OPTIMIZATION OF EXTRACTION AND STABILITY OF NATURAL COLOURS OBTAINED FROM DIFFERENT PLANT SOURCES

By

G. R. M. Wimalasena

This Thesis submitted in partial fulfilment of the requirements for the Degree of Masters of Food Science and Technology,

Department of Food Science and Technology,

Faculty of Applied Science,

University of Sri Jayawardenapura, Sri Lanka.

2012

DECLARATION

The work described in this thesis was carried by me, under the supervision of Professor K.K.D.S. Ranaweera and the report on this thesis has not been submitted in whole or in part of any University or any other institution for another Degree/ Diploma.

24/01/2014 Date

how malasena

"I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation"

.

24/1-2014

Prof. K.K.D.S. Ranaweera Director Bandaranaike Memorial Ayurveda Research Institute Nawinna, Maharagama.

Date

THIS EFFORT IS DEDICATED TO MY PARENTS, ALL MY TEACHERS & ALL THE SUPPORTIES

TABLE OF CONTENTS

	Page.No.
Table of Content	
List of Figures	I
List of Tables	VI
	VIII
Acknowledgement	IX
Abbreviations	Х
Abstract	XI
CHAPTER 01 INTRODUCTION	
1.1. What is a Food Colour?	1
1.2. Purpose of Food Colouring	1
1.3. Types of Food Colours	1
1.3.1 Artificial Food Colours	1
1.3.2. Natural Food Colours	2
1.4. Justification of the Study	3
1.5. Objectives of the Study	3
CHAPTER 02 LITERATURE REVIEW	
2.1. What is Food Colour?	5
2.2. Distribution of Natural Pigments	5
2.3. Sources of Bio-colorants	7
2.4. Classification of Colour Producing Compounds in Plants	7
2.5. Porphyrins	8
2.5.1. Classification of Porphyrins	8
2.6. Metalloporphyrins Occurring in Nature	9
	,

2.6.1 Chlorophyll

9

2.6.2. Biosynthesis of Chlorophyll	10
2.6.3. Factors Influencing Chlorophyll Composition	12
2.6.4. Light absorption by Chlorophyll	13
2.7. Carotenoids	14
2.7.1. Types of Carotenoids	14
2.7.1.1. Carotenes	14
2.7.1.2. Xanthopylls	14
2.7.2. Structures of Carotenoids	14
2.7.3. Carotenoids Found in Nature	15
2.7.4. Biosynthesis of Carotenoids	15
2.7.4.1. Early Stages	15
2.7.4.2. Later Stages	16
2.7.5. Common Food Carotenoids	17
2.7.6. Factors that Influence the Composition of Carotenoid	17
2.7.7. Important Properties of Carotenoids	18
2.7.8. Solubility	18
2.7.9. Light Absorption	18
2.7.10. Antioxidant Properties of Carotenoids	18
2.7.11. Health Promoting Functions of Carotenoids	20
2.8. Flavonoids	20
2.8.1. Flavone	20
2.8.1.1. Sources of Flavones	21
2.8.2. Flavonol	21
2.8.2.1. Sources of Flavonols	21
2.8.3. Anthocyanin	21

2.8.3.1. Occurrence of Anthocyanin	22
2.8.3.2. As pH Indicator	22
2.8.3.3. Stability of Anthocyanins	22
2.8.3.4. Facts about Anthocyanins	23
2.8.4. Biosynthesis of Flavonoids	23
2.8.5. Food Contain Flavonoids	24
2.8.6. Health Benefits of Flavonoids	25
2.9. Colour Wheel with Wavelengths	26
2.9.1. Calculating Absorbance	26

CHAPTER 03 MATERIALS & METHODS

3.1. Extraction of Yellow Pigment	28
3.1.1. Carrot (Daucuscarota)	28
3.1.1.1. Extraction Using Mineral Oil and Butter	28
3.1.1.2. Extraction Using Ethanol and Petroleum Ether	28
3.1.2. Orange (Citrus sinensis) Peel	28
3.1.2.1. Extraction Using Acetone and Hexane	29
3.1.3. Pumpkin (Cucurbita maxima)	30
3.1.3.1. Extraction Using Acetone and Hexane	30
3.1.4. Turmeric (Curcuma longa)	31
3.1.4.1. Extraction Using Acetone and Hexane	31
3.1.4.2. Extraction Using Hexane and Petroleum Ether	32
3.1.4.3. Extraction Using Ethanol (95%)	32
3.1.4.4. Observation of Colour Change According to pH Value	33

3.2. Extraction of Green Pigments	34
3.2.1. Spinach (Spinaciaoleracea)	34
3.2.1.1. Extraction Using Mineral Oil and Butter	34
3.2.1.2. Extraction Using Ethanol	34
3.2.2. Grape (Vitisvinifera)	35
3.2.2.1. Extraction Using Acetic Acid	35
3.2.3. Centella(Centellaasiatica)	36
3.2.3.1. Extraction Using Ethanol and Apply into the	36
Product (Carbonated Water)	
3.2.2.2. Determine Stability of Centella Extract with Maltodextrin	37
3.2.2.3. Obtaining Centella Extract Powder by Evaporation	37
3.3. Extraction of Red Pigments	38
3.3.1. Beetroot (Beta vulgaris)	38
3.3.1.1. Extraction Using Mineral Oil and Butter	38
3.3.1.2. Extraction Using Ethanol	38
3.3.1.3. Extraction Using Distilled Water	39
3.3.1.3.1. Preparation of Citric Acid	40
3.3.1.3.2. Preparation of Ascorbic Acid	40
3.3.1.4. Extraction Using Ethanol and Citric Acid	40
and Apply into Carbonated Water (Soda)	
3.3.1.5. Extraction Using Ascorbic Acid and	42
Citric Acid and Apply into Carbonated Water (Soda)	
3.4. Extraction of Purple Pigments	43
3.4.1. Grapes (Vitisvinifera)	43
3.4.1.1. Extraction Using Mineral Oil and Butter	43
3.4.1.2. Extraction Using Water at different Temperatures	44

3.4.1.3. Extraction Using Ethanol	44
3.4.1.4. Extraction Using Citric Acid and Ascorbic Acid	45
3.4.1.5. Extraction Using Acetic Acid	45
3.4.1.5.1. Evaporation of Extract to Obtain the Powder Form	46
3.4.1.5.2. Incorporate Grape Extract into Maltodextrin	47
3.4.1.6. Extraction Using Hydrochloric Acid	47

CHAPTER 04 RESULTS & DISCUSSION

4.1. Extraction of Yellow Pigments from Carrot	49
4.2. Extraction of Yellow Pigments from Orange Peel	52
4.3. Extraction of Yellow Pigments from Pumpkin	52
4.4. Extraction of Yellow Pigments from Turmeric	53
4.5. Extraction of Green Pigments from Spinach	55
4.6. Extraction of Green Pigments from Grapes	57
4.7. Extraction of Green Pigments from Centella	57
4.8. Extraction of Red Pigments from Beetroot	61
4.9. Extraction of Purple Pigments	67

CHAPTER 05 CONCLUSION

REFERENCES

76

74

LIST OF FIGURES

	Page.No.
1. Molecular Structure of Porphin	8
2. Type I and Type III Porphyrin	9
3. Structure of Chlorophyll a & b	10
4. The Biosynthesis pathway of Chlorophyll	11
5. Absorption Spectra of Chlorophyll a & b	13
6. Carotenoids Biosynthesis Pathways	16
7. Absorption spectrum of carotenoids	19
8. Molecular Structure of Flavones	21
9. Molecular Structure of Flavonol	21
10. Molecular Structure of Anthocyanin	22
11. Biosynthesis Pathway of Flavonoids	24
12. Colour Wheel with Wavelengths	26
13. Absorption Spectrum of Beta-carotene	51
14. Chemical Structure of Beta Carotene	53
15. Chemical Structure of Curcumin	53
16. Absorption Spectrum of Curcumin	54
17. Absorption Spectrum of Turmeric Extract (Hexane)	54
18. Absorption Spectrum of Turmeric Extract (Ethanol)	55
19. Absorption spectrum of Chlorophyll	56
20. Absorption Spectrum of Spinach Extract	56
21. Absorption Spectrum of Centella Extract (Initial)	58
22. Absorption Spectrum of Centella Extract (after one month)	58

23. Centella Extract with MaltodextrinAfter Drying in an Oven	60
24. After Evaporation of Centella Extract	60
25. Absorption Spectrum of Betanin	63
26. Absorption Spectrum of Beetroot Extract	64
27. Absorption Spectrum of Anthocyanin	69
28. Absorption Spectrum of Acetic Acid Extract of Anthocyanin	70
29. Acetic Acid Extract after Evaporation	70
30. Acetic Acid Extraction After incorporate in to the Maltodextrin	71

LIST OF TABLES

1. Classification of Colour Producing Compounds	7
2. Number of Double Bonds and Impart Colours of Carotenoids	15
3. Mean Absorbance Value Combinations of Ethanol and Citric acid	41
4. Mean Absorbance Value Combinations of Ascorbic Acid and Citric Acid	43
5. Mean Absorbance Value Combinations of Ethanol and Citric Acid Extracts	62
6. Mean Absorbance Value Combinations of Ascorbic Acid and Citric Acid Extracts	64
7. Absorbance and Yield of Citric Acid Extractions	68
8. Absorbance and Yield of Ascorbic Acid Extractions	68

ACKNOWLEDGEMENTS

I wish to express my very sincere gratitude to my supervisor Prof. K. K. D. S. Ranaweera for his encouragement and valuable guidance extended to me throughout this project and with regard to the preparation of this thesis.

A special word of thank to all academic and non-academic members, especially Mr. Rupasinghe, at the Department of Food Science, University of Sri Jayawardenapura for their help in various ways during the research period.

I also wish to thank all my colleagues who support me in many ways.

ABREVATIONS

А	Absorbance
Conc.	Concentrated
°C	Celsius
D	Di pole moment
g	gram
HCL	Hydrochloric acid
Kg	Kilogram
Μ	Molarities
mg	milligram
ml	millilitres
nm	nanometres
NaOH	Sodium Hydroxide
RT	Room Temperature
w	weight
%	Percent

OPTIMIZATION OF EXTRACTION AND STABILITY OF NATURAL COLOURS OBTAINED FROM DIFFERENT PLANT SOURCES

By Gangodage Rananjaya Madushanka Wimalasena

ABSTRACT

Colours are one of the widely used food additives in the present food industry. There are several purposes of the uses of colours in the food industry and the main purpose is to give an attractive appearance to the food. Food colours are mainly categorized in to two main groups, i.e Artificial and Natural. Natural colours come under three categories, namely Porphyrin, Carotenoid and Flavonoid. The present food industry is seeking opportunities and possibilities of using natural colours instead of artificial colours and simultaneously, consumers also show interest in food where natural colours have been used.

The objective of this study was to obtain natural pigments from different plant sources and study the stability of the pigments with various factors. Various types of solvents were used in the extract processes, such as ethanol, petroleum ether, hexane, HCl, acetic acid, citric acid and ascorbic acid etc.

In yellow pigment extraction methods, turmeric extraction with 95% ethanol gave the high intensity of yellow and which had the most stability. In the green pigment extraction, Centella, ethanol extract gave the high chlorophyll extraction yield than Spinach ethanol extraction.

In the red pigment extraction, betanin in beetroot gave the high extraction yields in 20% ethanol and 0.5% citric acid extract and 0.1% ascorbic acid and 0.2% citric acid extract. These two extracts gave the betanin yield respectively 22.120 mg/kg and 28.324 mg/kg. Betanin extract obtained from ascorbic acid and citric acid combination showed better stability than ethanol citric acid combination.

In the violet pigment extraction, Anthocyanin present in grape peel has a better extraction possibility in dilute acidic aqueous media. 99.7% acetic acid and 1% HCl gave the higher anthocyanin yield. The anthocyanin amount of extracts was respectively 13.39 mg/100g

and 12.397 mg/100g. Anthocyanin pigment extracted from both methods showed a long stability period (more than four months).