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ABSTRACT

Metallochromic triphenylmethane type dyes (bromopyrogallol red and catechol
violet) have attracted attention of many scientists due to their potential ability to chelate
with a number of transition metal centers. The dye matcerials belonging to this class 1s
capable of producing high photocurrents and photovoltages when used as sensitizers in
nano-porous 10, photovoltaic cells. However, slow photo-degradation of dye molecules
and low photocurrent conversion efficiencies have been the major problem.

Complexation of a triphenylmethane ligand with a transition metal center shows
cnhanced photovoltaic properties when compared with the photovoltaic cells coated by
free tnphenylmethane ligand only. Electrochemical and absorption spectroscopic data
suggest that the nature of the lowest electronic transition of such a complex as a ©* (jigang)
< d 1 e, metal to hgand charge transfer transiton. Photovoltaic cells coated with
these transition metal complexes show higher stability for photo-degradation and
mmcident photocurrent conversion efficiencies with a UV radiation blocking filter.

When catechol violet 1s complexed with Co”( [,10-phen); moiety, it shows
emission as well. Experimental and theoretical data suggest that the emission of this
complex occurs from an upper ligand centered state and not from a low lying MLCT
state.

1,2-dihydroxyanthraquinone or 1,2,5,8-tetrahydroxyanthraquinone can be used as
sensitizing dyve material in nano-porous solar cells, not only they produce fairly high
photocurrent and photovoltage, when exposed to light, but also those properties show
high sensitivity to the protonation and deprotonation of the 2 hydroxy group of the ligand
when the pl value of the solvent is changed. Semi-empirical computational studies have

shown that fine tuning of HOMO-LUMO orbitals are responsible for the sensitivity
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