DETERMINATION OF CHEMICAL COMPOSITION

OF

OXO-BIO DEGRADATIVE MATERIAL

(PDQ-H)

BY

D.M. Dinesh Samantha Dissanayake.

This thesis was submitted in partial fulfillment of the nequirements for the Master Science in polymer Science and Technology to the Faculty of Graduate Studies of the University of Sri Jayewardenepura, Sri Lanka.

4th of October 2007. Date of Subusionsion:

Declaration

The work described in this thesis was carried out by the under the supervision of Dr. Sudantha Liyanage and Mr. Mervyn Dias and a report on this has not been submitted to any University for another degree. Also I certify that this thesis dose not include, without acknowledgement, any material previously submitted for a degree in any university and to best of my knowledge and belief it dose not contain any material previously published, written or oral communicated by another person except where due reference is made in the text.

D.M.D.S. Dissanayake

Date: 4th of October 2007

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation

Dr. Sudantha Liyanage Senior Lecture,

Department of Chemistry,

Uni: of Sri Jayewardenepura,

Nugegoda,

Sri Lanka,

Date: 4th of October 2007

uu i

Dr. Laleen Karunanayake

Senior Lecture,

Department of Chemistry,

Uni: of Sri Jayewardenepura,

Nugegoda,

Sri Lanka,

Date: 4th of October 2007

Dr. Laleen Karunanayako Senior Lecturer Department vi Chemisty University of Sri Jeysarardenagura.

ii

ACKNOWLEDGEMENT

I owe my sincerely appreciation and deepest gratitude to my supervisor Dr.Sudantha Liyanage, Senior lecturer of the Department of Chemistry, at the same time Mr. Mervyn Dias (MBA Leicester), chairman of Plastic Packaging (pte) Ltd for the immense encouragement, guidance, and support given through out the research to succeed this event.

I extended my gratitude to Dr. Laleen Karunanayake who is the coordinator of the Master degree program, Polymer Science and Technology, for providing me laboratory facilities in the department and I would like to thank to all academic staff members of the Department of Chemistry who encouraged and guided me.

I am very grateful to Mr. Sagara who gave great exposure me to doing analysis through that period especially when using instruments such as FTIR and UV analysis. At the same I am very grateful to junior academic staff members; they help me in various ways.

I also extend my gratitude Dr. Janitha Liyanage who is the senior lecture of department of chemistry, university of Kelaniya for providing permission to me to conduct my analysis in university of Kelaniya, at the same time I like to covey my gratitude to Dr. K.A.S. Pathirathna who is the department head, department of chemistry, university of Kelaniya providing me instrumental facilities such as AAS etc without any hesitate.

Next I like to convey my gratitude to Mr. Palitha who is the NMR technician in University of Peradeniya provided me lot of information regarding to succeed my analysis.

iii

In this moment I like to present curtsey to Professor Peter Edward who help me in crucial moment in various ways. Next my special thanks go to Mr. Sathya who did great job for me.

I convey my heartiest gratitude to my loving parents; actually they did great help for me in every respect. Also I like to convey my gratitude to my sister, brother and colleagues giving me greater courage and help during my research period. Thank you for every one who encourage me for this task and who wish my progress......

ABSTRACT

Degradable polymers (especially Polyethylene Packages) are designed to degrade in different ways and in different environments. There are many different types of degradable plastics being introduced into the Sri Lankan market, resulting in confusion about their impacts and benefits. An important distinction needs to be made oxo-**biodegradable plastics**, which oxidize and embrittle in the environment and erode under the influence of ultraviolet (UV) light and heat.

The impacts of degradable polymers at end-of-life depend on the characteristics of the polymer itself (i.e. what the polymer is made from and how it is designed to degrade), the thickness and surface area of the product, as well as the disposal environment. There are insufficient data to say with any certainty, how long many degradable polymers take to fully biodegrade, and the impacts of any end products in the environment⁵.

Oxo-biodegradable polymers (with prodegradant additives such as PDQ-H) are designed to break down under the influence of heat and UV light. Final biodegradation takes place through the action of microorganisms, although there still appears to be some uncertainty about the time needed to fully degrade (particularly whether it can occur within the normal commercial composting period) and the environmental impacts of plastic fragments and additives. The use of oxo-biodegradable polymers for products that are designed for disposal in landfill will result in a loss of resources as the products will not be recovered through either composting or recycling, and will have very little impact on the quantity of waste to landfill or the life of landfills.

V

Willow Ridge supplies a photodegradable master-batch designated UV-H that accelerates UV degradation by creating free radicals that sever the polymer chains into smaller fragments that can be consumed by microbes. UV-H costs \$1.50/lb and is typically used at a 2% level. It can be combined into a triple-acting system with PDQ, called PDQ-H (Leaversuch 2002). Willow Ridge's additives are effective alone or in synergistic blends of additives that exploit different degradation mechanisms.

Through this project, it was tried to identify the functional groups, carbon skeleton, and availability of conjugation and propose the suitable and critical structure for the PDQ-H and by using it propose the degradation mechanism. For achieved that target FTIR, UV Spectrophotometer, HNMR, 13C NMR, COSY, DEPT and AAS instrument were used.

CONTENT

Declaration	II
Acknowledgement	III
Abstract	VI
List of tables	XI
List of figures	XII
Acronyms	XIV
Chapter-01	
1.1–Introduction	01
1.1.01-Ingredients	05
1.1.02-Types of Polyethylene	05
1.1.03-Enviromental Impacts	06
1.1.03.01-Impacts of Energy Requirements	06
1.1.03.02-Air and Water Pollution	06
1.1.03.03-Land Pollution	07
1.1.03.04-Impacts on Wildlife	08
1.1.03.05-Shipping and Transportation	08
1.1.04-Health Impacts	09
1.1.05-Use and immediate disposal of plastic grocery bags	09
1.1.06-Social Impacts	09
1.1.06.01-Impacts on Human Health	09
1.1.06.02-Impacts on Livelihood	10

1.1.06.03-Impacts on Government and Politics	11
1.1.07-Waste Management and Recycling	12
1.1.07.01-Managing Waste	12
1.1.07.02-Recycling and Incineration	13
1.1.08-The Economics of Disposal	14
1.1.9-Conclusion	15
1.2-Types of degradable plastics	16
1.3-Critical issues for degradability	17
1.4-Life cycle impacts of degradable bags	18
1.5-Recycling or degradability	19
1.6-Overview of degradable polymers	21
1.7-Types of degradable plastic bags	23
1.8-Starch-based polymers	27
1.9-Starch-Polyester Blends	29
1.10-Polyesters	32
1.11-Controlled degradation master-batch additives	33
1.12-Photodegradable polymers	35
1.13-Water soluble polymers	36
1.14-Degradation pathways of major types of degradable bags	37
1.14.01- Mechanism of degradation and biodegradation	37
1.14.02-Thermoplastic starch products	38
1.14.03-Polyesters	40
1.14.04-Controlled degradation master batch additives	40
1.14.05-Photodegradable polymers	43

1.14.06-Water-soluble polymers	43
1.15-Overview of degradation pathways	44
1.16-Suitability of degradable polymers for bags	46
1.17-Mechanical property requirements	47
1.18-Shelf life	47
1.19-Estimated lifetimes in disposal environments	48
1.20-Ultraviolet spectrophotometry	48
1.20.01-The nature of electronic excitation	50
1.20.02– The origin of UV band structure	53
1.20.03- Theory behind the origin of UV band structure	55
1.21-Infrared spectroscopy	56
1.21.01- The infrared absorption process	59
1.22 - Nuclear Magnetic Resonance spectroscopy	60
1.22.01- Nuclear magnetic moments	61
1.22.02- The nuclear magnetic resonance spectrophotometer	62
1.22.03- ¹³ C NMR spectroscopy	64
1.22.04- ¹³ C- ¹ H coupling	65
1.22.05-2D NMR: COSY and HETCOR	66
1.23-Atomic Absorption Spectrophotometer	68
1.23.01- Instrumentation	69
1.24.01- Overall Objective	75
1.24.02-Specific Objective	75

CHAPTER - 02

2.1-Experiment methods	76	
2.1.01-Finding proper solvent for PDQ-H and LDPE using solubility parameters	76	
2.1.02-PDQ-H and LDPE with Toluene	78	
2.2-UV analysis	79	
2.2.01-Preparation of LDPE solution for UV analysis	79	
2.2.02- Preparation of PDQ-H solution for UV analysis	79	
2.3 -Films preparation for FTIR analysis	79	
Chapter –03		
Results and Discussion	81	
3.1- UV Results and Discussion	81	
3.2-FTIR Results and Discussion	88	
3.3-HNMR, ¹³ C NMR and DEPT Results and Discussion (LDPE)	92	
3.4-AAS Results and Discussion		
Chapter – 04		
4.0-Conclusion and further works		
4.1-Conclusion	94	
4.2.01-Propose degradation mechanism	94	
4.2.02-Research questions	100	
4.2.02-Further work of this research	101	
References	102	

Table

P	a	g	e
---	---	---	---

Table.1-different types of degradable polymers	26
Table.2-Degradation times	45
Table.3-The regions of the spectrum and the types of energy transitions	58
Table 4- thickness measurements of FTIR films	80
Table 5-UV spectrum analysis of 100% LDPE	81
Table 6-UV spectrum analysis of 100% PDQ-H	82
Table.7-FTIR analysis of 100% LDPE	88
Table.8-FTIR analysis of 100% PDQ-H	88
Table.9-FTIR analysis of 3% PDQ-H	88
Table.10-FTIR analysis of 1% PDQ-H	89
Table.11-FTIR analysis of 0.5% PDQ-H	89
Table.12- HNMR chemical shift values and related protons	92
Table.13- ¹³ C NMR chemical shift values and related carbon	92
Table.14-DEPT chemical shift values and related carbon atoms with hydrogens	92
Table.15-AAS metals analysis of both LDPE and PDQ-H	93

LIST OF FIGURES

Figure.1-A simplified scheme that illustrates the degradation by peroxidation of PE	41
Figure.2-UV Spectrophotometer	49
Figure.3-Schematic diagram of UV spectrophotometer	49
Figure.4-Excitation Process	50
Figure.5-Electronic Energy Levels and Transitions	51
Figure.6-Energy transition levels	52
Figure.7-UV transition levels	54
Figure.8-Electromagnetic spectrum	57
Figure.9-The Two Allowed Spin States for a Proton	61
Figure.10-The basic elements of the Nuclear Magnetic Resonance Spectrometer	63
Figure.11-Assembly of 2D NMR Machine	67
Figure.12-Relationship between emission and atomic absorption spectrometry	68
Figure.13-AAS instrument	71
Figure.14-Schematic diagram of atomic absorption spectrophotometer	72
Figure.15-The relationship between A, %T, and percent absorption (100%T)	73
Figure.16-PDQ-H and LDPE	76
Figure.17- LDPE and PDQ-H films	80
Figure.18-UV spectrum of 100% LDPE	81
Figure.19-UV spectrum of 100%PDQ-H	82
Figure.20-FTIR spectrum of 100% LDPE	83

Page

Figure.21-FTIR spectrum of 100% PDQ-H	84
Figure.22-FTIR spectrum of 3%PDQ-H	85
Figure.23-FTIR spectrum of 1% PDQ-H	86
Figure.24-FTIR spectrum of 0.5% PDQ-H	87
Figure.25-HNMR of LDPE, 25oC, CDCl ₃ Solvent	90
Figure.26- ¹³ C of LDPE, 25oC, CDCl ₃ Solvent	90
Figure.27-DEPT NMR of LDPE	91
Figure.28-Propose active fragment for PDQ-H	94
Figure.29-Propose mechanism-1 for degradation	96
Figure.30-Propose mechanism-2 for degradation	98

ACRONYMS

HDPE	high density polyethylene
LDPE	low-density polyethylene
LLDPE	linear low density polyethylene
VLDPE	very low density polyethylene
mLLDPE	metallocne-catalysed linear low density polyethylene
λ	wavelength
μ	micron
V	Frequency
С	speed of the light
Е	energy
Н	plank's constant
Ũ	wave number
I_s	ntensity of the sample beam
I_r	ntensity of the reference beam
UV	ultra violet region
Vis	visible region
ΔE	energy gap or energy difference
PDQ-H	prodegrant
Σ	σ -orbitals, those which correspond

too-bonds

Π	π-orbitals, those whichcorrespond to $π$ -bonds
Ν	none-bonding or n-orbitals
σ^*	anti bonding σ -orbitals
π*	anti bonding π-orbitals
V _n	vibrational energy levels
Іо	intensity of the incident light
Ι	intensity of the leaving light
С	molar concentrate of solute
3	molar absorptivity
Ι	spin quantum number
μ	magnetic moment
μο	applied magnetic Field
TMS	tettramethylsilane, (CH3) ₄ Si
NMR	Nuclear Magnetic Resonance
RF	radiofrequency
J	coupling constant
¹³ C	carbon thirteen isotope
R	alkyl Group
FT-IR	furrier transform infrared
FT-NMR	furrier transform Nuclear Magnetic Resonance
DEPT	distortionless enhancement of polarization transfer
2D	two dimension

XV