THE FREQUENCY OF THE ANTI GAD ANTIBODY IN A SRI LANKAN DIABETIC POPULATION

by

Dr. Maduwantha Roshan Pradeep Hiniduma Liyanage

THIS THESIS IS SUBMITTED TO

THE UNIVERSITY OF SRI JAYEWARDENEPURA FOR THE

AWARD OF THE DEGREE OF MASTER OF PHILOSOPHY

ON

3 Oth Odcolber 2008

DECLARATION BY CANDIDATE

I hereby declare that the work described in this thesis was carried out by me under the supervision of Dr. Sisira H. Siribaddana and any report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

Dr. M.R. H. Liyanage

DECLARATION BY SUPERVISOR

I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Sind Silm

Dr. Sisira H. Siribaddana (MBBS, MD) Consultant Endocrinologist and Physician Honarary Lecturer Guys, Kings St Thomas School of Medicine University of London.

Coordinator Bioethics Initiative

Institute of Research and Development

No.762/4B, Pannipitiya Road Battaramulla, Sri Lanka.

Dedicated to my wife Subo, for her love, patience and understanding.

TABLE OF CONTENTS

Page

LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ANNEXURES	ix
LIST OF ABBREVIATIONS	x
ACKNOWLEDGEMENT	xiii
ABSTRACT	xiv

CHAPTER 1 INTRODUCTION

1.1	Diabetes mellitus	1
1.2	Classifications of diabetes mellitus	1
1.3	Aetiological classification of disorders of glycaemia	3

CHAPTER 2 LITERATURE REVIEW

2.1	Epidemiology of diabetes mellitus	6
2.2	Epidemiology of T1DM	7
2.3	Pathogenesis and Natural History of T1DM	10
2.4	Hypothetical stages in the development of	10
	autoimmune diabetes	
2.5	Islets of Langerhan in health and disease	12
	2.5.1 Normal pancreatic islets	12
	2.5.2 Islets of Langerhan in Disease	14
2.6	Immune response and Insulitis	15

	2.6.1	The clone		16
	2.6.2	The Th1/7	Th2 paradigm	16
		2.6.2.1	Mechanism of cell apoptosis	17
		2.6.2.2	Evidence of other autoimmune	18
			Diseases	
2.7	The Ro	ole of Beta	Cell Auto Antigens	19
	2.7.1	Major aut	oantigens	19
	2.7.2	Minor aut	oantigens	19
	2.7.3	Shared an	tigens	20
2.8	GAD A	ntibodies	r.	21
2.9	Epider	niology of (GADA	24
2.10	Other	antigens		28
	2.10.1	Tyrosine	phosphatase (ICA512/IA-2)	28
2.11	Geneti	c Factors		29
2.12	Enviro	onmental F	actors	32
2.13	Cow's	Milk Prote	ein	35
2.14	Microl	bial Infecti	ons	35
2.15	ENVI	10 Dynami	ic Module Chart	37
2.16	Latent	Autoimm	une Diabetes in Adults (LADA)	38
2.17	Islet a	utoantibod	ies	39
2.18	BMI			40
2.19	HLA g	genes		41
2.20	Natura	al History		42

CHAPTER 3 RESEARCH METHOD

3.1	Objectiv	ves	45
	3.1.1	General objective	45
	3.1.2	Specific objectives	45
3.2	Researc	h design and study setting	45
3.3	Justifica	ation of selecting southern suburbs of Colombo	46
	for the s	tudy	
	3.3.1	Sample density	46
	3.3.2	Logistics reasons	46
3.4	Diagnos	is of diabetes	47
3.5	Classifie	cation into T1DM and T2DM	48
3.6	Inclusio	n and Exclusion criteria	48
3.7	Ethical	Clearance (Annexure 9)	49
3.8	Sample	selection	49
	3.8.1	Sample size estimation	49
3.9	Selectio	n of study units	50
3.10	Particip	ant recruitment procedure	50
3.11	Patient	information form (Annexure 1)	52
3.12	Inform	ed consent (Annexure 3)	52
3.13	Data co	ollection instrument	53
	3.13.1	The structured questionnaire (Annexure 6)	53
	3.13.2	Identification of variables	53
	3.13.3	Formulating questions	53
	3.13.4	Steps to improve quality of data and	54

		formulation of the questionnaire	
		3.13.4.1 Peer review	54
		3.13.4.2 Pre-test	54
3.14	Standa	rdization of the interviews and interviewers	54
	3.14.1	Interviewer guide	55
3.15	Field wo	ork	55
3.16	Anthrop	pometry	55
3.17	Control	group	56
3.18	Sample	collection	56
3.19	Analysis	s of GAD autoantibodies	57
	3.19.1	Methods of GAD antibody measurements and	57
		their relative advantageous	
	3.19.2	Similarities and differences between RBA	60
		and TRFIA	
	3.19.3	Time Resolved Fluorescence Immuno Assay	60
	3.19.4	Assay Procedure	62
	3.19.5	Procedural Notes	64
	3.19.6	Quality Control	67
3.20	Analyti	cal Performance Characteristics	67
3.21	Data Ar	nalysis	68
	3.21.1	Statistical analysis	68

CHAPTER 4 RESULTS

4.1	Recruitment and baseline characteristics	69
4.2	GAD antibodies levels in study population	72
4.3	Gender, Types of diabetes and GADA positivity	75
4.4	GADA distribution, age, age at onset and time	76
	since diagnosis	
4.5	Characteristics of individuals who were positive for	84
	GAD antibodies	

CHAPTER 5 DISCUSSION

5.1	Worldwide prevalence of GADA	90
5.2	Reasons for differences in prevalence	91
5.3	T2DM and GADA	94
5.4	Gender difference in GADA positivity	97
5.5	GAD positivity in normal population	97
5.6	Limitations of the study	98

CHAPTER 6	CONCLUSION	100

REFERENCES 101

V

LIST OF TABLES

Table	Description	Page
1.1	Evolution of Diabetic classification	2
2.1	Frequency of autoantibodies GAD65 and IA-2 in different	27
	populations	
2.2	Viruses as aetiological factors for T1DM Diabetes	37
3.1	Summarizes the 2006 WHO recommendations for the diagnostic	47
	criteria for diabetes and intermediate hyperglycaemia	
3.2	Dilution method for the stock solution	62
4.1	Data of the participants enrolled	69
4.2	Characteristics of T1DM & T2DM	70
4.3	Demographic characteristics of the participants	71
4.4	GADA (kIU/L) distribution in the study group	74
4.5	Age, Gender and mean age and type of diabetes in GADA	75
	positive patients	
4.6	Age categories and GADA+ status in diabetes and controls	76
4.7	GADA positive T1DM, T2DM & Controls patients, clinical	85
	characteristics	
4.8	Comparison of GADA positive and negative patients with	86
	T2DM	
4.9	Comparison of GADA positive and negative patients with	87
	T1DM	
4.10	Comparison of GADA positive and negative participants	88

LIST OF FIGURES

Figure	Description	Page
2.1	Hypothetical islet β -cell mass and stages in the	11
	development of autoimmune diabetes	
2.2	Insulin release from the beta cells	13
2.3	Configuration of GAD molecule	23
3.1	RIA (Radio Immuno Assay)	59
3.2	DELFIA GAD65Ab kit. Preparation of reagents	65
3.3	DELFIA GAD65Ab kit. Summary Protocol Sheet	66
4.1	Histogram of the GADA values	72
4.2	Box-and whisker plot of Log GADA values in the	73
	study population	
4.3	Age at diagnosis (years) and Log GADA values in	77
	the study population	5
4.4	Distribution of GADA with Age at Onset of Diabetes	78
4.5	Distribution of GADA with Age at Onset of Diabetes	79
4.6	Months since diagnosis Log GADA values in the	80
	study population	
4.7	Distribution with GADA with Diagnosed Period	81
4.8	Distribution of GADA with Age	82
4.9	GADA positive patients and participants according	83
	age (Years)	

4.10	GADA positive patients according to Age (years)	84
	at Diagnosis	
4.11	LADA patient identified with high GADA	89

LIST OF ANNEXURES

Annexure

Description

Page

1.	Patient information leaflet – English	148
2.	Patient information leaflet – Sinhala	150
3.	Patient Consent Form	152
4.	Consent form - Type 1 Diabetic Study - English	153
5.	Consent form - Type 1 Diabetic Study - Sinhala	154
6.	Structured Questionnaire	155
7.	Principles of the assay	160
8.	Biotin-GAD module	169
9.	Ethical clearance	170
10.	Invitation – Sinhala	171

LIST OF ABBREVIATIONS

ABBOS	Antibodies to Bovine Serum Albumin
ADA	American Diabetes Association
APC	Antigen Presenting Cells
APS	Autoimmune Poly-endocrine Syndrome
BMI	Body Mass Index
CBV	Coxsackie B viruses
CMV	Cytomegalovirus
C-peptide	Connecting peptide
СРН	Carboxy-peptidase H
CVB4	Coxsackie virus B4
DPT	Diabetes Prevention Trial
EBV	Epstein Barr Virus
ELISA	Enzyme Linked Immuno Sorbant Assay
FCPD	Fibro-Calculus Pancreatic Diabetes
GABA	Gamma Amino Butyric Acid
GAD	Glutamic Acid Decarboxylase
GADA	Glutamic Acid Decarboxylase Antibody
GDM	Gestational Diabetes Mellitus
GLUT	Glucose-Transporter
HLA	Human Leukocyte Antigen
HSP65	Heat Shock Protein 65
IA-2	Insulinoma Antigen-2

х

IA-2A	Insulinoma Associated-2 Antibody
IAA	Insulin Autoantibody
ICA	Islet-cell Antibodies
ICA512/IA-2	Protein tyrosine phosphatase
IDDM	Insulin-Dependent Diabetes Mellitus
IFG	Impaired Fasting Glucose
IFN	Interferon
Ig	Immunoglobulins
IGT	Impaired Glucose Tolerance
IL	Interleukin
INOS	Inducible Nitric Oxide Synthase
IVGTT	Intravenous Glucose Tolerance Test
LADA	Latent Autoimmune Diabetes in Adults
MAP	Mean Arterial Blood Pressure
МНС	Major Histocompatibility Complex
MMDM	Malnutrition Modulated Diabetes Mellitus
MODY	Maturity Onset Diabetes of the Young
MRDM	Malnutrition-related diabetes mellitus
NCCLS	National Committee for Clinical Laboratory Standards
NIBSC	National Institute for Biological Standards and Control
NIDDM	Non-insulin dependent diabetes mellitus
NOD	Non Obese Diabetic
OGTT	Oral Glucose Tolerance Test
OND	Other Neurological Diseases

xi

PDDM	Protein-deficient diabetes mellitus
PERM	Progressive Encephalomyelitis with Rigidity and Myoclonus
PP	Pancreatic Poly peptide
PTP	Protein Tyrosine Phosphatase
RBA	Radio Binding Assay
RIA	Radio Immune Assay
SMS	Stiff-Man Syndrome
T1DM	Type 1 Diabetes Mellitus
T2DM	Type 2 Diabetes Mellitus
Th1	T Helper 1 Cells
Th 2	T Helper 2 Cells
TNF	Tumor Necrosing Factor
TRFIA	Time Resolved Fluoro Immuno Assay
Type1A DM	Type 1 Autoimmune Diabetes Mellitus
Type1B DM	Type 1 Idiopathic Diabetes Mellitus
UKPDS	UK Prospective Diabetes Study
WHO	World Health Organization
WHR	Waist Hip Ratio

xii

ACKNOWLEDGMENT

Foremost, I must thank my supervisor Dr S. Siribaddana for his personal involvement, responsibility shown and pragmatic appropriacy in supervision of my research. My appreciation reverberate across many other professionals, I must mention the architect of my research Prof. D. Fernando, and Prof. C.B. Sanjeevi, who were instrumental in innumerable ways during my study, their guidance was of immense in completion of this study.

My sincere gratitude goes to Head, Dept. of Anatomy and the chair and the members of the Postgraduate studies, the Dean and the Vice Chancellor of the University of Sri Jayewardenepura. Thank you very much for believing in me all this time.

I sincerely acknowledge the support of Swedish Institute (for research grant), Karolinska institute, Colombo South General Hospital Diabetic clinic, Ratmalana Diabetic registry, Sri Jayewardenepura Hospital, IRD (Institute for Research & Development), my colleagues in clinical practice, IWMI (Anputas and T. Dissanayeke).

I must mention the role of Suranga who helped me with lots of computer skills.

My appreciation goes to the authors of the extensive literature devoted to the research and availability of such work as the founding stone of my study and many others who contributed in various ways.

I must highlight the role of my parents and my family who stood by me and helped me to be what I am; if not for them this thesis would never have been written.

Lastly, my two little sons Dimeetrii and Minain who have contrtributrd lots of their play time to be away from home. were referred from four centers and 383 (39%) were enrolled in the study. Except the sex and the time since diagnosis, three groups (T1DM=87, T2DM=97 and controls=199) were different in all other factors. Time Resolved Fluro-Immuno Assay (TRFIA) was used to measure GAD antibodies. Among 383 individuals, 50 (13.1%) were GADA positive. The mean and the median GADA values (ng/ml) in T1DM 204.5 and 14.0 and in T2DM 19.2 and 7.7 and in non-diabetic controls were 33.8 and 9.4.

The prevalence of GADA among T1DM individuals were 23.0% (95% CI: 14.16-31.84), T2DM individuals 11.3% (95% CI 4.77-17.23) and control population 9.5% (95% CI 5.46-13.63). The value of GADA in these participants (who were positive for GADA) is significantly different with highest among T1DM and lowest among T2DM. There is no significant difference between gender and GAD positivity in all 3 groups. GADA +ve patients with T2DM were older and diagnosed later than T1DM patients. GADA values decreased with time since diagnosis in both type1 and type 2 diabetics. 4% of variation in GADA values can be due to age in patients with T1DM. Antibodies to GAD are present in 23.0 % of our patients when compared with 70% of patients with T1DM in Europe. High percentage of TIDM patients with positive family history (28%) may indicate masquerading LADA in T1DM group. In our results higher (9.5%) percentage of the healthy controls being GAD positive is intriguing. This may be due to lower sensitivity of the test. In addition, it may be due to higher background autoimmunity in our sample and population.