The work described in this thesis was carried out by me under the supervision of Dr.(Mrs.) Nazeera Salim and a report on this has not been submitted in whole or in part to any University for another Degree/Diploma.

<u>31 / 10 / 03</u> Date

Wasanth

P.M.D.W. Sudarshanie

I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation

Valin

Dr.(Mrs.) Nazeera Salim

<u>31, 10, 03</u> Date

MICROPROPAGATION OF OPHIORRHIZA MUNGOS L. FOR THE PRODUCTION OF CAMPTOTHECIN

By

Pinhene Madinage Deepthi Wasantha Sudarshanie

M.Phil. 2003

CONTENTS

		Page No.
List of Tables		vi
List of Figure	S	viii
List of Plates		x
Acknowledge	ments	xii
Abstract		xiii
Introduction		1
Chapter 1 -	Literature review	3
1.1	Ophiorrhiza mungos L (Dathketiya)	3
1.1.1	Classification of plant	3
1.1.2	Description of the plant	4
1.1.3	Distribution of plant	5
1.1.4	Chemical composition of plant	5
1.1.5	Uses of O.mungos	5
1.1.6	Uses of other Ophiorrhiza species	5
1.2	Plant secondary metabolites	6
1.2.1	Camptothecin	6
1.2.1.1	Structure of camptothecin and its derivatives	7
1.2.1.2	Discovery of camptothecin	9
1.2.1.3	Physical properties of camptothecin	9
1.2.1.4	Biological activity of camptothecin and its derivatives	9
1.2.1.5	Other natural sources of camptothecin and its derivatives	10

i

1.2.2	Plant tissue culture as an alternative to field grown plants	11
	for the production of secondary metabolites	
1.2.3	Plant tissue culture used for the production of secondary	13
	metabolites of pharmaceutically importance	
1.2.4	Yield improvement strategies for the production of plant	15
	secondary metabolites by tissue culture	
1.3 `	Callus cultures	20
1.4	Regeneration of plants	21
1.5	Root cultures	21

Chapter 2 - Materials and Methods

2.1	Preparation of glassware	23
2.2	Preparation of stock solutions	23
2.2.1	Preparation of stock solutions of inorganic salts and vitamins	23
2.2.2	Preparation of growth regulatorsions	24
2.3	Preparation and sterilization of culture media	24
2.4	Selection of plant materials for inoculation	26
2.5	Surface sterilization of explants of O.mungos L	26
2.6	Callus cultures	29
2.6.1	Initiation of callus from different explants	29
2.6.2	Subculture and maintenance of callus cultures	32
2.6.3	Effect of growth regulators and type of explant	32
	on the production of callus	
2.6.4	Assessment of growth pattern of callus	33

ii

2.7	Regeneration	34
2.7.1	Initiation of shoots from callus	34
2.7.2	Initiation of shoots from axillary buds	35
2.7.3	Effect of gibberelic acid on shoot elongation	35
2.7.4	Proliferation of shoots of O.mungos	35
2.7.5	Regeneration of roots in in-vitro propagated	36
	shoots of O.mungos	
2.8	Root cultures	36
2.9	Camptothecin	37
2.9.1	Collection of samples for extraction and analysis of	37
	camptothecin by HPLC method	
2.9.2	Extraction of camptothecin from plant materials	38
	and cultures	
2.9.3	Determination of camptothecin by HPLC method	39
2.10	Statistical analysis of data	39
Chapter 3	- Results	
3.1	Effect of different surface sterilization methods on	40
	explants of O.mungos L.	
3.2	Callus cultures	41
3.2.1	Effect of different growth regulators on callus induction	41
	from different types of explants in MS medium	
3.2.2	Effect of different growth regulators on callus induction	46
	from leaf explants in GBs medium	

iii

3.2.3	Assessment of growth pattern of callus	47
3.2.3.1	The effect of IBA and kinetin in MS medium on the growth	
	pattern of callus induced from young leaf explants of O.mungos	47
3.2.3.2	The effect of 2.4D and kinetin in MS medium on the growth	
	pattern of callus induced from young leaf explants of O.mungos	50
3.2.4	The effect of different concentrations of	53
	growth regulators on the callus size.	
3.3	Regeneration	55
3.3.1	Effect of different auxins and cytokinins compositions	55
	in MS medium on regeneration of shoots from callus	
3.3.2	Effect of different 2.4D and kinetin compositions in Woody	62
	Plant Medium (WPM) on regeneration of shoots from callus	
3.3.3	Effect of different combinations of IBA + kinetin and	65
	IBA + BAP in MS medium on development of axillary buds.	
3.3.4	Effect of gibberelic acid in MS medium on shoot elongation	70
3.3.5	Effect of different IBA and kinetin combinations in	72
	MS medium on proliferation of shoots	
3.3.6	Regeneration of roots in in vitro propagated shoots of O.mungos	73
3.4	Root cultures	76
3.4.1	Effect of different concentrations of NAA in different culture	76
	media with 2% sucrose on 40 days old root cultures of O.mungos	8
3.4.2	Effect of different sucrose levels in different culture media with	82
	different concentrations of NAA on 40 days old root cultures	
	of O.mungos	

iv

3.4.3	Effect of incubation period on growth of root cultures in	
	different media containing different sucrose levels	84
3.5	Determination of camptothecin content in plant organs, callus	93
	and root cultures of O.mungos	
3.5.1	Camptothecin content in field grown plant organs	93
3.5.2	Camptothecin content in callus induced from	94
	young leaf explants of O.mungos	
3.5.3	Camptothecin content in root cultures	94
3.5.4	Camptothecin content of in vitro grown plant organs	98
Cha	pter 4 - Discussion	99
Cha	pter 5 - Conclusions and recommendations	111
Refe	erences	114
Арр	endices	125

V

LIST OF TABLES

		Page No.
1.	Methods of surface sterilization used for young leaf	27
	explants of O.mungos	
2.	Different concentrations of IBA + kinetin used to	30
	initiate the callus from different explants	
3.	Different concentrations of NAA + BAP used to	31
	initiate the callus from different explants	
4.	Effect of NAA + BAP combinations on callus induction	42
	from O. mungos leaf explants in MS medium	
5.	Effect of 2.4-D & BAP combinations on callus induction	43
	from O. mungos leaf explants in MS medium	
6.	The effect of different concentrations of IBA & kinetin on the growth	48
	pattern of callus induced from young leaf explants of O. mungos	
7.	The effect of different concentrations of 2.4-D & kinetin in MS media	51
	on the growth pattern of callus induced from young	
	leaf explants of O. mungos	
8.	Effect of IBA and kinetin combinations in	66
	MS medium on development of axillary buds.	
9.	Effect of gibberelic acid in MS medium on shoot elongation	71

vi

10.	Effect of different combinations of IBA and kinetin in	73
	MS medium on shoot proliferation	
11.	Effect of different concentrations of NAA and kinetin in	75
	MS half strength medium on regeneration of roots	
12.	Effect of different sucrose levels in different culture media with different	84
	concentrations of NAA on 40 days old root cultures of O.mungos	
13.	Camptothecin content in field grown plants	93
14.	Camptothecin content in callus	94
15.	Camptothecin content of 40 days old root cultures grown in different	96
	culture media with different concentrations of NAA and 2% sucrose.	
16.	Effect of the age of root cultures on production of camptothecin	97
17.	Effect of sucrose on production of camptothecin	98
	in 40 days old root cultures	e

LIST OF FIGURES

		Page No
1.	Growth of the callus initiated from O.mungos young leaf	49
	explants in MS medium with different concentrations of	
	IBA and kinetin	
2.	Growth of the callus initiated from O.mungos young leaf	52
	explants in MS medium with different concentrations of	
	2.4-D and kinetin	
3.	The effect of different concentrations of growth regulators	54
	on the callus size	
4.	Effect of 2.4-D and BAP in MS medium on shoot formation	60
5.	Effect of NAA and BAP combinations in MS medium	61
	on regeneration of shoots	
6.	Effect of different concentrations of kinetin in MS medium on	62
	regeneration of shoots	
7.	Effect of 2.4-D and kinetin in WP medium on regeneration of	64
	shoots from callus	
8.	Effect of IBA and BAP compositions in MS medium on	68
	development of axillary buds	
9.	Fresh weights of 40 days old O.mungos root cultures in different	78
	culture media with different concentrations of NAA and 2% sucrose	
10.	Dry weights of 40 days old O.mungos root cultures in different	79
	culture media with different concentrations of NAA & 2% sucrose	

11.	Fresh and dry weights of roots grown in GB ₅ medium and 2%	86
	sucrose with the period of time	
12.	Fresh and dry weights of roots grown in GB5 medium and 3%	87
	sucrose with the period of time	
13.	Fresh and dry weights of roots grown in GB5 medium and 4%	88
	sucrose with the period of time	
14.	Fresh and dry weights of roots grown in WPM and 2%	89
	sucrose with the period of time	
15.	Fresh and dry weights of roots grown in WPM and 3%	90
	sucrose with the period of time	
16.	Fresh and dry weights of roots grown in WPM and 4%	91
	sucrose with the period of time	

LIST OF PLATES

		Page No.
1.	General view of Ophiorrhiza mungos L.	3
2.	Structure of camptothecin	7
3.	Structure of 9 methoxy camptothecin	7
4.	Structure of 10 methoxy camptothecin	8
5.	Structure of 10 hydroxy camptothecin	8
6.	Callus initiation from swollen cut ends of leaf explants growing	44
	on MS medium with $0.1 \text{ mg/l } 2.4\text{-}D + 0.1 \text{ mg/l kinetin}$	
7.	Well developed callus grown on MS medium with 1.0 mg/l	45
	2.4-D + 0.1 mg/l kinetin, 28 days after incubation	
8.	Formation of roots from the callus originated from leaf explants	45
	grown with NAA (1.5 mg/l) and kinetin (0.1 mg/l) in MS medium	
9.	Thread like callus originated from root explants with NAA (1.5 mg/l)	46
	and kinetin (0.1 mg/l) in MS medium. Roots grew from the callus	
10.	Appearance of green colour on callus of O.mungos on MS medium	57
	with $0.1 \text{ mg/l } 2.4\text{D} + 1.0 \text{ mg/l BAP}$, after 20 days of incubation.	
11.	Appearance of small outgrowths on callus in MS medium with	58
	0.1 mg/l 2.4-D + 1.0 mg/l BAP, after 70 days of incubation	
12.	Appearance of small leaves on young shoots on MS medium with	58
	0.1 mg/l 2.4-D + 1.0 mg/l BAP, after 86 days of incubation	
13.	Well grown shoots on MS medium with	59
	0.1 mg/l 2.4 -D + 1.0 mg/l BAP after 115 days of incubation	

х

14.	Small shoots developed on nodes cultured in MS medium	69
	with 1.0 mg/l IBA + 5.0 mg/l BAP	
15.	Fairly developed shoots in MS medium with	69
	1.0 mg/l IBA + 5.0 mg/l BAP	
16.	Well grown shoots developed from axillary buds on	70
	MS medium with 1.0 mg/l IBA + 5.0 mg/l BAP	
17.	Shoots in MS medium with 0.1 mg/l GA3, after 4 weeks of incubation	71
18.	Rooted plants developed from callus on MS half strength medium	75
	with 0.5 mg/l NAA after 25 days of incubation	
19.	Rooted plants developed from axillary buds on MS half strength	76
	medium with 0.5 mg/l NAA after 25 days of incubation	
20.	O.mungos roots grown in GB5 medium without NAA in dark.	79
21.	O.mungos roots grown in GB5 medium without NAA in light	80
	(16 hours photoperiod with 240 LUX)	
22.	O.mungos roots grown in MS medium with 0.5 mg/l NAA in dark	80
23.	O.mungos roots grown in GB5 medium with 0.5 mg/l NAA in dark	81
24.	O.mungos roots grown in GB ₅ medium with 0.5 mg/l NAA in light	81
	(16 hours photoperiod with 240 LUX of light intensity)	

xi

ACKNOWLEDGMENT

I sincerely take this opportunity to thank my supervisor Dr. (Mrs.) Nazeera Salim for her assistance, encouragement, psychological support and invaluable guidance given to me at all times to make this project a success. When I was helpless and depressed not being able to finalize this paper due to logistic problems, unless she intervened and gave me the necessary support needed all my hard work would have gone a waste.

I also will take this opportunity to thanks Dr. S. S. Ranaweera for his assistance given to me with this regard.

I express my sincere gratitude to Prof. H. G. Nandadasa, Head of the Botany Department and all the faculty members for their assistance given to me during my research work at the University.

I fail to comply with my responsibilities if I do not thank Dr. (Mrs.) Arambewela from Natural Product Section of Industrial Technology Institute who contributed her precious time and knowledge to see this piece of work is a success.

Finally I conclude with special thanks to the staff members of the Faculty of Post Graduate for the kind co-operation given to me at the times of need.

ABSTRACT

Ophiorrhiza mungos L. (Dathketiya) is a medicinal plant used in traditional medicine in Sri Lanka and India. This plant produces potent antileukemic and antitumor compounds, camptothecin (CPT) and 10 methoxy camptothecin.

Since the propagation of this plant by seeds is slow and viability of seeds is very low, feasibility of propagation *in vitro* has been studied. Studies were conducted to determine the best explant type for callus culture, to select the suitable nutrient medium and plant growth regulators for callus & root cultures, regeneration of plants from callus and axillary buds. The camptothecin contents in callus, root, *in vitro* and *in vivo* grown plant organs were determined.

Young and mature leaves, stems and petioles from greenhouse grown plants and young leaves and roots from *in vitro* grown plants were used as explants for callus formation. Different concentrations of auxins, 2.4-dichloro phenoxy acetic acid (2.4-D), Indole butyric acid (IBA) and Naphthalene acetic acid (NAA) in combination with different concentrations of cytokinins, Benzyl aminopurine (BAP) or kinetin in Murashige and Skoog (MS) or Gamborg B_5 (GB₃) medium were tested. Almost all the growth regulator combinations tested showed 100% callus formation. Young leaf explants obtained from *in vitro* grown plants in MS medium with 1.0 mg/l 2.4-D + 0.1 mg/l kinetin gave the best callus formation within 10 days. Same explants obtained from greenhouse grown plants also showed better callus formation but it took more time to

initiate callus than the leaf explants from *in vitro* grown plants. Callus initiated on GB₅ medium was hard and dried out within several days.

For the regeneration of shoots from callus, MS medium with different concentration of auxins (2.4-D and NAA) in combination with different concentrations of BAP, kinetin alone and Woody plant medium (WPM) with different combinations of 2.4-D and BAP were used. Among the tested growth regulator combinations, MS medium with 0.1 mg/l 2.4-D with 1.0 mg/l BAP gave mean of 19.3 shoots within 10 weeks and 0.3 mg/l kinetin gave mean of 15.4 shoots within 8 weeks which were higher than other treatments tested. MS medium with 1.0 mg/l IBA + 5.0 mg/l BAP gave the highest number of shoots per node.

MS half strength medium containing 0.5 mg/l NAA with 1.5% sucrose gave 100% rooting with long and normal appearance roots while treatment with kinetin resulted short, thick roots. The concentration of 0.1 mg/l gibberellic acid was suitable for shoot elongation of *O. mungos*.

Eighty days old root cultures grown in WP medium with 2% sucrose and NAA (0.5, 1.0 and 1.5 mg/l) gave the highest root yield (0.53-0.58g, dry weight) and no significant difference in dry weights were observed with different concentrations of NAA. GB_5 medium with 4% sucrose also showed very similar results (0.47-0.53 g dry weight).

Flowers of field grown plants contained the highest percentage of camptothecin (0.08%) compared to roots, leaves and stems. Similar amount of camptothecin was

produced in 80 day old root cultures grown in WP medium with 2% sucrose. Although NAA increased the root yield, it inhibited the production of camptothecin.

Forty day old root cultures in MS, GB₅ and WP medium without NAA gave 0.06% of camptothecin. Callus cultures too produced the similar amount of camptothecin (0.06%), but it took longer time than above. Among the tested callus, 9 month old callus grown on MS medium with 1.0 mg/l 2.4-D + 0.1 mg/l kinetin gave the highest amount of camptothecin.