# Statistical Model for Flows of Kalu Ganga

# At Ellagawa

## $\mathbf{B}\mathbf{y}$

# Kumaragewattage Deepika Vijayanthamali Fernando

## Siriwardana

Thesis Submitted to the
University of Sri Jayawardanapura
For the award of
Master of Science in Applied Statistics
On
301hOutober 2008

The work described in this thesis was carried out by me under the supervision of P. Dias and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

Peepela Moonde

K.D.V.F. Siriwardana

I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation.

J. 15

P. Dias

## Acknowledgements

I wish to express my gratitude to Mr. P. Dias, Supervisor, for the valuable guidance provided me during this project.

Also I wish to give my special thanks to the Department of Meteorology and to the Department of Irrigation providing me necessary data. Finally I wish to thank all my friends and specially to the Open University of Sri Lanka, my employer, to supporting me in many ways during this project.

# **Table of Content**

| Chap | ter 1 | Intro  | duction                                    | 1  |
|------|-------|--------|--------------------------------------------|----|
|      | 1.1   | The K  | alu Ganga Basin                            | 1  |
|      | 1.2   | Kalu ( | Ganga Floods                               | 2  |
|      | 1.3   | Resea  | rch Problems                               | 9  |
|      | 1.4   | Objec  | tives of the study                         | 9  |
|      | 1.5   | Signif | icance of the study                        | 10 |
|      | 1.6   | Scope  | of the study                               | 10 |
|      | 1.7   | Limita | ations of the study                        | 11 |
|      | 1.8   | Organ  | ization of the Report                      | 11 |
| Chap | ter 2 | Litera | ature Review                               | 12 |
|      | 2.0   | Introd | ucton                                      | 12 |
|      | 2.1   | Catego | ories of the river flow forecasting models | 12 |
|      | 2.2   | Hydro  | logical Background of the Stram Flow       | 13 |
|      |       | 2.2.1  | Runoff                                     | 14 |
|      |       | 2.2.2  | Components of runoff                       | 14 |
|      |       | 2.2.3  | Some definitions of runoff                 | 15 |
|      |       | 2.2.4  | Stream Flow                                | 16 |
|      |       | 2.2.5  | Meteorological factors affecting runoff    | 16 |
|      |       | 2.2.5  | Physical characteristics affecting runoff  | 17 |

| 2.3       | Models for stream flow                             | 18 |
|-----------|----------------------------------------------------|----|
| 2.4       | Summery on literature survey                       | 21 |
| Chapter 3 | Methodology                                        | 24 |
| 3.0       | Introduction                                       | 24 |
| 3.1       | Research Philosophy                                | 24 |
| 3.2       | Rearch Approch                                     | 24 |
| 3.3       | Reaserch Design                                    | 25 |
|           | 3.3.1 Scope of Variables                           | 27 |
| 3.4       | A Description of Data used                         | 28 |
|           | 3.4.1 Study Location                               | 28 |
|           | 3.4.2 Data Collection                              | 29 |
| 3.5       | Method of Data Analysis                            | 31 |
|           | 3.5.1 Descriptive Statistics                       | 31 |
|           | 3:5.2 Regression Analysis                          | 37 |
|           | 3.5.3 Regression Models with Autocorrelated errors | 43 |
|           | 3.5.4 Model Consistency                            | 45 |
| Chapter 4 | Results and Discussion                             | 47 |
| 4.0       | Introduction                                       | 47 |
| 4.1       | Notation for the Variables Used in the Study       | 47 |
| 4.2       | Missing data                                       | 47 |
| 43        | Weights Obtain From the Thessean Polygon Method    | 17 |

|       | 4.4    | Graphical Presentations                         | 49 |
|-------|--------|-------------------------------------------------|----|
|       | 4.5    | Descriptive Statistics                          | 53 |
|       | 4.6    | Selected Model                                  | 59 |
|       | 4.7    | Validation of the Model                         | 65 |
|       | 4.8    | Conclusions                                     | 68 |
|       | 4.9    | Discussion                                      | 69 |
| Chap  | oter 5 | Conclusions                                     | 71 |
|       | 5.0    | Introduction                                    | 71 |
|       | 5.1    | Conclusions                                     | 72 |
| Refer | rences |                                                 | 75 |
| Appe  | ndixes |                                                 | 76 |
|       | Apper  | ndix 1 : Meteorological stations                | 77 |
|       | Apper  | ndix 2 : Thessen Polygon for Ellagawa Catchment | 78 |
|       | Apper  | ndix 3 : Correlation matrix for variables       | 79 |
|       | Appen  | ndix 4 : Observed flows and fitted flows        | 84 |

## List of Tables

| Table 1.1  | Lengths of main rivers in Sri-Lanka                                   | 1  |
|------------|-----------------------------------------------------------------------|----|
| Table 1.2  | Precipitation to the runoff response of main rivers in Sri Lanka      | 2  |
| Table 4.1  | Variables and the notations used in the study                         | 47 |
| Table 4.2  | Missing rainfall data                                                 | 48 |
| Table 4.3  | Areas obtained from the Thessean polygon method                       | 48 |
| Table 4.4  | Descriptive Statistics                                                | 54 |
| Table 4.5  | Descriptive statistics of the variables by Year                       | 55 |
| Table 4.6  | Descriptive Statistics of the variables by month                      | 56 |
| Table 4.7  | Correlations between Flow and flows of previous days                  | 57 |
| Table 4.8  | Correlations between Flow and Rainfall                                | 57 |
| Table 4.9  | Correlations between Flow and Temperature                             | 57 |
| Table 4.10 | Correlations between Flow and Wind speed                              | 58 |
| Table 4.11 | Correlations between Flow and Evaporation                             | 58 |
| Table 4.12 | Correlations between Relative Humidity                                | 58 |
| Table 4.13 | Analysis of Variance                                                  | 62 |
| Table 4.14 | Correlation of Residuals and Lag 1 of Residuals                       | 62 |
| Table 4.15 | Floods in May 2003                                                    | 64 |
| Table 4.16 | Floods in 2008                                                        | 66 |
| Table 4.17 | Probability of reaching the flow at Ellagawa to 900cm <sup>3</sup> /s |    |
|            | or to above 900cm <sup>3</sup> /s at the floods in June 2008          | 67 |
| Table 5.1  | Notations of the variables in the selected model                      | 73 |

# List of Figures

| Fig 1.1  | The Kalu Ganga Catchment          | 03 |
|----------|-----------------------------------|----|
| Fig 1.2  | The Ellagawa Catchment            | 08 |
| Fig 3.1  | The Map of Ellagawa catchment     | 33 |
| Fig 3.2  | Thessen polygon                   | 35 |
| Fig 4.1  | Dot plot of flow                  | 49 |
| Fig 4.2  | Dot plot of Rainfall Day          | 50 |
| Fig 4.3  | Dot plot of Flow vs Year          | 51 |
| Fig 4.4  | Dot plot of Rainfall Day vs Year  | 52 |
| Fig 4.5  | Dot plot of Flow vs Month         | 52 |
| Fig 4.6  | Dot plot of Rainfall Day vs Month | 53 |
| Fig 4.7  | Residuals Vs Fitted Values        | 63 |
| Fig 4.8  | Probability plot of Residuals     | 63 |
| Fig 4.9  | Floods 2003 May                   | 65 |
| Fig 4.10 | Floods 2008 June                  | 67 |

#### **Definitions**

#### **Runoff response**

The amount of water, which flow passing per given place in a river, due to the rainfall occurring, in the catchment area of that particular point.[9]

#### Runoff

That part of the precipitation, snow melt, or irrigation water that appears in uncontrolled surface streams, rivers, drains or sewers is called as runoff. Runoff may be classified according to speed of appearance after rainfall or melting snow as direct runoff or base runoff, and according to source as surface runoff, storm interflow, or ground-water runoff[9]. The sum of total discharges described in above, during a specified period of time is defined as runoff [9].

#### Stream Flow

The record of a flow at a gauging station represents the intergrated runoff for the entire basin above the station[8]. In many areas the production of runoff is not uniform over the basin.

Stream flow data are usually publish in the form of average daily flows. This is the average discharge rate in cubic meters per second.

# Statistical Model for Flows of Kalu Ganga At Ellagawa K. D. V. F. Siriwardena

#### **ABSTRACT**

Kalu Ganga is the second largest river in Sri Lanka in terms of annual volume of runoff to the sea. Being situated entirely in the wet zone of Sri Lanka, it has a high rainfall to runoff response and the water is discharged as floods. The floods in Kalu Ganga are a regular feature, but it is difficult to predict the time of flood or amount of floods. Floods cause less damage to plantations in the upper reaches, but cause more damage in lower reaches below Ellagawa. In this study a statistical model was developed to predict the amount of floods below Ellagawa ( $R^2 = 0.70$ , p< 0.001) on a given day. The response variable of the model was flow value (cm<sup>3</sup> per second). Based on the amount of flow value, the gravity of flood can be decided. As extreme flow values are important in forecasting floods, the flow data measurements when the previous days flow is greater than 200 cubic meters per second were used as predictive variables for the model. Daily data from January 2001 to December 2006 were used in model building. To predict the flow of a given day, the flow on the previous day (p < 0.05) and two days before (p < 0.05), the average rainfall on the previous day(p < 0.1) and two days before(p < 0.1) and relative humidity (p < 0.05) on the previous day were found as significantly important variables for the model. The daily average rainfall of the catchments area was found using the Thessean Polygon Method based on the rainfall of the available eleven locations around the catchments area. Out of many predictor variables, the inclusion of the selected variables was decided using partial F-test in forward selection procedure, backward illumination procedure and best subsets. A model which is suitable for prediction is selected as the best model. The model was tested for available data over the period of January 2007 to June 2008 and found that the model works well. The observed and predicted values were highly significantly correlated (r=0.93, p<0.001). The randomness of the errors was tested using autocorrelation function. A formula to find the probability of reaching the flow at Ellagawa to flood level( 900 cm³/s) or to above the flood level is derived. The model is practically flexible and can be used for early warning floods for below Ellagawa.

#### Chapter 1

#### Introduction

#### 1.1 The Kalu Ganga Basin

The Kalu Ganga is the second largest river in Sri Lanka in terms of annual volume of runoff to the sea. At Kaluthara where it enters the Indian Ocean it drains an area of 2688 km<sup>2</sup>[1]. Kalu Ganga is the fourth longest river in Sri Lanka (see Table 1.1). Annually it discharges around a volume of water 7862 MCM (Million Cubic Meters)[1]. Being situated entirely in the wet zone of Sri Lanka, it has a high rainfall to runoff response (see Table 1.2). This high volume of water is often discharged as floods.

| Name of the River | Length in km |  |
|-------------------|--------------|--|
| Mahaweli Ganga    | 335 km       |  |
| Kelani Ganga      | 145 km       |  |
| Walawey Ganga     | 138 km       |  |
| Kalu Ganga        | 129 km       |  |
|                   |              |  |

Table 1.1: Lengths of main rivers in Sri-Lanka

Source: The National Atlas of Sri Lanka[1]

Most of the rainfall received by Sri Lanka occurs during the two main monsoon seasons. Due to its geographical location, the catchment of Kalu Ganga receives rain during both monsoons, i.e, from the North East monsoon (December to February) and from South West

monsoon (May to September). Upstream parts of the catchment receives annual rainfalls as high as 5000-6000 mm[1] while the average annual rainfall received by the overall catchment is around 4400 mm[2].

| River          | Catchment               | Precipitation | Annual Discharge  | Discharge as a % |  |
|----------------|-------------------------|---------------|-------------------|------------------|--|
|                | Area in km <sup>2</sup> | Volume in     | Volume to the sea | of Presipitation |  |
|                | 8                       | MCM           | in MCM            |                  |  |
| Kalu Ganga     | 2688                    | 10122         | 7862              | 77%              |  |
| Kelani Ganga   | 2278                    | 8692          | 5474              | 62%              |  |
| Mahaweli Ganga | 10327                   | 26804         | 11016             | 41%              |  |
| Walawe Ganga   | 2442                    | 9843          | 2165              | 22%              |  |

Table 1.2: Precipitation to the runoff response of main rivers in Sri Lanka

Source: The National Atlas of Sri Lanka[1]

In the upper basin, river slopes are steep and valleys are narrow. In the middle and lower reaches the slopes are mild and the valleys are wide and flat. Further in the downstream the river is enclosed by levees where the river bed is above immediate flood plain.

#### 1.2 Kalu Ganga Floods

Heavy rainfalls over the catchment, steep river slopes with narrow valleys in the upper catchment, and mild riverbed slopes with wide and flat plains in the middle and lower

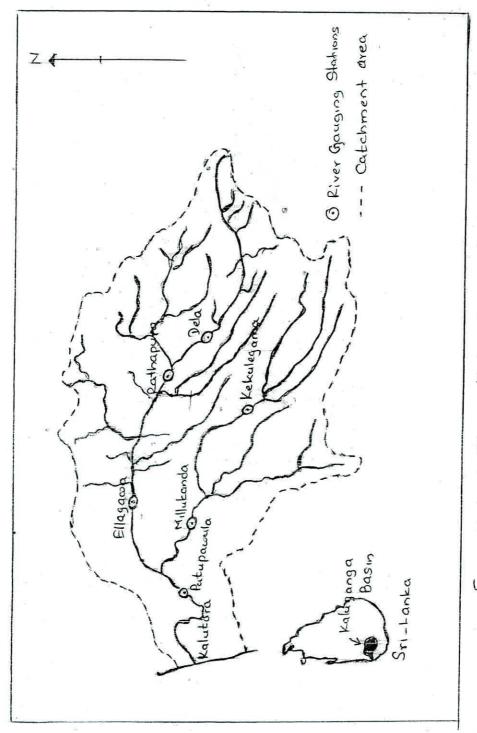



Fig 1.1: The Kalu Ganga Catchment Source: Sri-Lanka Map (1:250000)

catchments, make the floods in Kalu Ganga basin a regular feature[2]. The Kalu Ganga catchment is shown in the Fig 1.1

Kalu Ganga floods occur very frequently in the areas surrounding the Rathnapura and Kaluthara districts.

According to The study of flood levels in the Rratnapura municipal council area by Asian Urban Disaster Mitigation Programme, 1999[2]

"The town is located at the confluence of two large tributaries of Kalu Ganga of nearly equal drainage area. A change in riverbed slopes occurs around this area as the river emerges from the relatively steep slopes of the upper catchment in to relatively mild slopes of the middle catchment. Some parts of the Rathanpura town and the outlying villages are located in low lands, which are very close to the riverbed level. In addition, town of Rathanpura is located just below the part of Kalu Ganga catchment, which receives the highest annual rainfall.

Floods of nearly annual occurrence in Rathnapura town and its vicinity are of great concern as they disrupt the day today life of the community for several days or weeks. The economic loss due to these flood events is also very significant."

Kalutara District is also severely affected by Kalu Ganga floods regularly. On 25<sup>th</sup> April, 1999 Sunday Times[3] reported that due to Kalu Ganga floods 151 families in Horana,