STUDY ON MANUFACTURE OF SPRAY DRIED WOOD APPLE (Feronia limonia) AND BAEL (Aegal marmelose) FRUIT PULPS AND THEIR POSSIBLE USES IN THE INDUSTRY

 \mathbf{BY}

R.M. DEDUNU DILOSHINI RATHNAYAKE

THESIS SUBMITTED TO THE
UNIVERSITY OF SRI JAYAWARDENEPURA
FOR THE AWARD OF THE DEGREE OF
MASTER OF SCIENCE
IN FOOD SCIENCE AND TECHNOLOGY ON
AUGUST 2006

DECLARATION

The work on this thesis was carried out by me under the supervision of Prof: Arther Bamunuarachchi (coordinator / Food Science and Technology programs, University of Sri Jayewardenepura); and Mr T.D.W Siriwardene (Research offfcer / Head, Food Research Unit Gannoruwa). Report on this thesis has not been submitted in whole or in part to any University or any other institution for another degree/diploma.

R.M.D.D.Rathnayake

We certify that the above statement in the preceding page made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Supervisors,

Signature

Prof; Arthur Bamunuarachchi,

CO-ORDINATOR ,FOOD SCIENCE &

TECHNOLOGY PROGRAMMS,

DEPARTMENT OF FOOD SCIENCE AND TECHNOLOGY,

UNIVERSITY OF SRI JAYAWARDENEPURA,

SRI LANKA.

Signature

Mr: T.D.W Siriwardene,
HEAD / RESEARCH OFFICER,
FOOD RESEARCH UNIT,
DEPARTMENT OF AGRICULTURE,
PERADENIYA.

A DEDICATION TO RESPECT MY EVER LOVING MOTHER & FATHER

CONTENTS

LIST O	F CONTENTS	Page I
	FIGURES	V
	FPLATES	VI
	FTABLES	VII
	ES OF APPENDIX	VIII
	S OF APPENDIX	VIII
	S OF APPENDIX	VIII
	F ABREVIATIONS	IX
ACKNO	DELEDGEMENTS	X
ABSTR		XI
СНАРТ	TER 1- INTRODUCTION	
	1.1 Introduction (General)	1
СНАРТ	TER 2- LITERATURE REVIEW	
	2.1 An Overview of Wood Apple and Bael	3
	2.1.1 Wood apple	3
	2.1.1.1 Origin and Distribution	3
	2.1.1.2 Varieties	3
	2.1.1.3 Climate and Soil	3
	2.1.1.4 Propagation	4
	2.1.1.5 Season	4
	2.1.1.6 Harvesting	4
	2.1.1.7 Botanical Description	4
	2.1.1.8 Chemical Composition	6
	2.1.1.9 Medicinal Uses	6
	2.1.1.10 Food Uses	7
	2.1.2 Bael	7

2.1.2.1 Origin and Distribution	7
2.1.2.2 Climate and Soil	8
2.1.2.3 Season	8
2.1.2.4 Harvesting	8
2.1.2.5 Varaeties	8
2.1.2.6 Botanical Description	9
2.1.2.7 Chemical Composition	11
2.1.2.8 Medicinal Uses	11
2.1.2.9 Food Uses	11
2.2 Food Spoilage and Preservation	12
2.3 Fruit Dehydration	13
2.3.1 Advantages of Fruit Dehydration	13
2.3.2 Spray Drying	14
2.3.2.1 Technology of Spray dryer	15
2.3.3 Factors affecting for high quality dried	
Juice products	16
2.3.3.1 Quality of row material	16
2.3.3.2 Product temperature and time limit	16
2.3.3.3 Additives	16
2.4 Pre processing operations	17
2.4.1 Harvesting	17
2.4.2 Selection and Preparation of fruit	17
2.4.3 Cleaning	17
2.4.4 Extraction of Juice	17
2.4.5 Straining	18
2.4.6 Homogenizing	18
2.5 Post Processing Operations	18
2.5.1 Packaging	18
2.6 Chemical and Physical Properties	19
2.6.1 Ascorbic acid (Vitamin C)	19
2.6.2 Weter Activity	20

	2.6.2.1 Sorption Isotherm Studies	20
	2.6.3 Solubility	21
	2.6.4 Wettability	21
	2.7 Sensory Evaluation	22
	2.7.1 The importance of the sensory analysis	23
	2.7.2 Consumer Oriented Testing	23
	2.7.2.1 Hedonic Test	23
CHAI	PTER 3 –EXPERIMENTAL	
	3.1 Preliminary trials	24
	3.1.1 Determination of pulp to water ratio	24
	3.1.1.1 Materials	24
	3.1.1.2 Method	24
	3.2 Product development Trials	25
	3.2.1 Determination of pulp to maltodextrin ratio	25
	3.3 Analysis of physical parameters	26
	3.3.1 Determination of solubility	26
	3.3.1.1 Materials	26
	3.3.1.2 Method	26
	3.3.2 Determination of bulk density	27
	3.3.2.1 Materials	27
	3.3.2.2 Method	27
	3.3.2 Determination of Wettability	28
	3.3.2.1 Materials	28
	3.3.2.2 Method	28
	3.4 Analysis of Chemical parameters	29
	3.4.1 Determination of Moisture content	29
	3.4.1.1 Materials	29
	3.4.2.2 Method	29
	3.4.2 Determination of Vitamin C	30
	3.4.2.1 Materials	31
	3.4.2.2 Method	31
	3.4.3 Determination of Titratable Acidity	32

	3.4.3.1 Materials	32
	3.4.3.2 Method	32
	3.4.4 Determination of Ash content	33
	3.4.4.1 Materials	33
	3.4.4.2 Method	33
	3.5 Moisture Sorption studies	34
	3.5.1 Materials	35
	3.5.2 Method	35
	3.6 Sensory Evaluation	35
	3.6.1 Consumer oriented testing	35
	3.6.1.1 Materials	35
	3.6.1.2 Method	36
CHAP	TER 4- RESULTS AND DISCUSIONS	
	4.1 Preliminary trials	37
	4.1.1 Determination of pulp to water ratio	37
	4.2 Product development trials	38
	4.3 Physical parameter studies	40
	4.4 Chemical composition studies	40
	4.5 Moisture sorption studies	42
	4.5.1 Moisture sorption isotherm	42
	4.5.2 BET monolayer plot	44
	4.5.3 Sorption Energy	47
	4.6 Sensory Evaluation	48
	4.6.1 Hedonic Testing	48
	4.6.1.1 Results of bael fruit drink powder	48
	4.6.1.2 Results of Wood apple fruit drink powder	49
	4.7 Conclusions	52
	4.8 Suggestions for Further works	53
REFE	RANCES	54
APPE	NDIX	57

LIST OF FIGURES

		Page
Figure 1 – Bot	tanical description of wood apple	5
Figure 2 - Bot	tanical description of bael	10
Figure 3 - Idea	alized water sorption isotherm of a food system	20
Figure 4 – Mo	pisture sorption behavior of wood apple powder	42
Figure 5 – Mo	pisture sorption behavior of bael powder	43
Figure 6 – BE	T Monolayer plot for wood apple powder	45
Figure 7 - BE	ET Monolayer plot for bael powder	46

LIST OF PLATES

	Page
Plate 1 – Wood apple powder incorporated with maltodextrin	39
Plate 2 – Bael powder incorporated with maltodextrin	39
Plate 3 - Comparison of wood apple powder and fresh drinks	50
Plate 4 – Comparison of bael powder and fresh drinks	50

FIGURES OF APPENDIX

	Page
Figure 8 - Flow diagram of preparation of spray dried powder	59
PLATES OF APPENDIX	
Plate 5 - Wood apple (feronia limonia)	57
Plate 6 - Bael (Aegal marmelos)	57
Plate 7 - Spray dryer (Model L8)	58
Plate 8 – Processing	58
TARLEG OF ARRENDIV	

TABLES OF APPENDIX

Table 19:- Results of Hedonic Analysis for bael (Aegal mamelose)	
Table 20:- Results of Hedonic Analysis for wood apple (Feronia limonia)	64

LIST OF ABBREVIATIONS

1. AA - Ascorbic Acid

2. MPA - Meta Phosphoric Acid

3. 2,6-DCP - 2.6- Dichlorophenol indophenol

4. Sec. - Seconds

5. Mins. - Minutes

6. Fig. - Figure

7. App. - Appendix

1.1 Introduction

The main objective of fruit processing is to supply wholesome, safe, nutritious and acceptable food to consumers and to minimize the post harvest losses. Development of processing, storage, transportation and marketing programs are very important to make efficient use of fruits and other farm products. Fruit processing projects also aim to replace imported products like squash, cordials, jams, syrups, beverages, pickles, etc.

Wood apple and bael are seasonal hard fruits belong to family *Rutaceae*. Both are native and common in the wild in dry plains of India and Sri Lanka. The therapeutic properties of wood apple and bael have been well documented¹⁴. These fruits are rich in vitamins and minerals, and can contribute significantly to the daily nutrient needs of the individual³¹. Both trees are cultivated on a limited scale in Sri Lanka in domestic orchards. There is a considerable post harvest loss in both commodities in the chain of harvest to the final consumer. Nevertheless, processed products in the form of jam, squash and ready to serve beverages are available. However there is a need to diversify the product range to minimize post harvest losses.

Fruit juices have their best taste, aroma and colour when they are freshly extracted or expressed. All subsequent efforts to preserve them adversely affect their quality to varying degrees, depending upon the method of preservation employed. In the current investigations an attempt has made to process wood apple and bael fruit to a fine reconstitutable powder. The processing conditions in spray drying technology are known to retain physical and chemical properties of processing material to a high degree.

Spray drying technology originally developed to dehydrate milk and milk based products is currently being applied to process a broad spectrum of products beside dairy. Spray drying is a method for drying food liquids and some slurry in which the feed is mixed with heated air in a drying chamber. Rapid drying takes place and a dry powder is formed. Spray drying can accomplished with little loss in nutrients. Milk powders retain Vitamin A, Niacin riboflavin and other vitamins well⁹. Processing of products made from natural ingredients it is desirable to retain the natural properties and qualities in the final powder form. This is possible for some products, while others involve a recipe containing additional carriers, antioxidants, pH-stabilizers and so forth.

There have been successful applications of spray drying technology to dehydrate fruit juices by spray drying in India, China and the products are available to consumers. Though the products are available, published data in respect to processing technologies are not available. Potential exits in Sri Lanka to evaluate possibilities of the application of spray drying technology to manufacture reconstitutable fruit juice powders in Sri Lanka.

1.2 Objectives of the study

- Manufacture of spray dried powder from wood apple and bael with specific physical, chemical and functional properties.
- Establishment of product identity reflecting the major chemical constituents and assessment of reconstitutability and organoleptic properties.
- 3. Studies on moisture sorption properties to predict the packaging needs.

CHAPTER -2 LITERATURE REVIEW