STUDIES ON CAROTENOID CONTENT OF SELECTED FRUITS AND NON-LEAFY VEGETABLES OF SRI LANKA AND THEIR BIOAVAILABILITY AND METABOLITES

BY

Athapaththu Mudiyanselage Buddhika Priyadarshani

Thesis submitted to the University of Sui Jayewandenepura for the award of the Degree of Dactor of Philosophy in Biochemistry in December 2007.

DECLARATION BY CANDIDATE

The work described in this thesis was carried out by me under the supervision of Prof. E.R. Jansz and Prof. H. Peiris (Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) and a report on this has not been submitted in whole or in part to any University or any other Institution for another Degree/Diploma.

05.09.2008

Athapaththu Mudiyanselage Buddhika Priyadarshani

Date

DECLARATION BY SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

.....

Prof. E.R. Jansz

ENS

Prof. H. Peiris

TABLE OF CONTENTS

LIST OF TABLES	x
LIST OF FIGURES	xiii
LIST OF PLATES	XV
ABBREVIATIONS	xvi
ACKNOWLEDGEMENTS	xviii
ABSTRACT	xxi
1. INTRODUCTION	1

1. INTRODUCTION

1.1 General introduction	1
1.1.1 Global vitamin A deficiency	1
1.1.2 Prevalence of vitamin A deficiency in Sri Lanka	1
1.1.3 Outcomes of vitamin A deficiency	2
1.1.4 Recommended daily allowance (RDA) of vitamin A	3
1.1.5 Prevention of vitamin A deficiency in Sri Lanka	3
1.2 Justification and scope of the study	5
2. LITERATURE REVIEW	8
2.1 Occurrence of carotenoids	8
2.2 Structure and classification of carotenoids	9
2.2.1 Structure of carotenoids	9
2.2.2 Classification of carotenoids	10

2.2.2.1 Carotenes and xanthophylls	10
2.2.2.1 Carolenes and xandophyns	10

2.2.2.2 Pro-vitamin A and non pro-vitamin A carotenoids	10
2.3 Physico-chemical properties of carotenoids	15
2.3.1 Light absorption	15
2.3.2 Quenching of singlet oxygen	16
2.3.3 Scavenging of free radicals	17
2.3.4 Solubility	17
2.3.5 Isomerization	17
2.3.6 Oxidation	18
2.4 Biosynthesis of carotenoids	18
2.5 Factors affecting carotenoid profile and content	21
2.5.1 Maturity	21
2.5.2 Varietal differences	21
2.5.3 Post-harvest handling practices	22
2.5.4 Climatic/seasonal effects	24
2.6 Digestion, absorption, transport, storage and bioconversion of carotenoids	25
2.6.1 Digestion	25
2.6.2 Absorption	25
2.6.3 Transport	26
2.6.4 Storage	27
2.6.5 Bioconversion	27
2.7 Factors affecting bioavailability of carotenoids	28
2.7.1 Dietary factors	30
2.7.1.1 Dietary effectors	30
2.7.1.2 Food matrix	31

2.7.1.3 Carotenoid type	32
2.7.2 Subject characteristics	34
2.8 Vitamin A status	35
2.9 Hypercarotenemia	35
2.10 Biological functions of carotenoids	36
2.10.1 Pro-vitamin A activity	38
2.10.1.1 Vision	38
2.10.1.2 Cell differentiation and maintenance of cell membranes	3.8
2.10.1.3 Embryogenesis	39
2.10.1.4 Immuno-enhancement	39
2.10.2 Prevention of cancer and cardio-vascular diseases	40
2.10.3 Prevention of macular degeneration	41
2.11 Past studies on carotenoids in Sri Lanka	42
2.11.1 Vitamin A activity	42
2.11.2 Antioxidant activity	45
2.12 Assay of carotenoids	45
2.13 Assay of in-vitro bioaccessible carotenoids	46
2.14 Assay of <i>in-vitro</i> antioxidant activity	47
2.15 Carotenoid profiles of selected dietary articles	47
2.15.1 Daucus carota (carrot)	47
2.15.2 Cucurbita maxima (pumpkin)	49
2.15.3 Cucurbita moschata (squash/batana)	49
2.15.4 Ipomoea batatas (sweet potato)	49
2.15.5 Lasia spinosa (kohila)	49

2.15.6 Carica papaya (papaw)	52
2.15.7 Artocarpus heterophyllus (jakfruit)	52
2.15.8 Borassus flabellifer (palmyrah)	52
3. MATERIALS AND METHODS	54
3.1 Materials	54
3.1.1 Water	54
3.1.2 Solvents	54
3.1.3 Special chemicals	54
3.1.4 Enzymes	55
3.1.5 Dietary articles	55
3.1.5.1 Daucus carota (carrot)	55
3.1.5.2. Cucurbita maxima (pumpkin)	56
3.1.5.3 Cucurbita moschata (squash/batana)	56
3.1.5.4 Ipomoea batatas (sweet potato)	56
3.1.5.5 Stems of Lasia spinosa (kohila ala)	57
3.1.5.6 <i>Carica papaya</i> (papaw)	58
3.1.5.7 Artocarpus heterophyllus (jakfruit)	58
3.1.5.8 Borassus flabellifer (palmyrah)	58
3.1.5.9 Transport and storage of specimens	59
3.1.6 Blood samples from hypercarotenemic patients	59
3.2 Methods	65
3.2.1 Specimen preparation	65
3.2.1.1 Random specimens	65

3.2.1.2. Maturity study of stems of Lasia spinosa (kohila ala)	67
3.2.1.3 Storage study of <i>Ipomoea batatas</i> (sweet potato)	68
3.2.2 Determination of moisture content	69
3.2.3 Extraction of carotenoids	69
3.2.4 Partition into petroleum ether	70
3.2.5 Saponification	71
3.2.6 Concentration of carotenoid extract	72
3.2.7 Separation of carotenoids by open column chromatography (OCC)	72
3.2.7.1 Preparing the column	72
3.2.7.2 Developing the column	72
3.2.8 Identification	73
3.2.8.1 Spectrophotometry	74
3.2.8.2 Chromatographic data	74
3.2.8.3 Chemical tests	75
3.2.9 Quantification	77
3.2.9.1 OCC method	77
3.2.9.2 HPLC method	78
3.2.10 Preparation of α -carotene standard	81
3.2.10.1 Isolation of α -carotene	81
3.2.10.2 Verification of purity	81
3.2.10.3 Determination of the concentration of isolated	82
α -carotene standard	
3.2.11 Construction of standard curves	
3.2.12 Retention of carotenoids in processed foods	

3.2.12.1 Daucus carota (carrot)	84
3.2.12.2 Cucurbita maxima (pumpkin)	85
3.2.12.3 Cucurbita moschata (squash/batana)	85
3.2.12.4 Ipomoea batatas (sweet potato)	86
3.2.12.5 Lasia spinosa (kohila ala)	86
3.2.12.6 Artocarpus heterophyllus (jakfruit) autoclaving	87
3.2.13 Investigation of <i>in-vitro</i> bioaccessibility of carotenoids	87
3.2.14 Retinol activity equivalent (RAE) and retinol equivalent (RE)	90
3.2.15 Determination of fat content in vegetable dishes	90
3.2.16 Trolox equivalent antioxidant capacity (TEAC) assay	90
3.2.17 Investigation of water-soluble carotenoid	93
3.2.17.1 Isolation	93
3.2.17.2 Concentration	94
3.2.17.3 Enzymatic hydrolysis	94
3.2.17.4 Identification of sugars	94
3.2.17.5 Identification of free carotenoid	95
3.2.18 Analysis of carotenoids and vitamin A of hypercarotenemic patients	95
3.2.18.1 Ethical clearance	95
3.2.18.2 Subjects and collection of blood	96
3.2.18.3 Analysis of serum vitamin A and carotenoids	96
3.2.18.4 Analysis of serum carotenoid metabolites	97
3.2.19 Microscopic study	98
3.2.20 Statistical analysis	98

4. RESULTS	99
4.1 Preliminary results	
4.1.1 Tlc data	99
4.1.2 Purity of the α -carotene isolate	99
4.1.3 Correction factors	99
4.2 Non-leafy vegetables	99
4.2.1 Daucus carota (carrot)	104
4.2.1.1 Carotenoid profile	104
4.2.1.2 Carotenoid content	104
4.2.1.3 Distribution of carotenoids in cells	107
4.2.2 Cucurbita maxima (pumpkin)	107
4.2.2.1 Carotenoid profile	107
4.2.2.2 Carotenoid content	108
4.2.2.3 Distribution of carotenoids in cells	114
4.2.3 Cucurbita moschata (squash/batana)	114
4.2.3.1 Carotenoid profile	114
4.2.3.2 Carotenoid content	114
4.2.3.3 Distribution of carotenoids in cells	117
4.2.4 Ipomoea batatas (sweet potato)	117
4.2.4.1 Carotenoid profile	117
4.2.4.2 Carotenoid content	121
4.2.4.3 Distribution of carotenoids in cells	121
4.2.5 Lasia spinosa (kohila ala)	121
4.2.5.1 Carotenoid profile	121

4.2.5.2 Carotenoid content	122
4.2.5.3 Distribution of carotenoids in cells	129
4.2.6 Contribution to recommended daily allowance (RDA) from a porti	on 129
of vegetable dish	
4.2.7 Retinal activity equivalent (RAE) of raw vegetables	129
4.3 The effect of maturity on carotenoids of stems of Lasia spinosa (kohila	ala) 134
4.3.1 Carotenoid profile	134
4.3.2 Carotenoid content	134
4.4 The effect of storage on carotenoids of <i>Ipomoea batatas</i> (sweet potato)	140
4.5 Fruits	143
4.5.1 Carica papaya (papaw)	143
4.5.1.1 Carotenoid profile	143
4.5.1.2 Carotenoid content	147
4.5.1.3 In-vitro bioaccessibility of carotenoids	147
4.5.1.4 Distribution of carotenoids in cells	147
4.5.2 Artocarpus heterophyllus (jakfruit)	149
4.5.2.1 Carotenoid profile	149
4.5.2.2 Identification of crocetin	149
4.5.2.3 Carotenoid content	152
4.5.2.4 In-vitro bioaccessibility of carotenoids	152
4.5.2.5 Effect of autoclaving	154
4.5.2.6 Distribution of carotenoids in cells	154
4.5.3 Borassus flabellifer (palmyrah)	156
4.5.3.1 Carotenoid profile	156

4.5.3.	2 Carotenoid content	156
4.5.3.	3 Distribution of carotenoids in cells	157
4.5.4	Retinal activity equivalent (RAE) of fruits	157
4.6 Trolox	equivalent antioxidant capacity (TEAC) of absorbable	157
carote	noids	
4.7 A water-sol	luble carotenoid from Borassus flabellifer (palmyrah) fruit pulp	164
4.8 Serum anal	ytes related to hypercarotenemia	168
7		ŝ
5. DISCUSSION		173
6. CONCLUSIONS		198
7. REFERENCES		199
APPENDIX I	List of publications and communications from thesis	225
APPENDIX II	Standard curves	229
APPENDIX III	UV-Visible spectra of individual carotenoids and reaction	234
	products	
APPENDIX IV	Field collection and purchasing points of non-leafy vegetables	241
	and fruits	

LIST OF TABLES

Table 2.1:	Carotenoid profile and content of raw Daucus carota	48
Table 2.2	Carotenoid profile and content of raw Cucurbita maxima	50
Table 2.3	Carotenoid profile and content of raw Cucurbita moschata	51
Table 2.4	Carotenoid profile and content of Carica papaya	53
Table 4.1	R _f values of some carotenoids	100
Table 4.2	Conversion factors for peak area in HPLC due to variations in λ_{max}	102
Table 4.3	Spectral characteristics and chromatographic data of carotenoids	103
	of non-leafy vegetables	
Table 4.4	Carotenoid content of raw Daucus carota	106
Table 4.5	Carotenoid content of Daucus carota preparations	109
Table 4.6	In-vitro bioaccessibility of carotenoids in Daucus carota	110
	preparations	
Table 4.7	Carotenoid content of Cucurbita maxima varieties found in	112
	Sri Lanka	
Table 4.8	Carotenoid content of Cucurbita maxima preparations	113
Table 4.9	In-vitro bioaccessibility of carotenoids in Cucurbita maxima	115
	preparations	
Table 4.10	Carotenoid content of Cucurbita moschata	118
Table 4.11	In-vitro bioaccessibility of carotenoids in Cucurbita moschata	119
	curry preparation	
Table 4.12	Carotenoid content of yellow, orange-fleshed Ipomoea batatas	123
	varieties found in Sri Lanka	

Table 4.13	Carotenoid content of Ipomoea batatas preparations	124
Table 4.14	In-vitro bioaccessibility of carotenoids in Ipomoea batatas	125
	preparations	
Table 4.15	Carotenoid content of raw Lasia spinosa	127
Table 4.16	Carotenoid content of Lasia spinosa preparations	128
Table 4.17	In-vitro bioaccessibility of carotenoids in Lasia spinosa	130
	preparations	
Table 4.18	In-vitro bioaccessibility of carotenoids in Daucus carota	131
	and Cucurbita maxima preparations and percentage contribution	
	to recommended daily allowance (RDA) of vitamin A	
	(cooking of 10 g of vegetables wet weight)	
Table 4.19	In-vitro bioaccessibility of carotenoids in Cucurbita	132
	moschata, Ipomoea batatas and Lasia spinosa preparations	
	and percentage contribution to recommended daily allowance	
	(RDA) of vitamin A (cooking of 10 g of vegetables wet weight)	
Table 4.20	Mean retinol activity equivalent (RAE) values of raw vegetables	133
	(100g ⁻¹ DW)	
Table 4.21	Spectral characteristics and chromatographic data of carotenoids	135
	of type A (sagittate) and type B (pinnatifid) of Lasia spinosa	
Table 4.22	Chemical characteristics of the carotenoids from stems of	136
	Lasia spinosa	
Table 4.23	Effect of maturity on carotenoids of edible part of stems of	137
	Lasia spinosa (type A plant)	

Table 4.24	Effect of maturity on carotenoids of edible part of stems	138
	of Lasia spinosa (type B plant)	
Table 4.25	Changes in β -carotene and unidentified carotenoid of	141
	Ipomoea batatas during open and Jute hessian bag storage	
	under ambient conditions	
Table 4.26	Spectral characteristics and chromatographic data of known	144
	carotenoids of fruits	
Table 4.27	Spectral characteristics and chromatographic data of unknown	145
	carotenoids of fruits	
Table 4.28	Carotenoid content of random specimens of yellow-fleshed Carica	148
	papaya	
Table 4.29	Chemical characteristics of the carotenoids from Artocarpus	151
	heterophyllus	
Table 4.30	Carotenoid content of random specimens of Artocarpus	153
	heterophyllus	
Table 4.31	<i>In-vitro</i> bioaccessibility of β -carotene in ripe <i>Artocarpus</i>	155
Table 4.32	heterophyllus kernel	150
	Chemical characteristics of carotenoids from <i>Borassus flabellifer</i>	159
Table 4.33	Carotenoid content of random specimens of Borassus flabellifer	160
Table 4.34	Retinol activity equivalent (RAE) of fruits (100g ⁻¹ DW)	162
Table 4.35	Trolox equivalent antioxidant capacity (TEAC) of absorbable	163
	carotenoids	
Table 4.36	Characteristics of water-soluble carotenoid	165
Table 4.37	Case histories of hypercarotenemic patients	171
Table 4.38	Serum analytes related to hypercarotenemia	172

LIST OF FIGURES

Page No:

Figure 2.1	Structures of some carotenes in foods of plant origin	11
Figure 2.2	Structures of some common xanthophylls in foods of plant origin	12
Figure 2.3	Structures of some carotenoids occurring in animals	13
Figure 2.4	Structures of some carotenoids used as food colorants	14
Figure 2.5	Carotenoid biosynthesis from phytoene	20
Figure 2.6	Alternative metabolic products of β -carotene by central and	29
	eccentric cleavage	
Figure 2.7	Active forms of vitamin A	37
Figure 4.1	HPLC chromatogram of α -carotene isolated from <i>Daucus carota</i>	101
Figure 4.2	HPLC chromatogram of carotenoids from an unsaponified	105
	Daucus carota extract	
Figure 4.3	HPLC chromatogram of carotenoids from an unsaponified	111
	Cucurbita maxima (variety: 'Arjuna') extract	
Figure 4.4	HPLC chromatogram of carotenoids from an unsaponified	116
	Cucurbita moschata extract	
Figure 4.5	HPLC chromatogram of carotenoids from an unsaponified	120
	Ipomoea batatas (variety: '420027') extract	
Figure 4.6	HPLC chromatograms of carotenoids from an unsaponified	126
	Lasia spinosa	
Figure 4.7	Change in retinol activity equivalent with maturity	139
Figure 4.8	Changes in β -carotene content during storage in open and	142
	Jute hessian	

Figure 4.9	HPLC chromatogram of carotenoids from a saponified	146
	Carica papaya extract	
Figure 4.10	HPLC chromatogram of carotenoids from a saponified	150
	Artocarpus heterophyllus extract (specimen No:1)	
Figure 4.11	HPLC chromatogram of carotenoids from an unsaponified	158
	Borassus flabellifer extract	
Figure 4.12	Diagrammatic Tlc of naringinase hydrolysis of water-soluble	166
	carotenoid	2
Figure 4.13	UV-Visible spectra of water-soluble carotenoid	167
	(a) before enzymatic hydrolysis (b) after enzymatic hydrolysis	
Figure 4.14	HPLC chromatograms of the serum extracts (a) normal	170
	(b) abnormal I (c) abnormal II profiles	
Figure 5.1	Schematic representation of enzymatic hydrolysis and	189
	epoxy-furanoid rearrangement of water-soluble carotenoid	
Figure 5.2	Serum carotenoid metabolites	192
Figure 5.3	Some main carotenoids found in carrot, papaw and pumpkin	193

LIST OF PLATES

Plate 3.1	(a) Daucus carota-variety: 'New kuroda' (b) Cucurbita moschata	60
Plate 3.2	Cucurbita maxima varieties found in Sri Lanka	61
	(a) Arjuna (b) Ruhunu (c) Meemini (d) Samson (e) Janani	
Plate 3.3	Yellow orange-fleshed Ipomoea batatas varieties found in Sri	62
	Lanka (a) CARI-426 (b) P ₂ -20 (c) 420027 (d) 440060 (e) 187617-1	
Plate 3.4	(a) Stems of Lasia spinosa (b) A stem used for maturity study	63
in the second	(c)Types of Lasia spinosa (i) Type A-Sagittate (ii) Type B-Pinnatifi	id
Plate 3.5	(a) Carica papaya (b) Artocarpus heterophyllus	64
	(c) Borassus flabellifer (type II-B)	
Plate 4.1	Microscopic view of a smear of Borassus flabellifer	161
	$(1 \times 40 \text{ magnification})$	

ABBREVIATIONS

A1** lemAbsorption coefficient for 1% solutionACAcetoneBHAButylated hydroxyanisoleBHT2,6-Di-tert-butyl-4 methylphenolCVCoefficient of variationCRBPCellular retinoid-binding proteinDEEDi-ethyl etherDMAPPDimethylallyl diphosphateDWDry weighte*ElectronFAOFood and Agriculture OrganisationFWGeranylgeranyl diphosphate synthaseGGPPGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHolo-RBPHolo-retinol binding proteinHPLCSopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateVACGInternational Vitamin A Consultative Group λ_{max} Low-density lipoproteins	A	Absorbance
BHAButylated hydroxyanisoleBHT2,6-Di-tert-butyl-4 methylphenolBHT2,6-Di-tert-butyl-4 methylphenolCVCoefficient of variationCRBPCellular retinoid-binding proteinDEEDi-ethyl etherDMAPPDimethylallyl diphosphateDWDry weightcElectronFAOFood and Agriculture OrganisationFWGeranylgeranyl diphosphateGGPPGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHOL-RBPHolo-retinol binding proteinHPLCKigh performance liquid chromatographyIPIopentenyl diphosphate isomeraseIVACGInternational Vitamin A Consultative GroupAmaxMaximum wavelength of absorption	A ^{1%} _{lcm}	Absorption coefficient for 1% solution
BHT2,6-Di-tert-butyl-4 methylphenolCVCoefficient of variationCRBPCellular retinoid-binding proteinDEEDi-ethyl etherDMAPPDimethylallyl diphosphateDWDry weightcElectronFAOFood and Agriculture OrganisationFWGeranylgeranyl diphosphate synthaseGGPSGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHOI-RBPHolo-retinol binding proteinHPLCIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative GroupAmaxMaximum wavelength of absorption	AC	Acetone
CVCoefficient of variationCRBPCellular retinoid-binding proteinDEEDi-ethyl etherDMAPPDimethylallyl diphosphateDWDry weighte [*] ElectronFAOFood and Agriculture OrganisationFWGeranylgeranyl diphosphateGGPPGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHOD-RBPHolo-retinol binding proteinHPLCIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateVACGMaximum wavelength of absorption	BHA	Butylated hydroxyanisole
CRBPCellular retinoid-binding proteinDEEDi-ethyl etherDMAPPDimethylallyl diphosphateDWDry weighte'ElectronFAOFood and Agriculture OrganisationFWGeranylgeranyl diphosphateGGPPGeranylgeranyl diphosphate synthaseGGPSHolo-retinol binding proteinHOLHigh density lipoproteinsHPLCIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative Group λ_{max} Maximum wavelength of absorption	BHT	2,6-Di-tert-butyl-4 methylphenol
DEEDi-ethyl etherDMAPPDimethylallyl diphosphateDWDry weighte'ElectronFAOFood and Agriculture OrganisationFWGeranylgeranyl diphosphateGGPPGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHolo-RBPHolo-retinol binding proteinIPIIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative Group λ_{max} Maximum wavelength of absorption	CV	Coefficient of variation
DMAPPDimethylallyl diphosphate'DWDry weighte'ElectronFAOFood and Agriculture OrganisationFWFresh weightGGPPGeranylgeranyl diphosphate synthaseGGPSGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHOlo-RBPHolo-retinol binding proteinIPIIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative Group λ_{max} Maximum wavelength of absorption	CRBP	Cellular retinoid-binding protein
DWDry weighte [°] ElectronFAOFood and Agriculture OrganisationFWFresh weightGGPPGeranylgeranyl diphosphateGGPSGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHolo-RBPHolo-retinol binding proteinHPLCIigh performance liquid chromatographyIPIIsopentenyl diphosphate isomeraseIVACGInternational Vitamin A Consultative Groupλ _{max} Maximum wavelength of absorption	DEE	Di-ethyl ether
e [°] Electron FAO Food and Agriculture Organisation FW Fresh weight GGPP Geranylgeranyl diphosphate GGPS Geranylgeranyl diphosphate synthase HDL Garanylgeranyl diphosphate synthase Holo-RBP Holo-retinol binding protein HPLC High performance liquid chromatography HPI Isopentenyl diphosphate isomerase IPP Isopentenyl diphosphate IVACG International Vitamin A Consultative Group λ_{max}	DMAPP	Dimethylallyl diphosphate
FAOFood and Agriculture OrganisationFWFresh weightGGPPGeranylgeranyl diphosphateGGPSGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHolo-RBPHolo-retinol binding proteinHPLCHigh performance liquid chromatographyIPIIsopentenyl diphosphate isomeraseIVACGInternational Vitamin A Consultative GroupλmaxMaximum wavelength of absorption	DW	Dry weight
FWFresh weightGGPPGeranylgeranyl diphosphateGGPSGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHolo-RBPHolo-retinol binding proteinHPLCHigh performance liquid chromatographyIPIIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative GroupλmaxMaximum wavelength of absorption	e	Electron
GGPPGeranylgeranyl diphosphateGGPSGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHolo-RBPHolo-retinol binding proteinHPLCHigh performance liquid chromatographyIPIIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative GroupλmaxMaximum wavelength of absorption	FAO	Food and Agriculture Organisation
GGPSGeranylgeranyl diphosphate synthaseHDLHigh density lipoproteinsHolo-RBPHolo-retinol binding proteinHPLCHigh performance liquid chromatographyIPIIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative GroupλmaxMaximum wavelength of absorption	FW	Fresh weight
HDLHigh density lipoproteinsHolo-RBPHolo-retinol binding proteinHPLCHigh performance liquid chromatographyIPIIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative GroupλmaxMaximum wavelength of absorption	GGPP	Geranylgeranyl diphosphate
Holo-RBPHolo-retinol binding proteinHPLCHigh performance liquid chromatographyIPIIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative GroupλmaxMaximum wavelength of absorption	GGPS	Geranylgeranyl diphosphate synthase
HPLCHigh performance liquid chromatographyIPIIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative GroupλmaxMaximum wavelength of absorption	HDL	High density lipoproteins
IPIIsopentenyl diphosphate isomeraseIPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative GroupλmaxMaximum wavelength of absorption	Holo-RBP	Holo-retinol binding protein
IPPIsopentenyl diphosphateIVACGInternational Vitamin A Consultative GroupλmaxMaximum wavelength of absorption	HPLC	High performance liquid chromatography
IVACGInternational Vitamin A Consultative Group λ_{max} Maximum wavelength of absorption	IPI	Isopentenyl diphosphate isomerase
λ_{max} Maximum wavelength of absorption	IPP	Isopentenyl diphosphate
	IVACG	International Vitamin A Consultative Group
LDL Low-density lipoproteins	λ_{\max}	Maximum wavelength of absorption
	LDL	Low-density lipoproteins

MPLC	Medium pressure liquid chromatography
MRI	Medical Research Institute
³ O ₂	Triplet state of oxygen
¹ O ₂	Singlet oxygen
OCC	Open column chromatography
PDS	Phytoene desaturase
PE	Petroleum ether
PFP	Palmyrah fruit pulp
PSY	Phytoene synthase
R'	Free radical
RAE	Retinol activity equivalent
RDA	Recommended daily allowance
RE	Retinol equivalent
R _f	Retardation factor
RPE	Retinal pigment epithelium
SD	Standard deviation
TBARS	Thiobarbituric acid reactive substances
TEAC	Trolox equivalent antioxidant capacity
Tlc	Thin layer chromatography
TSH	Thyroid stimulating hormone
VLDL	Very low-density lipoproteins
WHO	World Health Organization

ACKNOWLEDGMENTS

My most heartfelt gratitude goes to my supervisor Professor E.R. Jansz (Professor of Biochemistry, Department of Biochemistry, University of Sri Jayewardenepura) for his invaluable supervision, conscientiously guidance, encouragement and valuable suggestions in the manuscripts preparations, recommendations and moral support throughout the period of my Ph.D. program. It is hard to express his commitment enabled me to complete this study successfully. I am deeply indebted to him for his immeasurable contribution in my success.

My deepest gratitude extends to my supervisor Professor H. Peiris (Department of Biochemistry, University of Sri Jayewardenepura) for his supervision, valuable guidance, advice, suggestions, comments and invaluable ideas in the manuscript preparations.

In particular, I am very thankful to Professor Sanath P. Lamabadusuriya, (Consultant Paediatrician, Department of Paediatrics, University of Colombo) for providing me serum samples with case histories of the hypercarotenemic patients and correcting of the drafts on 'hypercarotenemia'. In addition helpful discussions with him on the clinical relevance of the study on 'hypercarotenemia' are greatly appreciated.

I also wish to thank Dr. T.R.S. Seneviratne (Consultant Paediatrician, Department of Paediatrics, University of Sri Jayewardenepura) for providing me serum samples with the case histories and correcting drafts relevant to 'hypercarotenemia'.

I wish to thank Dr. U.G. Chandrika for introducing me to the project, providing me various reference resources and her University grant (ASP/6/PR/2003/14) for stipends of my initial 16 months of this study.

I am grateful to Mr. K.B. Wahundeniya (Head, Vegetable Research Division, Horticultural Crop Research and Development Institute, Gannoruwa, Peradeniya) and Mrs. Anoma Prematilaka (Research Officer, Horticultural Crop Research and Development Institute, Gannoruwa, Peradeniya) for teaching me criteria for the identification of variety/different varieties of non-leafy vegetables studied and providing me samples.

I am pleased to acknowledge Dr. R. Wickremasinghe, (Head, Department of Parasitology, University of Sri Jayewardenepura) and Dr. S. Yasawardhena (Head, Department of Anatomy, University of Sri Jayewardenepura) for allowing me to conduct microscopic studies.

International Program for Chemical Sciences (IPICS) Project SRI 07 is greatly acknowledged for all the financial support including equipments, chemicals and my stipends.

My thanks are due to Dr. P.P.R. Perera for teaching me the operation of the HPLC instrument.

My thank goes to Mr. J.K. Nikawala for the arrangements to collect palmyrah fruits from Hambantota district.

I wish to extend my gratitude to Mrs. O. Jansz for the editorial guidance during the preparation of manuscripts.

My sincerest thanks go to Mr. Rahal Widanagamage for all the computer assistance given me throughout the preparation of this manuscript.

I am pleased to thank Mr. Keerthi Aththanayaka, Mr. Prageeth Wijemanna, Mr. Indika Senevirathne, Ms. Thushari Bandara and Mrs. Ranga Edirisinghe who helped me in

xix

different ways especially participating for the field trips on samples/specimens collections in the areas of Kurunegala, Matale, Hambantota and Gannoruwa.

I extend my sincere gratitude to all the members of academic and non-academic staff, Department of Biochemistry, University of Sri Jayewardenepura for supporting me in many ways.

I am forever grateful to my parents. My very deep appreciations go to them for their constant support in many ways throughout my study.

STUDIES ON CAROTENOID CONTENT OF SELECTED FRUITS AND NON-LEAFY VEGETABLES OF SRI LANKA AND THEIR BIOAVAILABILITY AND METABOLITES Athapaththu Mudiyanselage Buddhika Priyadarshani

ABSTRACT

Carotenoids are important as precursors of vitamin A as well as for prevention of cancers, coronary heart diseases, age-related macular degeneration, cataract etc. The objective of this study was to determine the carotenoids of some non-leafy vegetables and fruits of Sri Lanka and the effect of over-feeding of carotenoid rich diets. Carotenoid analysis procedure included specimen collection, extraction, identification and quantification. The estimation of carotenoids in selected non-leafy vegetables and fruits was carried out having made some improvements to the existing procedure with regard to sampling, identification and quantification. The mean contents of β - and α -carotenes in Daucus carota (carrot) were 43.8±5.6 and 20.5±1.7 µg.g⁻¹ fresh weight (FW), respectively whereas in Cucurbita moschata (squash) it was 6.0±0.8 and 5.1±1.1 µg.g⁻¹ FW, respectively. β-Carotene and α-carotene contents in the most common Cucurbita maxima (pumpkin) variety 'Arjuna' was 50.9±5.7 and 27.3±3.1 µg.g⁻¹ FW, respectively. The highest β -carotene content reported from *Ipomoea batatas* (sweet potato) was 59.0±6.2 µg.g⁻¹ FW. Stems of Lasia spinosa (kohila ala) purchased from the markets showed a wide variation in carotenoid content (0.9-7.2 and 0.4-1.8 μ g.g⁻¹ FW for β - and α -carotenes, respectively). The fruits Carica papaya (papaw) and Artocarpus heterophyllus (jakfruit) which have no agricultural varieties showed high heterogeneity. Therefore carotenoid content varied markedly from specimen to specimen and standard

deviation (SD) could not be calculated. In *Carica papaya* retinol activity equivalent (RAE) ranged from 25.0 to 156.7 $.100g^{-1}$ FW. In *Artocarpus heterophyllus* RAE was only in traces on the basis of fresh weight. *Borassus flabellifer* (palmyrah) fruit type IIB from Hambantota gave large SDs for carotenoids. Its RAE was negligible. *In-vitro* bioaccessibility of β -carotene was high in *Daucus carota* curry (74.7%), boiled and homogenized *Daucus carota* (73.9%) and *Carica papaya* (50.5%) but low in all other types of cooked foods due to matrix effect.

Stems of *Lasia spinosa* showed 14 and 2.3 fold increase in total pro-vitamin A carotenoid content with maturity for type A (sagittate) and B (pinnatifid) plants respectively. Carotenogenesis was found to occur in *Ipomoea batatas* under the open and gunny bag storage conditions at ambient temperature. β -Carotene content increased 2.2 and 2.3 fold after twelve days storage for open and bagged samples, respectively.

A water-soluble carotenoid was isolated from the fruit pulp of *Borassus flabellifer* and the solubility was due to glycosylation mainly by glucose and some rhamnose. The sugars were released by action of naringinase. This finding provides a basis for making a yellow natural food colour.

Hypercarotenemia was studied in eight patients with a history of frequent intake of excess of *Daucus carota*, *Carica papaya* and *Cucurbita maxima* over a period of time. This study was important as high carotenoid food intake appears to be sometimes high in Sri Lanka giving rise to this problem. Six of the patients had typical hypercarotenemia. Two atypical cases were detected. Control subjects showed no carotenoids and its metabolites in serum. The results indicate that boiled and homogenised *Daucus carota* with high β -carotene and high *in-vitro* bioaccessibility was the main cause for hypercarotenemia in Sri Lanka.