SOME STUDIES ON BIOACTIINE COMPONENTIS OF

SPOTTED SARDINELLA (Amblygaster sirii) AND

PALMYRAH (Borassus flabellifer) FLOUR

BY

PANNILAGE SHIROMI PERERA

Thesis submitted to the University of Sri Jayewardanepiira for the award off the Degree off Master of Philosophy in Biochemistry on 30th Jume 2004.

DECLARATION BY THE CANDIDATE

The work described in this thesis was carried out by me under the supervision of Professor E. R. Jansz (Head of the Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) and Professor H. Peiris (Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) and a report on this has not been submitted in whole or in part to any University for another Degree/Diploma.

triromi.

Pannilage Shiromi Perera

26.04.05 Date

DECLARATION OF THE SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Prof. E. R. Jansz (Supervisor)

Prof. H. Peiris (Supervisor)

TABLE OF CONTENTS

P	a	σ	e
1	u	ĸ	<u> </u>

I	LIST OF TABLES	ix
II	LIST OF FIGURES	xi
ш	LIST OF PLATES	xiv
IV	ABBREVIATIONS	xv
V	ACKNOWLEDGEMENTS	xvii
VI	ABSTRACT	xviii
1.	INTRODUCTION	01
	1.1 General Introduction	01
	1.1.1 Amblygaster sirm	01
	1.1.2 Borassus flabellifer L.	02
	1.2 Justification and scope of the study	04
	1.2.1 Amblygaster sirm	04
	1.2.2 Borassus flabellifer L.	05
2.	LITERATURE REVIEW	11
	2.1 Histamine	11
	2.1.1 Histamine as a neurotransmitter	11
3	2.1.1.1 Endogenous production of histamine	11
	2.1.1.2 Physiological function of histamine	11
	2.1.2.3 Action of histamine	12

i

2.1.	2 Formation of histamine and factors affecting	
	decarboxylase activity	12
	2.1.2.1 Formation of histamine from histidine	12
	2.1.2.2 Factors affecting the amino acid decarboxylase activity	13
2.1.	3 Source of exogenous histamine	15
2.1.	4 Microorganisms producing histamine	16
2.1.	5 Metabolism of histamine	18
2.1.	6 Histamine poisoning	19
2.1.	7 Histamine content in fish	20
2.1.	8 Effect of various methods on reduction of histamine in fish	22
	2.1.8.1 Effect of temperature	22
	2.1.8.2 Effect of cooking ingredients	22
	2.1.8.3 Effect of irradiation	26
	2.1.8.4 Effect of plant and animal diamine oxidases	26
2.2 Oth	er allergenic amines	26
2.2.1	Tyramine	27
2.2.2	2 Gizzerosine	27
2.3 The	ory of methods of estimating histamine	27
2.3.1	Capillary electrophoresis	27
2.3.2	Liquid chromatographic method	28
2.3.3	Gas chromatographic method	28
2.3.4	High performance liquid chromatography	29

ii

	2.3.5	Fluorescence detection	29
	2.3.6	Enzyme assay method	29
	2.3.7	ELISA method (Stat fax ^R 303 Neogen reader)	31
	2.3.8	Thin layer chromatographic screening methods	31
		2.3.8.1 TLC-Densitometric method	31
		2.3.8.2 TLC- Spectrohotometric method	32
2.4	Boras	ssus flabellifer L.	32
	2.4.1	Odiyal flour	32
		2.4.1.1 Composition of odiyal flour	32
		2.4.1.2 Macro and microelement composition of odiyal flour	33
		2.4.1.3 Amino acid composition of odiyal flour	33
	2.4.2	Reported toxicities	36
	2.4.3	Neurotoxicity	36
	2.4.4	Hepatotoxic effect	39
	2.4.5	Immunosuppressive effect	40
÷.,	2.4.6	Mutagenic effect	43
	2.4.7	Clastogenic effect	43
	2.4.8	Other bioactivities caused by palmyrah flour	43
2.5	Theo	ry of animal experiments	45
	2.5.1	Formulation of animal diets	45

2.5.2 Selection of animals

45

.

3.	MA	TERL	ALS ANI	D METHODS	48
	3.1	Mate	rials		48
		3.1.1	Water	영상에 관계 관계에 가지 않는다.	48
		3.1.2	Solvents	3	48
		3.1.3	Special	chemicals	48
		3.1.4	Enzyme	S	49
		3.1.5	Biologic	cal materials	49
			3.1.5.1	Hurulla	49
			3.1.5.2	Palmyrah flour	49
			3.1.5.3	Experimental animals	49
	3.2	Meth	ods used	for studies on Amblygaster sirm (Hurulla)	50
		3.2.1	Methods	s used to assay histamine	50
			3.2:1.1	TLC- Densitometry (Thadhani, 2002)	50
			3.2.1.2	TLC- UV Spectrophotometry (Thadhani, 2002)	51
	*		3.2.1.3	Enzyme Linked Immunosorbent Assay method	52
			3.2.1.4	Histaminase asay (Lopez et al., 1993)	53
		3.2.2	Preparat	ion of fish samples for assay	71

3.2.2.1Preparation of hurulla suspension713.2.2.2Preparation of perchloric acid extract of hurulla713.2.2.3Preparation of balaya fish suspension713.2.3Methods used to assay amines and amino acids in hurulla72

3.2.3.1 Development of solvent system

72

	3.2.3.2	Isolation of amines and amino acids from hurulla	72
	3.2.3.3	Co-chromatographic confirmation	73
	3.2.3.4	Identification of the other ninhydrin positive spots	
		on TLC of the fish supernatant	73
	3.2.3.5	Comparison of levels of histamine and histidine	
		in hurulla with balaya	73
	3.2.3.6	Quantification of histamine in hurulla using	
		TLC-Densitometry	74
	3.2.3.7	Quantification of histamine in hurulla using	
		TLC-Spectrophotometry	74
	3.2.3.8	Histamine analysis in hurulla muscle samples	75
3.2.4	Isolatio	n, storage and culturing bacteria from hurulla	75
	3.2.4.1	Isolation of bacteria from hurulla using general medium	175
	3.2.4.2	One step isolation of histamine producing bacteria	
		using Niven's medium	76
	3.2.4.3	Maintenance of cultures	77
	3.2.4.4	Quantification of histamine in each bacterial culture	
		using ELISA method	77
	3.2.4.5	Quantification of histamine produced by each bacterial	
		culture using TLC-Spectrophotometry	77
	3.2.4.6	Quantification of histamine using enzyme method	77
3.2.5	Experin	nents carried out to optimize histidine	
	decarbo	xylase activity	78
	3.2.5.1	Incubation of bacterial supernatant with histidine	78

V

	3.2.5.2	Histaminase or deaminase action of the supernatant	78
	3.2.5.3	Effect of pH on lowering histamine in supernatants	78
	3.2.5.4	Protease activity of the bacterial supernatants	79
	3.2.5.5	Determining the effect of EDTA on protease activity	79
	3.2.5.6	Protease action of 24 h old bacterial supernatants	79
3.3 Metho	ods used	l to study palmyrah toxicity.	79
3.3.1	Prepara	tions of extractives and ion exchange chromatography	79
	3.3.1.1	Preparation of sample extract	79
	3.3.1.2	Ion exchange chromatography	80
	3.3.1.3	Preparation of ion exchange resin fractions for	
		oral administration	81
	3.3.1.4	Preparation of crude extract of palmyrah flour	
		for oral administration	81
	3.3.1.5	Preparation of sample to test synergism	81
	3.3.1.6	Thin layer chromatography	81
3.3.2	Animal	model	82
	3.3.2.1	Experimental conditions	82
	3.3.2.2	Preliminary Experiment	84
	3.3.2.3	Final Experiment	84
3.3.3	Serum s	eparation and analysis	84
	3.3.3.1	Estimation of serum ammonia	85
	3.3.3.2	Estimation of serum creatinine	86
	3.3.3.3	Estimation of serum urea	87

vi

RESULTS			92	
4.1	Amblygaster sirm			
	4.1.1	Selection of solvent system for improved separation of		
		histidine, histamine, tyrosine and tyramine	92	
	4.1.2	Main decarboxylated product of Hurulla	92	
	4.1.3	Amino acids of Hurulla	104	
	4.1.4	Methods of quantification of amines	104	
	4.1.5	Comparison of levels of histamine in Hurulla with Balaya	105	
	4.1.6	Histamine in fresh and aged Hurulla	105	
	4.1.7	Tyramine in fresh and aged Hurulla	111	
	4.1.8	Effect of aging fish on histamine content	111	
	4.1.9	Isolation of bacteria	111	
	4.1.10) Histamine released by bacteria	113	
	4.1.11	Variation of histamine content with the age of supernatant	118	
	4.1.12	2 Determination of cause of histamine loss	118	
	4.1.13	B Protease action of the supernatants	119	
8.1	4.1.14	Effect of EDTA	119	
4.2	Palm	yrah (Borassus flabellifer L.) Neurotoxicity studies	126	
	4.2.1	Effect of total extract	126	
	4.2.2	Effect of fractions	126	

4.

127

127

127

4.2.3 Effect of the reconstituted fraction

4.2.4.1 Serum ammonia

4.2.4 Results of assay of serum

1

		4.2.4.2 Serum creatinine	127
		4.2.4.3 Serum urea	127
	4.2.5	Thin Layer Chromatography on Fractions	128
5.	DISCUSS	ION	134
6.	REFERE	NCES	147
AP	PENDIX I	Publications and Communications from this study	161

LIST OF TABLES

		Page
Table 1.1	Distribution of Palmyrah trees in Sri Lanka	10
Table 2.1	Microbial isolates showing histidine decarboxylase activity	17
Table 2.2	Reported histamine content of fresh and frozen seafood	21
Table 2.3	Percentage reduction of histamine in the presence of certain	
	cooking ingredients and food acids	23
Table 2.4	Recovery of histamine at pH 1.5	24
Table 2.5	Effect of food ingredients on pH in fish	24
Table 2.6	Effect of cooking ingredients on histamine formation at pH 4.5	25
Table 2.7	Histamine formations in skipjack in presence of cooking ingredients	25
Table 2.8	Composition of odiyal	33
Table 2.9	Micro elemental composition of odiyal flour	34
Table 2.10	Metal ion content of odiyal flour	34
Table 2.11	Amino acid composition of palmyrah flour	35
Table 2.12	Antimicrobial effect of palmyrah flour	44
Table 2.13	Feed formula of WHO recommended rat and mice breeding feed.	47
Table 3.1	Serum and the reagents, which were used to quantify creatinine	
	and their respective volumes	89
Table 3.2	Serum and the reagents, which were used to quantify urea and	
	their respective volumes	90
Table 4.1	$R_{\rm f}$ values of the histidine, histamine, tyrosine and tyramine for	
	different solvent systems	94
Table 4.2	Amino acids of hurulla	106

Table 4.3	Levels of histamine infers and aged hurulla using different	
	quantification methods.	107
Table 4.4	Effect of aging hurulla at room temperature on histamine content.	114
Table 4.5	Release of histamine by bacterial isolate supernatants	
	(TLC-UV method)	115
Table 4.6	Release of histamine by bacterial isolate supernatants	
	(ELISA method)	116
Table 4.7	Release of histamine by bacterial isolate supernatants (Histaminase/	
	peroxidase method).	117
Table 4.8	Levels of histamine and histidine detected at different aged bacterial	
	cultures after 24 hours incubation.	121
Table 4.9	Levels of histamine and histidine in 24 h old bacterial supernatant	
	with different incubations.	122
Table 4.10	Effect of age of supernatant of bacterial culture on histidine and	
	histamine levels at pH 5.6 and 1.	124
Table 4.11	Effect of EDTA on histamine formation.	125
Table 4.12	Serum ammonia levels of weanling rats treated with Fr 0, Fr III	
	palmyrah flour extracts and distilled water.	129
Table 4.13	Serum creatinine levels of weanling rats treated with Fr 0, Fr III	
	palmyrah flour extracts and distilled water.	130
Table 5.1	Comparative histamine levels	140

X

LIST OF FIGURES

		Page
Figure 2.1	Synthesis of histamine	13
Figure 2.2	Catabolism of histamine	18
Figure 2.3	Systematic diagram of the histaminase/peroxidase assay	30
Figure 2.4	A novel triterpene (Dammarane)	42
Figure 3.1	Densitometric scan of TLC plate of histidine	56
Figure 3.2	Densitogram of histidine using Densitometer	57
Figure 3.3	Histidine calibration curve using TLC-Densitometry	58
Figure 3.4	Densitometric scan of TLC plate of histamine	59
Figure 3.5	Densitogram of histamine using Densitometer	60
Figure 3.6	Histamine calibration curve using TLC-Densitometry	61
Figure 3.7	Densitometric scan of TLC plate of tyrosine	62
Figure 3.8	Densitogram of tyrosine using Densitometer	63
Figure 3.9	Tyrosine calibration curve using TLC- Densitometry	64
Figure 3.10	Densitometric scan of TLC plate of tyramine	65
Figure 3.11	Densitogram of tyramine	66
Figure 3.12	Tyramine calibration curve using TLC-Densitometry	67
Figure 3.13	Histidine calibration curve using TLC-UV Spectrophotometry	68
Figure 3.14	Histamine calibration curve using TLC-UV Spectrophotometry	69
Figure 3.15	Histamine calibration curve using histaminase assay	70
Figure 3.16	Standard curve of ammonia	91
Figure 4.1	Densitometric scan of the TLC plate of hurulla fish suspension	95

Figure 4.2	Densitogram of hurulla fish suspension	96
Figure 4.3	Densitogram of hurulla fish suspension and standards	97
Figure 4.4	Densitometric scan of the co chromatographic TLC plate	
	of fish suspension with standards (peak enrichment)	98
Figure 4.5	Densitogram of lane 1 and lane 6 of Figure 4.4	99
Figure 4.6	Densitogram of lane 2 and lane 6 of Figure 4.4	100
Figure 4.7	Densitogram of lane 3 and lane 6 of Figure 4.4	101
Figure 4.8	Densitogram of lane 4 and lane 6 of Figure 4.4	102
Figure 4.9	Densitogram of lane 5 and lane 6 of Figure 4.4	103
Figure 4.10	Densitometric scan of the TLC plate of fish suspensions	
	and standards	108
Figure 4.11	Densitogram of balaya fish suspension	109
Figure 4.12	Densitogram of hurulla fish suspension	110
Figure 4.13	Effect of incubation time on histamine content	123
Figure 4.14	TLC plate after visualized with anisaldehyde for flabelliferins	
	and sugars	131
Figure 4.15	TLC plate after visualized with ninhydrin for amines	132
Figure 4.16	Flabelliferins in Fr I, Fr II, Fr 0 and Fr III	133
Figure 5.1	Methods of destruction of Histamine	138
Figure 5.1a	Histamine lyase reaction	138
Figure 5.1b	Histaminase/peroxidase acton	138
Figure 5.1c	Oxidative deamination of Histamine	138
Figure 5.2	Methods of destruction of Histidine	139

Figure 5.2a	Transamination of Histidine	139
Figure 5.2b	Oxidative deamination of Histidine	139
Figure 5.3	Structure and reaction of isoniazid with vitamin B ₆	141

LIST OF PLATES

Page

Plate 1.1	A photograph of Hurulla (Amblygaster sirm) fish	06
Plate 1.2	A photograph of mature palmyrah (Borassus flabellifer) tree	07
Plate 1.3	A photograph of juvenile palmyrah tree	08
Plate 1.4	A photograph of palmyrah shoot	09
Plate 3.1	A photograph of Wistar rats	83
Plate 4.1	A photograph of Niven's agar plate with bacteria	112

ABBREVIATIONS

TLC	Thin Layer Chromatography
AOAC	Association of Official Analytical Chemists
AST	Aspartate Aminotransferase
ALT	Alanine Aminotransferase
WHO	World Health Organization
F-II	Bitter flabelliferin
F _B	Anti-microbial flabelliferin triglycoside
F _C	Inactive flabelliferin triglycoside
R _f	Retardation factor
kg	Kilogram
UV	Ultra Violet
ml	Millilitre
°C	Centigrade
MW	Molecular Weight
L	Litre
ICR	Institute of Cancer Research
g	Grams
IU ml ⁻¹	International Units per millilitre
h	Hours
cm	Centimetre
ppm	Parts per million
CE	Capillary Electrophoresis
LC	Liquid Chromatography

μl Micro litre

- DTH Delayed Type Hypersensitivity
- PDB Palmyrah Development Board
- HPLC High Performance Liquid Chromatography
- nm Nanometre
- kJ Kilojoules
- kV Kilovolt
- ID Inner Diameter
- pmoles Pico moles
- Sp.gr. Specific gravity
- CV Coefficient of Variation
- ELISA Enzyme Linked Immunosorbent Assay
- GPR General Purpose Regent
- AR Analytical Grade

SOME STUDIES ON BIOACTIVE COMPONENTS OF SPOTTED SARDINELLA (Amblygaster sirm) AND PALMYRAH (Borassus flabellifer) FLOUR

PANNILAGE SHIROMI PERERA

ABSTRACT

This study comprises of two parts, namely the potentially toxic components of Amblygaster sirm (hurulla) and Borassus flabellifer (palmyrah) flour. Hurulla is considered by some to be a "heaty" (allergenic) fish. Past studies have indicated that the cause may be tyramine in hurulla. This study conclusively shows that tyramine content, which was either not detected or found only in trace quantities, is not the cause. Further tyrosine decarboxylation activity is not in evidence. Histamine was quantified by TLC-UV spectrophotometry, TLC-densitometry, ELISA system and histaminase assay. Histamine content in hurulla fish too, is low (< 0.9 mg/g after 24 h) and is produced as described previously, by bacterial action on keeping. Histidine decarboxylases are present. They are bacterial exoenzymes, which are rapidly destroyed by proteases. Solubilisation of histamine complex by lowering pH to 1 and retarding protease action by chelation of cofactors with EDTA increases histamine levels on keeping, but not to the levels seen in the well known heaty fish Skipjack (balaya) which is reported to have histamine. The bacteria from skin, intestine and gill of hurulla were found to contain histamine in the ranges of 32 to 314 ppm, 48 to 144 ppm and 11to 202 ppm respectively. Lysine content of fresh hurulla fish was sometimes high (0.28 ± 0.04) mg/g) and this may lead to the supposition that a gizzerosine type effect could lead to

allergenicity at low histamine levels. It is also possible that this symptom is manifested only in persons deficient in vitamin B₆, a coenzyme for histamine detoxification.

The second part of the study deals with the well known neurotoxic effect of palmyrah flour on Wistar rats. As expected, the crude water extract showed neurotoxicity (Test 1), but on complete separation of (I) amines and (II) neutral and negatively charged molecules, the two fractions resulting showed no toxicity. On recombining the two fractions, neurotoxicity was exhibited (Test 2). This confirms that toxicity is due to more than one component and that the components exhibited synergism. Comparison of neurotoxic rats (Test 1 and Test 2) with those not showing symptoms (controls) gave a significant difference in serum NH₄⁺ content (p=8 x 10⁻⁵ and p =1.5 x 10⁻⁴) but no significant difference in serum creatinine (p=0.52 and p= 0.32). Serum urea appeared to decline. This supported previous studies on liver mitochondrial damage as evidence by electron microscopy and elevated serum aspartate aminotransferase levels.