THE EFFECTS OF IRON DEFICIENCY ON COGNITIVE FUNCTION AND NEUROPHYSIOLOGICAL FUNCTION IN EARLY ADOLESCENT FEMALES

by

Savithri Wasundara Wimalasekera

Ph.D.

2010

THE EFFECTS OF IRON DEFICIENCY ON

COGNITIVE FUNCTION AND NEUROPHYSIOLOGICAL FUNCTION

IN EARLY ADOLESCENT FEMALES

by

Savithri Wasundara Wimalasekera

Thesis submitted to the University of Sri Jayewardenepura for the award of Degree of Doctor of Philosophy in Physiology on May 2010 The work described in this thesis was carried out by me under the supervision of Prof Kumudu Wijewardenena, Professor of Community Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Professor Gunilla Lindmark, Department of Women's and Children's Health, Section for Women's and Children's' Health, University Hospital, Uppsala, Sweden and Professor Karin Edebol Eeg Olofsson, Department of Clinical Neurophysiology University Hospital, Uppsala, Sweden; and a report of this has not been submitted in whole or in part to any university or any other institution for another degree/diploma.

Diualaseleera

Savithri Wasundara Wimalasekera Department of Physiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

Date

Dedicated to the memory of

my dear parents

the late Mr. and Mrs. K. D. S. Wimalasekera

TABLE OF CONTENTS

LIST	T OF TABLES	viii
LIST	T OF FIGURES	xii
LIST	T OF ABBREVIATIONS	xiv
ACK	NOWLEDGEMENTS	xvi
ABS	TRACT	xix
CHA	APTER 1	
INT	RODUCTION	
1.1	Iron deficiency, the magnitude of the health problem:	1
1.2	The health effects of iron deficiency	3
1.3	Prevalence of anaemia in the world	5
1.4	Prevalence of Iron deficiency anaemia in Sri Lanka	6
1.5	Causes of Iron Deficiency	10
1.6	Diagnosis of iron deficiency	12
1.7	Iron deficiency in children	14
1.8	Brain development during adolescence	15
1.9	Cognitive development in adolescence	17
1.10	Tests of cognitive function	17
1.11	Impairment of cognition in iron deficiency	20
1.12	2 Evoked potentials	22

1.13 Motor and sensory nerve function in adolescence	31
1.14 Iron supplementation in adolescence	35
1.15 Objectives	39
1.15.1 Main Objective	39
1.15.2 Specific Objectives	39

CHAPTER 2

LITERATURE REVIEW

2.1	Normal iron balance in the body	40
2.2	Iron status in adolescent populations of the world and Sri Lanka	46
2.3	Development of the Brain and cognition from childhood through	50
2.4	Importance of Iron on Neurological function	54
2.5	Neurophysiological assessement of brain function in iron deficiency	55
2.6	Iron and cognitive development	57
2.7	Role of Iron in Neurotransmission	60
2.8	Assessment of Intelligence	62
2.9	Wechsler Intelligence Scales for children	64
2.10	Tests Of Nonverbal Intelligence (TONI)	70
2.11	Iron supplementation to improve cognitive and neurological Function	70

CHAPTER 3

METHODOLOGY

3.1	Design, participants and setting	74
3.2	Data collection	80
3.3	Assessment of psychosocial adversity	84
3.4	Laboratory analysis	85
3.5	Detailed Studies on Sub groups; anaemic, iron deficient, and non anaemic	95
3.6	Assessment of cognitive function	96
3.7	Assessment of Visual evoked potentials (VEP) by pattern reversal technique	106
3.8	Assessment of Brainstem Auditory Evoked Potentials (BAEP)	110
3.9	Assessment of Nerve conduction	113
3.10) Supplementation of anaemic and iron deficient subjects with iron	126
3.11	Reassessment of subjects after 90 days	126
3.12	2 Ethical aspects	127
3.13	B Data analysis	127
СН	APTER 4	
RE	SULTS	
Sec	tion 1	
		130
4.1	Study sample	130
4.2	Prevalence and features of anaemia	131

4.3	Puberty	132
4.4	Characteristics of anaemic, iron deficient and non anaemic adolescent groups	13 <mark>4</mark>
4.5	Red cell indices	136
4.6	Iron status of the study sample	140
4.7	White Cell Indices of the adolescents	142
4.8	Psychosocial adversity Index	144
4.9	Parents educational level and employment	146
4.10	Number of children in the family	151
4.11	Assessment of cognitive and neurophysiological function in a subsample	152
4.12	Cognitive function assessment using the Wechesler Intelligence Tests	156
4.13	Correlation between Iron status indicators	161
4.14	Association between Iron status and Intelligence tests	163
4.15	Assessment of Visual Evoked Potentials in a subsample	173
4.16	Association of iron status indicators with Visual evoked potentials	180
4.17	Assessment of Auditory Evoked Potentials in a subsample	180
4.18	Association of iron status with Auditory Brain Stem Evoked Potentials	187
4.19	Motor and Sensory nerve function in a subsample	192
4.20	Association of iron status indicators with Motor and Sensory nerve function	196

Secti	on 2	201
Post	Supplementation Data	201
4.21	Change in the Iron status from T1 to T2	201
4.22	Change in the performances on Wechsler intelligence test scores from	
T_1 to	T_2	205
4.23	Changes in Tests of Non Verbal Intelligence Scores before (T_1) and after	
iron	supplementation (T ₂)	210
4.24	Changes in Visual Evoked Potentials from T_1 to T_2	212
4.25	Changes in Brain stem Auditory Evoked Potentials from T1 to T2	215
4.26	Motor and Sensory nerve function before (T_1) and after iron	
supp	lementation (T_2)	218
CHA	PTER 5	

DIS	CU	SS]	ION

5.1	Characteristics of the study sample	222
5.2	Height Weight and BMI of the adolescents	222
5.3	Family income, educational and employment levels of parents among	
	Adolescents	225
5.4	Psychosocial adversity of Adolescents	227
5.5	Prevalence of Iron deficiency and iron deficiency anaemia	227
5.6	Red cell Indices of the adolescents	233

LIST OF APPENDICES

Appendix 1 - Communications based on the study	A1-A2
Appendix 2 - Anaemia clinical evaluation form	B1-B3
Appendix 3 - Psychosocial adversity scale	C1
Appendix 4 Child Health development record	D1-D2
Appendix 5 – Ethical Approval form	E1
Appendix6 – Parental consent form	F1-F3
Appendix7– WISC and TONI Scoring sheets (due to copyright restrictions only page 1 is annexed)	G1-G4

LIST OF TABLES

	Table 4.1	- The Baseline characteristics of the Study Population	130
	Table 4.2	- The prevalence of anaemia in the study population	132
	Table 4.3.1	- The prevalence of anaemia according to the stage of puberty	133
	Table 4.4.1	- Characteristics of anaemic and non anaemic adolescents	135
	Table 4.4.2	- Characteristics of iron deficient and non anaemic adolescents	136
	Table 4.5.1	- Red cell Indices of anaemic and non anaemic adolescents	138
	Table 4.5.2	- Red cell indices of iron deficient and non anaemic adolescents	139
	Table 4.6.1	- Iron status of anaemic and non anaemic adolescents	141
il a	Table 4.6.2	- Iron status of iron deficient and non anaemic adolescents	141
	Table 4.7.1	- White cell Indices of anaemic and non anaemic adolescents	142
	Table 4.7.2	- White cell indices of iron deficient and non anaemic adolescents	143
	Table 4.8	- Psychosocial adversity index scores of the adolescents	145
	Table 4.9.1	- The Educational level of the mothers	147
	Table 4.9.2	- The Educational level of the fathers	148
	Table 4.9.3	- The Employment level of the mothers	149
	Table 4.9.4	- The Employment level of the fathers	150
	Table 4. 10	- Number of siblings in the family	151
	Table 4.11.1	- Characteristics of the subsample of anaemic and non anaemic adolescents	152
	Table 4.11.2	 Characteristics of the subsample of iron deficient and non anaemic adolescents 	153

Table 4.11.3 - Iron status of anaemic and non anaemic adolescents	154
Table 4.11.4 - Iron status of iron deficient and non anaemic adolescents	155
Table 4.12.1 - Cognitive function test scores of the subsample	157
Table 4.12.2 - WISC test scores and TONI test scores of anaemic and non anaemic adolescents	159
Table 4.12.3 - WISC test scores and TONI test scores of iron deficient and non anaemic adolescents	160
Table 4.13.1 - Correlation between haemoglobin and other iron parameters	162
Table 4.14.1 - Correlation between haemoglobin and Wechesler Intelligence test scores and Test of Non verbal intelligence	164
Table 4.14.2 - Correlation between serum iron and Wechesler Intelligence test scores and Test of Non verbal intelligence	166
Table 4.14.3 - Correlation between serum Ferritin and Intelligence test scores	168
Table 4.14.4 - Correlation between Serum Transferrin and Intelligence test scores	169
Table 4.14.5 - Correlation between Serum Total Iron binding capacity and Intelligence test scores	171
Table 4.15.1 - Comparison of the Visual Evoked Potentials between the anaemic and non anaemic adolescents	174
Table 4.15.2 - Comparison of the Visual Evoked Potentials between the iron deficient and non anaemic adolescents	176
Table 4.17.1 - Comparison of Auditory Brain stem evoked potentials of anaemic and non anaemic adolescents	181
Table 4.17.2 Comparison between Auditory Brain stem evoked potentials of iron deficient and non anaemic adolescents	183
Table 4.18.1 - Correlation between haemoglobin and Auditory Brain Stem Evoked potentials	188

Table 4.18.2 - Correlation between serum iron and Auditory Brain Stem Evoked potentials	190
Table 4.19.1 - Comparison of Motor and Sensory nerve function between the anaemic and non anaemic adolescents	193
Table 4.19.2 - Comparison of Motor and Sensory nerve function between the iron deficient and non anaemic adolescents	195
Table 4.20.1a - Correlation between haemoglobin and Sensory nerve function	196
Table 4.20.1b - Correlation between haemoglobin and Deep Peroneal Motor ner	ve
function	197
Table 4.20.1c - Correlation between haemoglobin and Tibial motor nerve function	198
Table 4.21 - Comparison of Iron Status Indices before (T_1) and after iron supplementation (T_2)	202
Table 4.21.1 - Table depicting the income categories of the groups	204
Table 4.22 - Wechsler Intelligence test scores before (T_1) and after iron supplementation (T_2)	206
Table 4.22.1- Comparison of WISC Intelligence test sub scores of the anaem adolescents before and after iron supplementation	nic 207
Table 4.22.2 - Comparison of WISC Intelligence test sub scores of the iron deficie adolescents before and after iron supplementation	ent 208
Table 4.22.3 - Comparison of WISC Intelligence test sub scores of the non anaen adolescents without iron supplementation re assessed after 3 months	nic 209
Table 4. 23 - Test of Non verbal Intelligence (TONI) scores before (T_1) and after iros supplementation (T_2)	n 211
Table 4.24 - Visual Evoked potentials before (T_1) and after iron supplementation (T_1)	2) 214
Table 4.25- Brain stem auditory Evoked potentials before (T1) and after iron supplementation (T2)	216
Table 4.26 - Motor nerve function of deep peroneal nerve before (T_1) and after iron supplementation (T_2)	n 221

Table 4.26	- Motor nerve function of tibial nerve before (T1) and after iron supplementation (T2)	220
Table 4.27	- Sensory nerve function of sural nerve before (T1) and after iron supplementation (T2)	221

219

LIST OF FIGURES

	Page
Figure 1.12.1 Visual evoked potentials of an adolescent	26
Figure 1.12.2 Brain stem Auditory evoked potentials of an adolescent	30
Figure 1.12.3 Motor action potentials of an adolescent	33
Figure 1.12.3 Sensory action potentials of an adolescent	33
Figure 2.1. Diagram depicting subtests of the Wechsler Intelligence Test and the cognitive index of assessment	66
Figure 3.1 Map of the study area	62
Figure 3.2 Summery of data collected	67
Figure 3.3 Electrode placement for the VEP recording	108
Figure 3.4 Electrode placement for the BAEP recording	112
Figure 3.5a Electrode placement and stimulation sites for the MCV recording - deep peroneal nerve	117
Figure 3.5b Electrode placement and stimulation sites for the MCV recording - deep peroneal nerve	118
Figure 3.6 Electrode placement and stimulation sites for the MCV recording - tibial nerve	120
Figure 3.7 Electrode placement and stimulation sites for the F wave recording - deep peroneal nerve	122
Figure 3.8 Electrode placement and stimulation sites for the SCV recording - Sural nerve	125
Figure 4.1 Child constructing a block design using the stimulus picture book -	170
Figure 4.4 Visual evoked potentials of an anaemic adolescent	177

Figure 4.4	Visual evoked potentials of an Iron deficient adolescent	178	
Figure 4.4	Visual evoked potentials of a non anaemic adolescent	179	
Figure 4.4	Brain stem Auditory evoked potentials of an anaemic adolescent	184	
Figure 4.4	Brain stem Auditory evoked potentials of an Iron deficient adolescent	185	
Figure 4.4	Brain stem Auditory evoked potentials of a nonanaemic adolescent	186	
Figure 5.1	Possible sites and functional/ cognitive deficits in iron deficiency	254	
Figure 5.2	The schematic diagram summary of possible reasons for the delayed VEP	264	
and BAEP latencies of iron deficiency			

LIST OF ABBREVIATIONS

ACD	Anaemia of chronic disease
Amp	Amplitude
BAEP	Auditory brain stem evoked potentials
BMI	Body Mass Index
CI	Confidence Interval
CNS	Central nervous system
Cz	Vertex
dB	Decibel
D Lat	Distal latency
ENG	Electroneurograph
F Lat	F latency
FSIQ	Full scale IQ
Hb	Haemoglobin
LO	Left-Occipital
MCH	Mean Corpuscular Haemoglobin
MCHC	Mean corpuscular haemoglobin concentration
MCV(fl)	Mean Corpuscular Volume
MCV	Motor Conduction Velocity
МО	Mid-Occipital
MP	MidParietal
ms	Milliseconds

mV	millivolt
n	Number
PCV	Packed Cell Volume
PRI	Perceptual Reasoning Index
PSI	Processing Speed Index
RBC	Red cell count
RDW	Red cell Distribution width
RO	Right-Occipital
SCV	Sensory conduction velocity
SF	Serum ferritin
SL	Sensory latency
SI	Serum Iron
TIBC	Total iron binding capacity
TONI	Test Of Nonverbal Intelligence
VCI	Verbal Comprehension Index
VEP	visual evoked potentials
WBC	White blood cell count
WBC/DC	White blood cell differential count
WHO	World Health Organisation
WMI	Working Memory Index

ACKNOWLEDGEMENTS

I gratefully acknowledge the scientific inspiration, guidance and generous assistance granted to me by my supervisors, Professor Kumudu Wijewardene, Senior Professor of the Department of Community Medicine, University of Sri Jayewardenepura and Project leader of Swedish International Development cooperation Agency / Swedish Agency for Research Cooperation with Developing Countries (Sida/SAREC) Project; Prof Gunilla Lindmark, Emeritus professor of Department of Women's and Children's Health and Principal Investigator, Sida/SAREC project, of International Maternal and Child Health, Uppsala University, Sweden and Prof Karin Edebol Eeg Olofsson, Associate Professor of Department of Clinical Neurophysiology, Neurocentre, University Hospital, Uppsala University, Sweden.

I acknowledge with gratitude the scientific advice and expertise of Prof Gunilla Bohlin, Professor of Psychology, Department of Psychology, Uppsala University, Sweden in selecting the appropriate Intelligence tests, training in conducting cognitive function tests, pretesting in Sri Lankan adolescents, data analysis and preparation of the manuscript.

I acknowledge with thanks the SIDA/ SAREC project "Health care for the Socially Marginalised" for funding of the research project and the excellant scientific research training received in Sri Lanka and Sweden.

xvi

Ris

I gratefully acknowledge the meticulous technical advice on evoked potentials and nerve conduction protocols, by Katarina Farenström, senior technician of the department of Clinical Neurophysiology, Neurocenter, Uppsala University, Sweden.

I specially thank Drs Chandana Hewage and Himansu Waidyasekera my colleagues in the Department of Physiology for their assistance in data analysis, compiling the thesis, and for many hours of scientific and academic collaboration in Sri Lanka and Sweden.

I appreciate and thank the junior doctors, Dr Tharangi Silva, Dr Lakmini Wickramaarachchi, Dr Shakira Mahaboob and Dr Anushika Jayatillake, who have assisted me in data collection, coordinating the cognitive function tests, neurophysiological tests, iron supplementation, and data entry in this study.

I acknowledge the support of Dr Priya Hettiarachchi, Dr Sharaine Fernando, Dr Roshini Peiries John, my colleagues in the Department of Physiology for all the assistance and encouragement to complete this study.

I wish to thank the laboratory assistants Mr Sugath R M S Anura Kumara, and Mrs A Anusha Senevirathne; laboratory technicians, Mrs Janaki Balasuriya, Mrs D Irangani Wijemanne and Mr A H Nuwan H K Jayawickrama, for the technical assistance in carrying out the neurophysiological assessments of the adolescents.

The clerical assistance of WM Senerath Wimal Kumara, and the numerous assistance of MK Sunil Jinadasa, and NA Susith Silva, staff of the department of Physiology, are acknowledged.

I acknowledge with gratitude the scientific input, statistical advice and useful comments of Prof W. A. A. Wijeyasiri of the department of Community Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura in the preparation of this thesis.

The support given by Mrs Karin Thornblum and Ms Palika Jayatillake, the secretaries of the SIDA/SAREC project are gratefully acknowledged.

I extend my heartfelt gratitude to my husband Siva, my sisters Anoji and Maya, and my brother Aruna for their patience, support and encouragement through out this study.

I extend my gratitude to the adolescents and parents who generously spent their time to participate in this study and to the staff and principals of the participating schools for the cooperation extended to make this study a success.

xviii

. . .

ABSTRACT

Iron deficiency is the commonest micronutrient deficiency in adolescence. The WHO estimates that more than 53% of adolescents of 11- 15 years of age are iron deficient. Iron deficiency in infancy, has caused delays in psychomotor development and impaired intellectual capabilities in some populations. Adolescent females are at risk of iron deficiency due to the onset of puberty, menarche and menstruation.

The main objective of the study was to determine the iron status and its impact on cognitive and neurophysiological function in Sri Lankan female adolescents. The specific objectives were to assess the iron status among females in early adolescence; to assess cognitive function, visual evoked potentials (VEP), auditory brain stem evoked potentials (BAEP), peripheral sensory and motor nerve conduction in adolescence; to describe the association between iron status and cognitive function, VEP, BAEP, motor and sensory nerve function, in adolescent females and to determine the effect of iron supplementation of anaemic and iron deficient adolescent females on their iron status, cognitive function, VEP, BAEP, motor and sensory nerve function, VEP, BAEP, motor and sensory nerve function.

A descriptive interventional study was conducted on a study population of 11-14 yr old female adolescents from the Colombo District of Sri Lanka. Five hundred and thirty adolescents (n=530) were selected by stratified random sampling. The study instruments used were questionnaires to determine the socio-economic data, menstrual history and psychosocial adversity index; clinical examination to assess the health status and stage of puberty; venous blood examination to determine the haemoglobin level, iron profile (ie. serum iron, serum ferritin, serum total iron binding capacity and serum transferrin) and serum albumin. In a subsample of 180 subjects (ie 60 iron deficient anaemic (IDA), 60 iron deficient (ID) and 60 non iron deficient non anaemic cognitive function using Wechsler Intelligence tests (WISC— (NAN). IV)(Psychological Corporation, UK) and Tests of Non verbal intelligence (TONI-3)] and neurophysiological functions were assessed. The neurophysiological tests, [Visual evoked potentials (VEP), Brainsten auditory evoked potentials (BAEP), motor and sensory function of the lower limbs (MCV, F waves and SCV)] were assessed using standared measurement techniques on a Nihon Kohden Neuropack II, ENG/EMG machine (Nihon Kohden Inc, Japan).

The anaemic and iron deficient adolescents in the subsample were supplemented with iron for three months. The entire subsample was reassessed to determine the iron status, cognitive function and neurophysiological tests after three months of supplementation.

Two hundred and twenty (41.7%) adolescents aged 11- 14 years, were ID and of them 86 (16.3%) were anaemic (IDA). The mean scores of Perceptual Reasoning Index (PRI), mean scores of Working Memory Index (WMI), Verbal Comprehension Index (VCI), Processing Speed Index (PSI), and Full scale IQ (FSIQ) of anaemic adolescents and iron deficient adolescents were statistically significantly decreased when compared with the mean scores of non anaemic adolescents (p < 0.05). There was a significant positive correlation between iron parameters and the VCI, PRI, WMI, PSI, and the estimated FSIQ (p < 0.05); and the scores of Tests of Non verbal Intelligence (ToNI) (p < 0.05). There was poor correlation between the iron parameters (haemoglobin, serum

Read

iron, serum total iron binding capacity, serum transferrin and serum ferritin) and the VEP among these adolescents (p > 0.05). There was a significant negative correlation between serum iron and waves I, II, III, IV, and V auditory brain stem evoked potentials (BAEP) of the right ear among the moderate anaemic group (p < 0.05). There was no significant difference in the motor and sensory nerve function between the three groups in this study.

There was a significant improvement in the VCI and the PSI in the IDA group after iron supplementation (p <0.05). A significant improvement was observed in the VCI after iron supplementation in the ID group too (p < 0.05).

The study reveals that iron status is important for proper cognitive function development among female adolescents. There was a significant reduction in the VEP latencies, and BAEP latencies among the anaemic and iron deficient adolescents in this study. Iron supplementation for three months improved the iron status but did not completely reverse cognitive function test scores to normal. Neither were the VEP and BAEP latencies normalised by three months of iron supplementation although there was an improvement in the latencies with supplementation. The impairments seen in cognitive function and evoked potentials may be due to brain iron depletion having an effect on myelination of the central conducting pathways and maturation of iron and dopamine dependant neurotransmittors in the brain. There is an urgent need to educate parents on proper nutrition of adolescent females, since they will be the future mothers of the world.

14