factory, without their support this research would have been an impossible task. I further extend my very special thanks to Mr. M.M. Sumudu Priyanjith for his invaluable knowledge, time and help rendered for the traceability studies and verification of various kinds of implementation documents. I also would like to extend further gratitude to Mr. Manoj Wijekoon for his invaluable support for implementation and maintenance as well as evaluation of the developed generic model.

I also deeply indebted to Mr. Jinadasa at Andaradeniya Group, Mr. Senevirathne at Mahaliyadda Tea Factory, Mr. Hasitha at Thalgasyaya Tea Factory and Mr. Shantha at Panilkanda Tea Factory for their support on conducting different research activities in their manufacturing facilities in addition to the participation of gap analysis and internal audits. The tea factory list is very longer but without their support, this work would have been not possible where my sincere thanks go to all persons including tea factory owners, tea factory officers, assistant factory officers, various kinds of operators participating in interviews, discussions and evaluations which further includes smallholding farmers, collectors, managers of companies and factories, auctioneers and auditors as well as quality officers.

I'm deeply indebted to my friend Mr. Chandana Subasinghe at Subasinghe Technologist, who help me to carryout development of tea Polymerizer trolley at his workshop while providing invaluable technical inputs as well as carrying out the entire work under his supervision with financial support, without your help it was unachievable my friend.

I specially thank to Mr. Sumith Ponnamperuma, Mr. Supun Jayasinghe and Mr. W. Sampath at Control Union for their assistance in auditing and improvement suggestions for the generic model. The same gratitude goes to Mr. Nishantha Subasinghe at Bureau Veritas for auditing and certifying the developed generic model with improvement suggestions.

I also would like to sincerely thank Mr. Keerthi Bandara Karunarathne for his invaluable support and encouragement for improving and developing the two blog pages particularly ISO 22000 Resource Center and Tea Quality Center.

I sincerely thanks to academic staff, nonacademic staff, colleagues, and friends in Department of Food science, Faculty of Applied Science, University of Sri Jayewardenepura for giving me support, encouragement, and sharing knowledge and wisdom of completing this work.

Further thanks to my supervisors who always encourages me to follow a research degree instead of following a thought course and to get into scientific research. You are my pride, and give me advice and wisdom.

I also like to thanks my last two employers, Lanka Spice (Pvt) Ltd and C. D. De Fonseka and Sons (Pvt) Ltd, for their patience, support and going with me throughout the difficult period of doing the research and writing a thesis.

Finally but most importantly, I devote the deepest gratitude to my family Dad, Mum, Sister and Brothers for their unfailing love, spirit, encouragement and support.

University of Sri Jayewardenepura December 2015

ABBREVIATIONS

AFO	Assistant Factory Officer
BRC	British Retailer's Consortium
C – FSMS	Consultant – Food Safety Management System
CCP	Critical Control Point
CL	Checklist
COP	Cost of Production
CSR	
	Corporate Social Responsibility
CTC D. D. f.	Cut, Tear and Curl
D. Ref	Document Reference
D/GM	Director/General Manager
DF	Distribution Facilities
ED&F	Establishment Design and Facilities
ETP	Ethical Tea Partnership
F	Format/Form
FO	Factory Officer
FR	Firing Room
FSMS	Food Safety Management System
FSP	Food safety procedure
FSTL	Food Safety Team Leader
GAP	Good Agricultural Practices
GHP	Good Hygienic Practices
GI GMP	Guide
	Good Manufacturing Practices
HA	Hazard Analysis
HACCP	Hazards Analysis Critical Control Point
HI	Hazard Identification
ISO	International Standardization Organization
NCR	Nonconformity Report
O&MR	Organization and Management Responsibility
OPRP	Operation Perquisite Programmes Prevalence
P PCS	2 a contrata
	Pest Control Systems
PH PR	Personal Hygiene
PRP	Packing Room
	Perquisite Programmes
QAS RA	Quality Assurance Systems Risk Assessment
RBMM	Risk Based Management Model
RM	U
RP	Raw Material Risk Profile/Report
RR	Rolling Room
S	Severity
SF	Storage Facilities
SR/GR	Sifting Room/Grading Room
SV	System Validation
TP	Test Procedure
TPT	Tea Polymerizer Trolley
TQM	Total Quality Management
WA	Withering Area
WI	Work Instructions
5.5. *	

ABSTRACT

Tea is the most commonly drunk beverage in the world and the second most important drink after water. Sri Lanka accounts for 9% share of the world tea production and produces about 320 million kilograms of made tea. Sri Lanka is still the market leader for orthodox black tea. As Sri Lankan tea industry is highly export driven trade, it is necessary to satisfy demands set for statutory, regulatory, social and environmental responsibilities throughout the supply chain. Likewise, safety of food commodities including tea is a global phenomenon growing its importance everyday due to the concerns in public health and impact on global trade.

A study was carried out to identify and assess the major food safety violations occurring in manufacturing process of low grown orthodox black tea, while identifying the food safety measures satisfy ISO 22000 requirements. Stratified disproportional random sampling was used where qualitative data was weighted averaged against GMP requirements and converted in to quantitative values to be used in statistical analyses. All stakeholders in tea manufacturing process were interviewed through the gap analysis and internal audits. The impact of HACCP based FSMS on improving food safety was evaluated and new hybrid documentation system was developed. The document system developed was improved based on the audit findings and real time application in industry as a user innovation strategy where progressive changes were incorporated to the design. In addition, traceability practices and their compliances were examined, while proposing possible solutions for identified major drawbacks. The traceability was evaluated using a checklist, end product sampling, open ended interviews, observations and internal document studies. Accordingly, an extended gap was observed in tea fermentation process without proper equipment and appropriate technologies to provide better hygienic conditions and optimum environment for tea polymerization where a prototype was developed to bridge the gap. Further, information availability for adequate food safety systems was rarely available. Webpages were developed to bridge the information gap. As to the results, average compliance levels achieved in the area of GMP on the reference sample was 68.81% due to the incomplete system developments, lack of expert knowledge in the industry and also due to the inappropriate practices. The organization and management responsibility was strongly correlated with Establishment Design and Facilities while quality assurance systems became the second contributor. Further, Quality Assurance Systems had a strong to moderate correlation with all the factors. Pest Control Systems had the weakest correlation to improvement of food safety. Personal Hygiene was not satisfactorily developed. Thus Establishment Design and Facilities were the major root cause for food hygiene problems identified, where storage facilities were also affected due to the same problem. Conditions and processing operations that were connected with the fermentation were found very unhygienic in manufacturing orthodox black tea. Thus continuous attention and top management commitment with additional capital investments were found crucial in improving design and facilities. It was also found that quality assurance systems were not adequately developed and implemented, which was the root cause for hygienic problems in tea industry. HACCP based food safety systems have enabled an environment to improve GMP tools where factories with HACCP based FSMS had better infrastructure and systematic operations with trained operators. The efficiency of processing, recording and personnel hygiene were satisfactorily improved in factories with HACCP and 5S, where 5S has played a major role in improving infrastructure and training of workers. Based on the above analyses, the generic model was developed to bridge the gaps in quality assurance, which is a user friendly customizable paper based model along with required documents and formats. The operator level documents were prepared in local language and 5S work instructions were enriched with food hygiene requirements instead of developing a new set of work instructions where harmonization, modification and adaptation were found very effective. Synchronization reduced the number of documents used in FSMS and frequency of recording to a greater extent while improving the effectiveness of recording.

Major traceability issues were first observed in leaf collection which was caused due to the involvement of smallholder growers. This was intensified in grading operations due to complexity of separation and small specific amounts produced. Bulking and blending process further extended complexity. Increased number of suppliers led to increased mixing of different made tea. In such situations, traceability up to tea bush, grading, blending and traceability of end product back to supplier were not fully complying. Nevertheless, supplier records, traceability after packaging, at dispatch and after dispatch were in full compliance. Other factors had varying degree of compliances which make the complete traceability unachievable. The development of fermentation trolley used food grade stainless steel gastronome pans on a stainless steel trolley rack with easy cleaning and added features for systematic handling. It reduced the risk of contamination while reducing heat build-up in the product for required conditions. Results revealed that temperature build-up on Tea Polymerizer Trolley, can remarkably reduce to the optimum levels than do plastic crates and tiled floor.