SEEDLING LEAF STRUCTURE OF TREE SPECIES IN RELATION TO THEIR SUCCESSIONAL STATUS AND CANOPY POSITION IN A SRI LANKAN RAIN FOREST.

BY

SUDUHAKURUGE BANDUMALA

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Forestry on Tropical Forest Ecology.

DECLARATION

The work described in this thesis was carried out by me under the supervision of Prof B. M. P. Singhakumara and Prof P. M. S. Ashton and a report on this has not been submitted in whole or in part to any university or any institution for another Degree/Diploma.

Radenala.

S.H.Bandumala B.Sc. (Botany) Special Degree (1994) University of Sri Jayewardenepura.

6/4/07. Date

We certify that the statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Bubgfar Signature:

Internal Supervisor: Prof B M P Singhakumara, D.Phil. (Oxon.)

Professor of Forest Ecology and Dendrology,

University of Sri Jayewardenepura,

Nugegoda,

Sri Lanka.

Date: 6(4/07

Signature:

External Supervisor: Prof P M S Ashton

Professor of Silviculture and Forest Ecology, Director of School Forests,

School of Forestry & Environmental Studies,

Yale University, USA.

Date: 6/4/07

TABLE OF CONTENTS

TABLE OF CONTENTS i		
LIST OF TABLES		
LIST OF FIGURES.		vii
LIST OF PLATES		x
ACKNOWLEDGEN	IENTS	xv
ABSTRACT		xviii
CHAPTER 1:	INTRODUCTION	1
	1.1 General Introduction and Objectives	2
CHAPTER 2:	LITERATURE REVIEW	9
	2.1 Tropical rain forest	10
	2.2 Plants responses to gaps	12
	2.3 Light environment	15
	2.4 Seedling growth performance	18
	2.5 Leaf anatomy	21
	2.6 Plant physiology	23
	2.7 Seedling morphology	28
CHAPTER 3:	STUDY DESCRIPTIONS	33
	3.1 Study objective and hypotheses	34
	3.2 Study site	35
	3.3 Study species	36
CHAPTER 4:	METHODS AND MATERIALS	40

X

		4.1 Experimental design	41
		4.2 Seedling establishment in the shelters	41
		4.3 Seedling growth performance experiments	44
		4.4 Leaf anatomy experiments	45
	×	4.5 Leaf physiology experiments	45
		4.6 Leaf morphology experiment	47
	CHAPTER 5:	SEEDLING GROWTH PERFORMANCE RESULTS	49
		5.1 Seedling growth performance	50
		5.2 Seedling growth	55
ι <u>ς</u>		5.3 Whole seedling dry weight gain and allocation to roots	70
	CHAPTER 6:	LEAF ANATOMY RESULTS	99
		6.0 Leaf Anatomy	100
		6.1 Leaf blade structure	100
¥		6.2. Stomatal density and pore length	123
	CHAPTER 7:	LEAF PHYSIOLOGY RESULTS	136
		7.0 Seedling physiology	137
		7.1 Photosynthesis	137
		7.2 Stomatal conductance	147
		7.3 Nitrogen use efficiency	156
	CHAPTER 8:	LEAF MORPHOLOGY RESULTS	160
		8.0 Seedling morphology	161
		8.1 Seedling leaf morphology	161
	CHAPTER 9:	DISCUSSION	187

	9.1 Difference in seedling growth performance	188
	9.2 Difference in leaf anatomy	190
	9.3 Difference in leaf physiology	191
	9.4 Difference in leaf morphology	193
*	9.5 Species differences	195
CHAPTER 10:	CONCLUSION	207
REFERENCES		210
APPENDICES 01	PHOTOGRAPHS	225
APPENDICES 02	PUBLICATIONS	267

LIST OF TABLES

3.3.1	Species studied in shade house experiment	38
5.1.1.1	Arcsine of seedling mortality	51
5.1.1.2	Arcsine of seedling mortality, combining shade treatments for species in each category	52
5.1.1.3	Means of arcsine of seedling mortality for species across shade treatment	53
5.2.1.1	Seedling height increment values (cm/year)	56
5.2.1.2	Seedling height increment values (cm/year) combining shade	58
5.2.1.3	treatments Seedling height increment for species in each category.	59
5.2.2.1	Seedling root collar diameter increment (cm/year)	64
5.2.2.2	Seedling root collar diameter increment (cm/year), combining shade	66
5.2.2.3	treatments for species in each category Seedling root collar diameter increment (cm/year) for each specie	67
5.3.1.1	Seedling total dry mass	71
5.3.1.2	Seedling total dry mass (g))combining shade treatment	73
5.3.1.3	Seedling total dry mass (g) for species in each group	74
5.3.2.1	Seedling leaf mass ratio	78
5.3.2.2	Seedling leaf mass ratio of combining shade treatment	80
5.3.2.3	Seedling leaf mass ratio for species in category	81
5.3.3.1	Means of seedling stem mass ratio	85
5.3.3.2	Means of stem mass ratio of combining shade treatments	87
5.3.3.3	Means of seedling stem mass ratio for species in each category	88
5341	Means of seedling root mass ratio	92

5.3.4.2	Means of seedling root mass ratio combining shade treatment	94
5.3.4.3	Means of seedling root mass ratio for species in each category	95
6.1.1.1	Means of Seedling leaf blade thickness (µm)	101
6.1.1.2	Means of seedling leaf blade thickness (μm) combining shade treatment for species in each category	103
6.1.1.3	Means of seedling leaf blade thickness (μ m) for species in each group	104
6.1.2.1	Means of leaf upper epidermis thickness (μ m) of (a) climax and pioneer species (b) canopy, subcanopy, and understorey species	107
6.1.2.2	Means of leaf upper epidermis thickness (μ m) combining shade treatments for species in each category	108
6.1.2.3	Means of leaf upper epidermis thickness (μm) for species in each group	109
6.1.3.1	Means of leaf palisade layer thickness (µm).	113
6.1.3.2	Means of leaf palisade layer thickness (μm) combining shade treatment	114
6.1.3.3	Means of leaf palisade layer thickness (μm) for species in each group	115
6.1.4.1	Means of leaf lower epidermis thickness (µm).	118
6.1.4.2	Means of leaf lower epidermis thickness (μ m) combining shade	119
6.1.4.3	treatment Leaf lower epidermis thickness (μ m) for species in each group	120
6.2.1.1	Means of leaf stomatal density(cm ⁻²)	124
6.2.1.2	Means of leaf stomatal density ((cm ⁻²) combining shade treatment for species in each category	126
6.2.1.3	Means of leaf stomatal density (cm ⁻²) for species in each group.	127
6.2.2.1	Means of leaf stomatal pore length (μ m)	131
6.2.2.2	Means of leaf Stomatal pore length(μm) combining shade treatment for species in each category	132
6.2.2.3	Means of leaf stomatal pore length (μm) for species in each group	133

v

7.1.1	Means of ambient photosynthesis	138
7.1.2	Means of maximum photosynthesis	140
7.1.3	Means of ambient photosynthesis values, combining shade treatment	142
7.1.4	Means of ambient photosynthesis among species of each category	143
7.2.1	Means of leaf stomatal conductance	148
7.2.2	Means of leaf maximum stomatal conductance	150
7.2.3	Means of leaf stomatal conductance values combining shade treatment	151
7.2.4	Means of leaf stomatal conductance among species of each category	152
7.3.1	Means of leaf nitrogen use efficiency.	157
8.1.1.1	Means of seedling leaf number increment	162
8.1.1.2	Means of leaf number increment (year ⁻¹), combining shade treatment for species.	163
8.1.1.3	Means of seedling leaf number increment (year ⁻¹) for species in each	164
8.1.2.1	category. Means of leaf dry weight	168
8.1.2.2	Means of leaf dry weight combining shade treatments for species	169
8.1.2.3	Means of leaf dry weight of species in each category	170
8.1.3.1	Means of leaf area (cm ²)	174
8.1.3.2	Means of leaf area (cm ²) combining shade treatment for species	175
8.1.3.3	Means of leaf area (cm ²) of species in each category	176
8.1.4.1	Means of Specific leaf area (cm2/g)	180
8.1.4.2	Means of specific leaf area (cm2/g) combining shade treatment for species in each group	182
8.1.4.3	Means of specific leaf area (cm2/g) for species in each group.	183

LIST OF FIGURES

3.3.1	Location of Sinharaja in the lowland wet zone of Sri Lanka.	37
5.1.1.1	Means of height increment values (cm/year) of (a) climax and pioneer species (b) canopy, sub canopy, and understorey species, among different shade treatments	57
5.1.3.1	Means of seedling root collar diameter increment (cm/year) values of (a) climax and pioneer species (b) canopy, sub canopy, and understorey species, among different shade treatments	65
5.2.1.1	Means of total dry mass (g) of (a) climax and pioneer species (b) canopy, subcanopy, and understorey species, between shade treatments	72
5.2.2.1	Means of leaf mass ratio of (a) climax and pioneer species (b) canopy, subcanopy, and understorey species, between shade treatments	79
5.2.3.1	Means of stem mass ratio of (a) climax and pioneer species (b) canopy, subcanopy, and understorey species, between sun and shade	86
5.2.4.1	Means of root mass ratio of (a) climax and pioneer species (b) canopy, subcanopy, and understorey species, between shade treatments	93
6.1.1	Means of leaf blade thickness values(μ m) of (a) climax and pioneer species (b) canopy, subcanopy, and understorey species, between sun and shade treatments.	102
6.2.1	Means of stomatal density of (a) climax and pioneer species (b) canopy, subcanopy, and understorey species, between sun and shade treatments	125
7.1.1	Means of net photosynthesis values of (a) climax and pioneer species (b) canopy, subcanopy, and understorey species, among different shade treatments	139
7.2.1	Means of stomatal conductance of (a) climax and pioneer species (b) canopy, subcanopy, and understorey species, among different shade treatments	149
8.1.4.1	Means of Specific leaf area (cm2/g)of (a) climax and pioneer species (b) canopy, sub canopy, and understorey species, between shade treatments	181

LIST OF PLATES

4.1	Four shade treatments	43
4.2	Seedling establishment in the full sun-shelter	43
4.3	Diagram of a leaf cross section	226
05	Different effect of the light treatments on seedlings of <i>Artocarpus nobilis</i> after 11/2 years growth	227
06	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Artocarpus nobilis</i>	228
07	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Artocarpus nobilis</i>	228
08	Different effect of the light treatments on seedlings of <i>Litsea gardneri</i> after 11/2 years growth	229
09	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Litsea gardneri</i>	230
10	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Litsea gardneri</i>	230
11	Different effect of the light treatments on seedlings of <i>Myristica dactyloides</i> after 11/2 years growth	231
12	Photomicrographs of leaf cross sections from full sun and deep shade grown seedling of <i>Myristica dactyloides</i>	232
13	Photomicrographs of stomata from full sun and deep shade grown seedling leaves of <i>Myristica dactyloides</i>	232
14	Different effect of the light treatments on seedlings of <i>Chaetocarpus castanocarpus</i> after 11/2 years growth	233
15	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Chaetocarpus castanocarpus</i>	234

16	Photomicrographs of stomata from full sun and deep shade grown seedling leaves of <i>Chaetocarpus castanocarpus</i>	234
17	Different effect of the light treatments on seedlings of Garcinia quaesita	235
18	after 11/2 years growth Photomicrographs of leaf cross sectionsfrom full sun and deep shade grown seedlings of <i>Garcinia quaesita</i>	236
19	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Garcinia quaesita</i>	236
20	Different effect of the light treatments on seedlings of <i>Prunus walkeri</i> after 11/2 years growth	237
21	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Prunus walkeri</i>	238
22	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Prunus walkeri</i>	238
23	Different effect of the light treatments on seedlings of Semecarpus gardneri after 11/2 years growth	239
24	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Semecarpus gardneri</i>	240
25	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Semecarpus gardneri</i>	240
26	Different effect of the light treatment on seedlings of <i>Agrostistachys hookeri</i> after 11/2 years growth	241
27	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Agrostistachys hookeri</i>	242
28	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Agrostistachys hookeri</i>	242
29	Different effect of the light treatments on seedlings of <i>Diospyrous insignis</i> after 11/2 years growth	243
30	Photomicrographs of leaf cross sections(x40x/0.75) from full sun and deep shade grown seedlings of <i>Diospyrous insignis</i>	244
31	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Diospyrous insignis</i>	244

32	Different effect of the light treatments on seedlings of <i>Litsea longifolia</i> after 11/2 years growth	245
33	Photomicrographs of leaf cross sections($x40x/0.75$) from full sun and deep shade grown seedlings of <i>Litsea longifolia</i>	246
34	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Litsea longifolia</i>	246
35	Different effect of the light treatments on seedlings of <i>Nargedia</i> <i>macrocarpa</i> after 11/2 years growth	247
36	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Nargedia macrocarpa</i>	248
37	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Nargedia macrocarpa</i>	248
38	Different effect of the light treatments on seedlings of <i>Stemonoporus</i> canaliculatus after 11/2 years growth	249
39	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Stemonoporus canaliculatus</i>	250
40	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Stemonoporus canaliculatus</i>	250
41	Different effect of the light treatments on seedlings of Symplocos pulchra after 11/2 years growth.	251
42	Photomicrographs of leaf cross section sdeep shade grown seedlings of Symplocos pulchra	252
43	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Symplocos pulchra</i>	252
44	Different effect of the light treatments on seedlings of <i>Timonius jambosella</i> after 11/2 years growth	253
45	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Timonius jambosella</i>	254
46	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Timonius jambosella</i>	254

47	Different effect of the light treatment on seedlings of <i>Acronychia pedunculata</i> after 11/2 years growth	255
48	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Acronychia pedunculata</i>	256
49	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Acronychia pedunculata</i>	256
50	Different effect of the light treatment on seedlings of <i>Bridelia moonii</i> after 11/2 years growth	257
51	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Bridelia moonii</i>	258
52	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Bridelia moonii</i>	258
53	Different effect of the light treatment on seedlings of <i>Chrysophyllum roxburghii</i> after 11/2 years growth	259
54	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Chrysophyllum roxburghi</i>	260
55	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Chrysophyllum roxburghii</i>	260
56	Different effect of the light treatment on seedlings of <i>Euodia lunuankenda</i> after 11/2 years growth	261
57	Potomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Euodia lunuankenda</i>	262
58	Potomicrographs of stomata from full sun and deep shade grown seedlings of <i>Euodia lunuankenda</i>	262
59	Different effect of the light treatment on seedlings of <i>Horsfieldia iryaghedhi</i> after 11/2 years growth	263
60	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Horsfieldia iryaghedhi</i>	264
61	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Horsfieldia iryaghedhi</i>	264

Į

62	Different effect of the light treatments on seedlings of <i>Neolitsea cassia</i> after 11/2 years growth	265
63	Photomicrographs of leaf cross sections from full sun and deep shade grown seedlings of <i>Neolitsea cassia</i>	266
64	Photomicrographs of stomata from full sun and deep shade grown seedlings of <i>Neolitsea cassia</i>	266

ACKNOWLEDGEMENTS

I am greatly indebted to my supervisors, Prof. B.M.P. Singhakumara, Department of Forestry and Environmental Science, University of Sri Jayewardenapura, and Prof. P.M.S. Ashton, Professor of Silviculture, School of Forestry and Environmental Studies, Yale University, USA, for their genuine guidance, advice and kind encouragement given to me throughout this project

I wish to express my gratitude to Conservator General of Forests, Department of Forestry and Environment, for giving three years study leaves, financial support and transport facilities to carry out this project.

I would like to thank Mrs. Uromi Goodle, Ph.D candidate, Yale university, USA, for giving her Li-6400 portable photosynthesis machine for photosynthesis measurements. I thank Mr. P. Dias, Senior Lecturer, Department of Mathematics, University of Sri Jayewardenepura, and Kumuduni panditharathna for giving the support in statistical analyzing. I must thank Mr.Sisira Ediraweera and Niroshan Dilruk for their support.

I would like to thank Technicians and all other non-academic staff of the Department of Forestry and Environmental Science, University of Sri Jayewardenapura. I thank Mr.B.W.Gunasoma, Nimal Chandrasiri and Miss. V. Sakunthala Devi for their field assistance.

My sincere thanks also go to Mr. Wasantha Ranasingha, who help me correct of language errors in the manuscript. I acknowledge University grant commission, National Science Foundation and Forest Department for funding this study. Finally, I gratefully acknowledge my family (Duminda and Chamudi) for many kinds of supports throughout this study.

To my Husband

0

Duminda

And my Daughter

Chamudi

SEEDLING LEAF STRUCTURE OF TREE SPECIES IN RELATION TO THEIR SUCCESSIONAL STATUS AND CANOPY POSITION IN A SRI LANKA RAIN FOREST. Suduhakuruge Bandumala

ABSTRACT

Many comparative studies have showed interspecific differences in physiological, anatomical and morphological traits of plants. These aspects may be combined, and interactively influence the establishment of tree seedlings under natural conditions. However, few studies have combined these aspects (physiology, morphology and growth performance) at the whole plant level. This study examined the seedling growth performance and leaf level anatomical, physiological and morphological differences in relation to species successional stage and mature tree crown position within a range of simulated shade environments. The findings of this study are important for developing silvicultural guidelines for restoration and sustainable management of tropical rain forests.

For this study, three canopy species, four subcanopy species, seven understorey species, and six pioneer species were selected. All coexist in the rain forest of southwest Sri Lanka. Seedlings were grown for two years in replicated shade houses which were designed to create shade treatments that represented a range of light quantity (photosynthetic photon flux density (PPFD) and quality (red : far red ratios) found within the Sinharaja forest. Seedling height and mortality were recorded at three months intervals. After one and half years of seedling growth, leaf photosynthesis and stomatal conductivity were measured and leaf cross sections taken for anatomical measurements. Digital graphs of leaves were taken for leaf morphology measurements. After two years of growth, seedlings were uprooted and dried at 80 °C and dry mass recorded for root, stem and leaves.

Mass ratios (Mass of plant part divided by total mass) were calculated for leaves (LMR), roots (RMR), and stem (SMR). Results showed significant differences in seedlings of climax and pioneer species in growth morphology, leaf physiology, and anatomy. Pioneer species have higher plasticity values for seedling growth (height increment, root collar diameter increment, total dry mass, stem mass ratio, root mass ratio), leaf anatomy (leaf blade thickness, upper epidermis, lower epidermis) leaf physiology (net photosynthesis, stomatal conductance) and leaf morphological characters (leaf number, specific leaf area, and stomatal density) in relation to variation in shade. This study also revealed that patterns of various seedling growth, leaf anatomical, morphological, and physiological attributes that were related to the mature tree canopy position of the seedlings. Canopy species showed higher plasticity values for height increment, leaf mass ratio, upper epidermis, net photosynthesis, leaf dry mass, leaf area and specific leaf area. Subcanopy species had higher plasticity values for root collar diameter, total dry mass, stem mass ratio, root mass ratio, palisade layer thickness and lower epidermis. Understorey species showed the lowest plasticity values for most of the measured attributes. It can be concluded that medium shade (350 μ molm⁻²s⁻¹) and light shade (800 μ molm⁻²s⁻¹) favour the optimum growth of most of the species studied ...