SERUM CYSTATIN C AS A MARKER IN THE ASSESSMENT OF RENAL FUNCTION IN PATIENTS WITH RETINOPATHY AND MILD TO MODERATE DIABETIC NEPHROPATHY

BM

NADEEJA NIRANJALIE WIJAYATUNGA

Thesis submitted to the University of Sri Jayewardenepura for the award of the degree of Master of Philosophy in Biochemistry on 8th Of April 2014.

DECLARATION BY THE CANDIDATE

The work described in this thesis was carried out by me under the supervision of Professor Hemantha Peiris (Chair professor, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura), Dr. P.P. Rasika Perera (Senior lecturer, Department of Biochemistry, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) and Professor.(Mrs.) Kamani Wanigasuriya (Senior Lecturer, Department of Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura) and a report on this has not been submitted in whole or in part to any University or any other institution for another Degree/Diploma.

alugayating

Nadeeja Niranjalie Wijayatunga

17/12/2014

Date

Declaration by the supervisors

We certify that the above statement by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Professor Hemantha Peiris BVSc, MPhil, PhD (QID.Aus) (Supervisor)

.....

Dr. P.P. Rasika Perera MBBS, PhD (Supervisor)

.....

Hoanigana

Professor.(Mrs.)Kamani Wanigasuriya MBBS, MD, MPhil, FCCP, FRCP(London), FRACP(Hon.) (Supervisor)

We certify that the candidate performed all the corrections as suggested by the examiners.

nul

Professor Hemantha Peiris BVSc, MPhil, PhD (QID.Aus) (Supervisor)

Dr. P.P. Rasika Perera MBBS, PhD (Supervisor)

floanigaoup

Professor.(Mrs.)Kamani Wanigasuriya MBBS, MD, MPhil, FCCP, FRCP(London), FRACP(Hon.) (Supervisor)

Dedication

I dedicate this thesis to my husband, parents, teachers and very close friends

Table of contents

		Page No.
List of Tables		i
List of figures		iv
Abbreviations		vi
Acknowledger	nent	x
Abstract		xii
1. INTRODU	UCTION	
1.1	General Introduction	1
1.2	Chronic Kidney Disease (CKD)	2
1.3	Diabetic nephropathy	2
1.4	Diabetic retinopathy	3
1.5	Association between diabetic nephropathy and retinopathy	6
1.6	Investigations currently used in the assessment of diabetic	
	nephropathy in clinical practice	7
1.6.1	Glomerular Filtration Rate (GFR)	7
1.6.2	Hierarchical arrangement of GFR markers	8
1.6.3	Measured glomerular filtration rate (mGFR)	9
1.6.4	Endogenous markers of Glomerular Filtration Rate	9
1.6.4.i	Blood urea	9
1.6.4.ii	Serum creatinine	10
1.6.4.iii	Serum creatinine based estimated Glomerular filtration rates	12

	1.6.4.iii.a	.Cockcroft–Gault equation	13
	1.6.4.iii.b	Moification of Diet in Renal Disease study equation	13
	1.6.4.iii.c	Chronic Kidney Disease Epidemiology Collaboration Equation	15
	1.6.4.iv	Twenty four hour urine creatinine clearance	16
	1.6.5	Albuminuria	16
	1.6.6	Serum cystatin C	19
	1.7	Assessment of chronic kidney disease	19
	1.8	Justification	24
	1.9	Objectives	26
]	LITERAT	URE REVIEW	
	2.1	Cystatin C structure and metabolism	27
	2.2	Factors affecting serum cystatin C levels	29
	2.3	Measurement methods of serum cystatin C	30
	2.4	Reference ranges	31
	2.5	Serum cystatin C as a marker of GFR	33
	2.6	Advantages of serum cystatin C over serum creatinine	33
	2.7	Serum creatinine and creatinine based eGFR equations	34
	2.8	Comparison of serum cystatin C and serum creatinine	36
	2.9	Association between serum cystatin C and albuminuria	44
	2.10	Prediction of End stage renal failure by renal function markers	46
	2.11	Prediction of cardiovascular risk and mortality by renal	
		function tests	47
	2.12	Renal functions and diabetic retinopathy	48

3 MATERIALS AND METHODS

3.1.	Chemicals and reagents	50
3.1.1	Special chemicals and reagents	50
3.1.2	Water	50
3.2	Selection of subjects	
3.2.1	Selection of cases (T2DM patients)	50
3.2.2	Selection of controls (healthy adults)	51
3.3	Data collection	
3.3.1	Questionnaire	52
3.3.2	Summary of the data collected and definitions in the type 2	
	diabetes patients	52
3.3.2.i	Data collected by interviewing the cases	52
3.3.2.ii	Data collected from clinic and past records	53
3.3.3	Summary of the data collected and definitions in the	
	apparently healthy subjects	54
3.3.3.i	Data collected by interviewing the controls	54
3.3.4	Data collected by measurements in both diabetic patients	
	and healthy adults	54
3.3.5	Height, weight and Body Mass Index	55
3.3.6	Waist, Hip circumferences and Waist to Hip ratio	55
3.3.7	Measurement of blood pressure	56
3.3.8	Diabetic retinopathy assessment	56
3.4	Collection of blood and urine samples	56

3.4.1	Collection of blood samples	56
3.4.2	Collection of urine samples	57
3.5	Laboratory quantitative analysis	57
3.5.1.	Quantitative analysis of serum cystatin C	57
3.5.1.i	Cystatin C assay procedure	57
3.5.1.ii	Reaction principle	58
3.5.1.iii	Calibration	58
3.5.1.iv	Traceability	59
3.5.1.v	Quality control	59
3.5.1.vi	Detection limit and measuring range	60
3.5.1.vii	Imprecision	60
3.5.2	Quantitative analysis of serum and urine creatinine	60
3.5.2.i	Creatinine assay procedure	60
3.5.2.ii	Reaction principle	61
3.5.2.iii	Calibration	61
3.5.2.iv	Traceability	62
3.5.2.v	Quality control	62
3.5.2.v.a.	Quality control for serum creatinine	62
3.5.2.v.b.	Quality control for urine creatinine	63
3.5.2.vi	Detection limit and measuring range	63
3.5.2.vii	Imprecision	63
3.5.3	Quantitative analysis of urine albumin	63
3.5.3.i	Albumin assay procedure	63

	3.5.3.ii	Reaction principle	64	
	3.5.3.iii	Calibration	64	
	3.5.3.iv	Traceability	65	
	3.5.3.v	Quality control	65	
	3.5.3.vi	Detection limit and measuring range	66	
	3.5.3.vii	Imprecision	66	
	3.6	Calculation of eGFR	66	
	3.6.1	Calculation of eGFR using serum creatinine based Modified		
		Modification of Diet in Renal Disease study equation	66	
	3.6.2	Calculation of eGFR using serum creatinine based		
		re-expressed Modification of Diet in Renal Disease study		
		equation	67	
	3.6.3	Calculation of eGFR using serum creatinine based 2009	67	
		CKD-EPI creatinine equation		
	3.7	Calculation of Albumin to Creatinine Ratio	68	
	3.8	Staging of chronic kidney disease	68	
	3.9	Data processing and analysis	69	
	3.10	Ethical Issues	70	
	3.10.1	Ethical Clearance	70	
	3.10.2	Consent	70	
	3.11	Sample size calculation	71	
]	RESULTS			
	4.1	Characteristics of study subjects	72	

4

4.2	Associations between serum cystatin C and serum creatinine,	
	albumin to creatinine ratio, and estimated GFR	78
4.2.1	Association between serum cystatin C and serum creatinine	78
4.2.2	Association of CysC ,SCr, eGFR-MDRD with ACR	80
4.2.3	Association of CysC ,SCr with eGFR-MDRD	83
4.2.4	Comparison between type 2 diabetic patients with mild renal	
	impairment and moderate renal impairment	87
4.3	Comparisons of CysC levels in patients with type 2 diabetes	
	and healthy individuals	88
4.4	Association of diabetic retinopathy with selected renal	
	function tests	93
4.5	Establishing normal reference range for serum cystatin C in a	
	selected sample of healthy Sri Lankan adults	96
4.6	Analysis of Receiver Operator Characteristics (ROC) curves	
	for determination of diagnostic accuracy of cystatin C	
	in diabetic nephropathy	102
4.7	Serum cystatin C in levels in identification of diabetic patients	
	with moderate risk of progression of CKD	105
DISCUS	SION	107
CONCL	USION	125
REFER	ENCES	129

8 APPENDICES

Appendix I - List of publications and communications	150
Appendix II - Questionnaires- English and Sinhala	153
Appendix III - Consent Forms – English and Sinhala	160
Appendix IV - Information Sheets - English and Sinhala	164
Appendix V - Ethics Review Committee letters	167
Appendix VI - Lever-Jenning charts	170

List of Tables

	Page
Table 1.International Clinical Diabetic Retinopathy Disease severity scale	4
Table 2.Definitions of abnormalities in Albumin excretion according to the 2014	
American Diabetes Association Guidelines	18
Table 3.GFR categories	20
Table 4.Albuminuria categories	21
Table 5.Criteria for diagnosis of CKD	22
Table 6.Different reference ranges for Serum Cystatin C	32
Table 7.CKD-EPI equations based on Cystatin C or both Serum Creatinine	
and Serum Cystatin C	43
Table 8.CKD-EPI equations based on Serum Creatinine levels	68
Table 9. Characteristics of study subjects (in percentages)	73
Table 10.Characteristics of study subjects[Mean (SD)]	74
Table 11.Summary of Hypoglycemic, Antihypertensive and lipid lowering	
medications used by the type 2 diabetes patients	75
Table12. Mean (SD) Serum Creatinine, Cystatin C and eGFR values in the	
study population	76
Table 13. Summary of correlations between CysC, SCr and eGFR-MDRD	
with ACR severity in type 2 diabetes patients and healthy adults	80
Table 14. Comparison between the Albuminuria categories in type 2 diabetes	
patients	81

i

Table 15.Comparison between type 2 diabetes patients with mild renal	
impairment and moderate renal impairment	87
Table 16.Comparison family history of age and sex matched type 2 diabetes	
patients and healthy controls	88
Table 17. Comparison of age & sex matched type 2 diabetes patients and	
healthy controls	89
Table18.Comparison between type 2 diabetes cases with mild to moderate	
renal impairment with age and sex matched healthy controls	90
Table 19. Comparison of median (IQ) of Serum Creatinine and Cystatin C of	
T2DM patients according eGFR and albuminuria categories with	
matched healthy controls	92
Table 20.Associations of renal function categories & Diabetic Retinopathy	
categories	92
Table 21. Comparison of diabetes patients with & without Diabetic	
Retinopathy	95
Table 22.Summary of correlation between Retinopathy & renal function	
markers	96
Table 23.Mean (SD) Serum Cystatin C levels according to age categories in	
healthy adults	99
Table 24. Comparison of mean Cystatin C levels according age and gender	100
Table 25.Reference limits and upper and lower limit confidence intervals	
according to age and gender	101
Table 26.Diagnostic accuracy at cut-off values of Serum Creatinine and Cystatin C	2

for detection of moderate renal impairment	102
Table 27.Diagnostic accuracy at cut-off values of Serum Creatinine and Cystatin C	
for detection of Albuminuria at ACR > 30mg/g	104
Table 28.Comparison of markers of GFR between the low risk and moderate	
KDIGO risk group	106

List of Figures

Page

Figure 1. Photographs of Retinopathy	5
Figure 2. Prognosis of CKD by GFR and Albuminuria category	23
Figure 3. Models for Cystatin C monomer (a) and dimer (b)	28
Figure 4. Concentrations of Serum Creatinine and Cystatin C according to GFR	34
Figure 5. Cystatin C Calibration curve	59
Figure 6. Creatinine Calibration curve	62
Figure 7. Urine Albumin MST Calibration curve	65
Figure 8. Categories of Albuminuria according ACR (mg/g) in diabetes patients	77
Figure 9. Retinopathy in the diabetes cases	77
Figure 10.Scatter plot for Serum Cystatin C & Serum Creatinine in the diabetes	
patients	79
Figure 11. Scatter plot for serum Cystatin C & Serum Creatinine in healthy	
controls	79
Figure 12. Association between Albuminuria categories with Serum Cystatin C	
and Serum Creatinine in type 2 diabetes patients	82
Figure 13. Association between Albuminuria categories and estimated GFR	
calculated using MDRD equation in type 2 diabetes patients	83
Figure 14.Scatter plot for Serum Cystatin C & eGFR-MDRD in type 2 diabetes	84
Figure 15.Scatter plot for Serum Creatinine & eGFR-MDRD in type 2 diabetes	85
Figure 16.Scatter plot for Serum Cystatin C & eGFR-MDRD in healthy controls	86

Figure 17.Scatter plot for Serum Creatinine & eGFR-MDRD in healthy controls	86
Figure 18.Association of degrees of Albuminuria & Diabetes Retinopathy status	93
Figure 19.Normal distribution of Serum Cystatin C in healthy adults	96
Figure 20.Mean serum Cystatin C levels according to age categories in healthy	
adults	98
Figure 21.Serum Cystatin C values according to the gender in healthy adults	99
Figure 22.Nonparametric ROC plots to assess the diagnostic efficiency of Serum	
Cystatin C (CysC) and Serum Creatinine (SCr) in diagnosing moderate	
renal impairment in type 2 diabetes patients	103
Figure 23. Nonparametric ROC plots to assess the diagnostic efficiency of Serum	
Cystatin C (CysC) and Serum Creatinine (SCr) in diagnosing Albuminuria	ì
in type 2 diabetes patients	104
Figure 24.Serum Cystatin C levels in type 2 diabetes patients according to the	
CKD risk categories	105
Figure 25.Lever-Jenning Chart for Serum Cystatin C Quality Control	171
Figure 26.Lever-Jenning Chart for Serum Cystatin C Quality Control High	171
Figure 27.Lever-Jenning chart for Serum Creatinine Quality Control-EXATROL-P	172
Figure 28.Lever-Jenning chart for Serum Creatinine Quality Control-EXATROL-N	172
Figure 29.Lever-Jenning Chart for Urine Creatinine Quality Control Level 1(L1)	173
Figure 30.Lever-Jenning Chart for Urine Creatinine Quality Control Level 2(L2)	173
Figure 31.Lever-Jenning chart for Urine Albumin Quality Control	174
Figure 32.Lever-Jenning chart for Urine Albumin Quality Control High	174

Abbreviations

Α	
ACEi	Angiotensin converting enzyme inhibitor
ACR	Albumin to creatinine ratio
ADA	American Diabetes Association
AER	Albumin excretion rate
ANOVA	Analysis of Variance
ARB	Angiotensin receptor blockers
AUC	Area under the curve
В	
BMI	Body mass index
С	
CKD	Chronic kidney disease
CG	Cockcroft-Gault equation
⁵¹ Cr-EDTA	⁵¹ Cr-ethylenediaminetetra-acetic acid
CVD	Cardiovascular disease
CysC	Serum cystatin C
D	
DR	Diabetic retinopathy
DXA	Dual energy X-ray absorptiometry
Е	
eGFR	Estimated glomerular filtration rate

.

eGFR-MDRD	Estimated glomerular filtration rate based on MDRD equation
eGFR-CKD EPI	Estimated glomerular filtration rate based on CKD EPI equation
eGFR-CysC	Estimated glomerular filtration rate based on serum cystatin C
eGFR-SCr	Estimated glomerular filtration rate based on serum creatinine
ESRD	End stage renal disease
G	
GFR	Glomerular filtration rate
н	
HDL	High density lipoprotein
HSD	Honestly Significant Difference
I	
IFCC	International Federation of Clinical Chemistry
К	
KDIGO	Kidney Disease Improving Global Outcomes
L	
LDL	Low density lipoprotein
Μ	
macroAU	Macroalbuminuria
MAU	Microalbuminuria
mGFR	Measured glomerular filtration rate

N

NAU Normoalbuminuria

vii

NHANES III	Third National Health and Nutrition examination Survey
NKDEP	National Kidney Disease Education Program
NICE	National Institutes for Clinical Excellence
NIST	National Institute of Standards and Technology
NPDR	Non proliferative diabetic retinopathy
Р	
PENIA	Particle enhanced nephelometric immunoassay
PETIA	Particle enhanced turbidimetric immunoassay
PDR	Proliferative diabetic retinopathy
R	
REGARDS	Reasons for Geographic and Racial Differences in Stroke
REGARDS RENAAL	Reasons for Geographic and Racial Differences in Stroke Reduction of Endpoints in NIDDM with the Angiotensin II
	Reduction of Endpoints in NIDDM with the Angiotensin II
RENAAL	Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan
RENAAL ROC	Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan
RENAAL ROC S	Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan Receiver operating curves
RENAAL ROC S SCr	Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan Receiver operating curves Serum creatinine
RENAAL ROC S SCr SD	Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan Receiver operating curves Serum creatinine Standard deviation
RENAAL ROC S SCr SD SPSS	Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan Receiver operating curves Serum creatinine Standard deviation Statistical Package for Social Sciences

T

T2DM

Type 2 diabetic patients

viii

99mTc-DTPA	^{99m} Tc-diethylenethiaminepenta -acetic acid

U	
UAC	Urine albumin concentration
UAE	Urine albumin excretion
UKPDS	United Kingdom Prospective Diabetes Study
W	
WHR	Waist to Hip Ratio

ix

ACKNOWLEDGEMENTS

My deepest gratitude goes to my supervisor, Prof. Hemantha Peiris who introduced me to Cystatin C and motivated me to carry out my research work. His advices, encouragement and guidance are highly appreciated. Also my deepest gratitude is extended to Dr. P.P.Rasika Perera, my second supervisor, who's invaluable, unwavering enthusiasm and mentoring kept me engaged with my research. This thesis would not have been possible without their help, support and patience. I would also like to thank my other supervisor, Prof. Kamani Wanigasuriya, who provided expert advice, guidance and supported me to carry out my research work in the clinical setup.

I'm also grateful for Dr. Uditha Bulugahapitiya, Consultant Endocrinologist and the staff of the Diabetic clinic at Colombo South Teaching hospital and also to Dr. M. Wijesuriya the director and the staff of the National Diabetes Center, Rajagiriya for the support given in recruiting patients. I would also like to thank Dr. Ranjith Kodikara, Consultant Eye surgeon and the staff of the Eye clinic, Colombo South Teaching hospital for the invaluable support extended by carrying out eye examinations of the diabetic patients recruited for the study.

I would like to thank the Director and the staff of Colombo South Hospital, Dr. A.L.P. Seneviratne, Head of Department of Family Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura and the staff of the Family Practice center at University of Sri Jayewardenepura for all the support given in carrying out my research. My appreciation also extends to Dr. W.A. Ananda Wijayasiri, Senior lecturer, Department of Community Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura and Mr. Benoit Ahanda (MSc in Statistics), PhD student, Department of Mathematics and Statistics, Texas Tech University, Lubbock ,Texas for helping me with the statistical analysis.

I also thank the academic and non-academic staff of the Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura for the academic and technical support and assistance since the start of my postgraduate work.

My research would not have been possible without the financial assistance from the University of Sri Jayewardenepura (University grant - ASP/06/R/MED/2011/21) and National Science Foundation, Sri Lanka (Competitive NSF Research grant – RG/2011/HS/21).

I appreciate all the encouragement and support given by my husband, my parents and friends.

Last but not least, my sincere gratitude is extended to all the subjects who participated very willingly in my study.

Serum Cystatin C as a marker in the assessment of renal function in patients with retinopathy and mild to moderate diabetic nephropathy Nadeeja Niranjalie Wijayatunga

ABSTRACT

Introduction: Serum cystatin C (CysC) has been described as a promising marker of GFR. However there are no literature on performance of CysC in nephropathy and retinopathy (DR), in Sri Lankan type 2 diabetic patients (T2DM).

Objectives: To determine correlation between serum CysC and Serum Creatinine (SCr), Albumin to Creatinine Ratio (ACR), and estimated glomerular filtration rate based on Modification of Diet for Renal Disease study equation (eGFR-MDRD) in both T2DM patients and healthy adults, to compare CysC levels in T2DM subjects with mild to moderate diabetic nephropathy with age and gender matched healthy individuals and also to identify the correlation of DR in those selected T2DM patients with Cys, SCr, eGFR-MDRD and ACR.

Methods: Sixty one T2DM patients with possibility of mild to moderate renal impairment, and 118 apparently healthy adults, between 30-60 years were enrolled. Out of the 118 healthy adults, 61 were age and gender matched with the T2DM patients. Retinopathy status was assessed by slit lamp examination. SCr and CysC and urine creatinine and albumin were measured. ACR and eGFR-MDRD, eGFR- Chronic Kidney Disease Epidemiology Collaboration (CKD EPI) were calculated.

Results: CysC significantly correlated with SCr and eGFR –MDRD in bothT2DM patients and healthy adults but was stronger in the T2DM patients. CysC significantly

correlated with ACR severity categories only in T2DM patients with a significant stepwise increase of CysC according to degree of albuminuria. The T2DM patients (n=61) had higher CysC than the matched controls. Both T2DM patient groups with moderate diabetic nephropathy (n=21) and microalbuminuria (n=22) had higher CysC than the respective matched healthy control groups (p<0.05). Only the ACR categories showed a significant correlation with DR categories (P<0.05). CysC cut off value for the diagnosis of moderate renal impairment was 0.98mg/L (sensitivity of 85.7%, specificity of 82.5%) and for albuminuria (ACR >30mg/g) was 0.96 mg/L (sensitivity of 73.3% and a specificity of 80.6%). Only CysC could differentiate the moderately increased chronic kidney disease (CKD) risk prognosis category from the absent/low CKD risk category (p < 0.05). The reference intervals for the healthy adults for < 50 years of age for male and females are 0.62 - 1.01 mg/L and 0.54 - 0.90 mg/L respectively while for > 50 years of age for males and females are 0.65 - 1.12 mg/L and 0.60 - 1.01 mg/L respectively.

Conclusion: CysC may be used as a reliable renal function marker in T2DM patients with mild to moderate diabetic nephropathy and it is also useful in early detection of poor prognosis in CKD. ACR may be able to predict DR status in T2DM patients. Our study suggests that screening for low GFR with CysC in a low-risk population is probably not worthwhile. In healthy adults, gender based reference intervals for less than 50 year and more than 50 years of age are suggested.