1

Analysis of Phthalate Concentrations in Coconut Oil Available in the Sri Lankan

Market

By

Koku Hennadige Priyamali Dharmakantha

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Science in Food Science and Technology on 2015.

DECLARATION

The work described in this thesis was carried out by me under the supervision of Dr. (Mrs.) Indira Wickramasinghe, Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree.

08/12/2015 Date

Fri yeurs :-

K. H. P. Dharmakantha

DECLARATION

I, Dr. (Mrs.) Indira Wickramasinghe, certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

.

Dr. (Mrs.) Indira Wickramasinghe

Department Head,

Department of Food Science and Technology,

University of Sri Jayewardenepura,

Nugegoda,

Sri Lanka.

8/12/2015

Date

AFFECTIONATELY DEDICATED TO MY LOVING PARENTS, BROTHER AND DEAR TEACHERS

TABLE OF CONTENT

IABLE OF CONTENTi		
LIST OF TABLESv		
LIST OF FIGURESvi		
ACKNOWLEDGMENTvii		
ABBREVIATIONSviii		
ABSTRACTix		
CHAPTER 011		
NTRODUCTION1		
CHAPTER 024		
LITERATURE REVIEW4		
2.1 Coconut Oil4		
2.2 Coconut and Coconut Oil Consumption6		
2.3 Coconut Oil Production7		
2.3.1 Dry process7		
2.3.2 Wet process		
2.3.3 RBD9		
2.3.4 Hydrogenation10		
2.3.5 Fractionation10		
2.4 Phthalates11		
2.5 Sources of Phthalates in Foods14		
2.5.1 PVC tubing14		

2.5.2 Food-packaging films	16
2.5.3 PVC gaskets in metallic caps for glass jars	20
2.5.4 Printing inks	22
2.5.5 Paper and board packaging	23
2.5.6 PVC gloves	24
2.5.7 Aluminum foil-paper laminates	25
2.5.8 Coatings on cookware	26
2.5.9 Polyethylene terephthalate (PET)	26
2.6 Effects of Phthalates on Health	27
2.6.1 Carcinogenity	29
2.6.2 Testicular Toxicity and Teratogenesis	30
2.6.3 Endocrine Modulation	
2.6.4 Toxicity Conclusions	31
2.7 Tolerable Daily Intakes of Certain Phthalates	32
2.7.1 DEHP (Di-(2-ethylhexyl) phthalate)	32
2.7.2 BBP (Benzylbutyl phthalate)	33
2.7.3 DBP (Di-n-butyl phthalate)	
2.7.4 DINP (Di-isononyl phthalate)	
2.7.5 DIDP (Di-isodecyl phthalate)	35
2.7.6 DnOP (Di-n-octylphthalate)	35
2.8 Food Contact Materials	
2.8.1 EU legislation for food contact materials	36
2.9 Gas Chromatography - Mass Spectrometry (GC-MS)	40

CHAPTER 0343	1
ATERIALS AND METHODS43	
3.1 Sample Collection43	
3.2 Apparatus and Equipment44	•
3.3 Reagents and Consumables45	
3.4 Preparation of Standard Solutions45	
3.5 Method46	
3.5.1 Sample Preparation4	5
3.5.2 Sample Extraction46	
3.5.3 Characteristics for GC-MS Analysis47	7
3.5.4 Sample Measurement	;
3.5.5 Calculation4	8
3.5.6 Method Detection Limits4	8
3.6 Statistical Analysis49)

CHAPTER 04	50
RESULTS AND DISCUSSION	50
4.1 Detected phthalate concentrations in select	ted coconut oil
samples	50
4.2 Comparison of Phthalate concentrations in each sample.	52
4.2.1 Retail shop A samples	52
4.2.2 Retail shop B samples	53
4.2.3 Brand C	
4.2.4 Brand D	

4.2.5 Brand E56
4.2.6 Brand F57
4.2.7 Mean Phthalate concentrations in coconut oil of each brand and
retail shop sample and their comparison58
4.3 Recommended amount of coconut oil for human consumption62
4.4 Amount of coconut oil to be consumed without exceeding the Tolerable
Daily Intake (TDI) value for phthalates63
4.5 Comparison with published data66

CHAPTER 05	68
CONCLUSION	68
FURTHER STUDIES AND RECOMMENDATIONS	69

CHAPTER 06	70
REFERENCES	70
APPENDIX	77

LIST OF TABLES

Table 2.6.4 Overview of critical toxic effects due to phthalate
Table 2.7 Tolerable daily intakes of certain phthalates
Table 2.8.1.1 Specific Migration Limits for Plastic Materials and Articles intended to
come into contact with Food according to Commission Directive
2007/19/EC
Table 2.8.1.2 Regulation about use of plastic materials and articles that come into
contact with food, according to (EC) No. 10/201140
Table 3.1 Number of samples collected from different retail shops and different
brands43
Table 3.4.1 Preparation of intermediate standard mixture solution46
Table 3.4.2 Preparation of calibration solutions46
Table 3.5.3 Characteristics for GC-MS Analysis
Table 4.1 Detected phthalate concentrations in selected coconut oil samples
Table 4.2.7 Mean Phthalate concentrations in coconut oil of each brand and retail shop
sample58
Table 4.3 Recommended maximum daily fat intake according to energy requirement per
day63
Table 4.4 Amount of coconut oil that can be consumed from each sample, without
exceeding the TDI value of DEHP, according to body weight
Table 4.5 Comparison of phthalate concentrations in this study with those reported
elsewhere67

LIST OF FIGURES

Figure 2.4 General chemical structure of phthalates11
Figure 4.1 Distribution of DEHP in coconut oil between different brands and retail shop
samples selected
Figure 4.2.1 Concentrations of phthalates in coconut oil samples taken from Retail shop
A52
Figure 4.2.2 Concentrations of six phthalates in coconut oil samples taken from Retail
shop B53
Figure 4.2.3 Concentrations of six phthalates in coconut oil samples taken from Brand
C54
Figure 4.2.4 Concentrations of six phthalates in coconut oil samples taken from Brand
D55
Figure 4.2.5 Concentrations of six phthalates in coconut oil samples taken from Brand
E56
Figure 4.2.6 Concentrations of six phthalates in coconut oil samples taken from Brand
F57
Figure 4.2.7.1 Mean Phthalate concentrations in coconut oil of each brand and retail
shop sample
Figure 4.2.7.2 Distribution of mean DEHP concentrations among retail shop samples
and brands of coconut oil taken for analysis60

ACKNOWLEDGEMENT

First and foremost I respectively express my deepest gratitude to my internal supervisor, Dr. (Mrs.) Indira Wickramasinghe, Department Head, Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura for her inspiring guidance, opinion and support to the preparation of this thesis.

And also I would like to express my sincere gratitude to Dr. Jagath Wansapala, course coordinator and Dr. (Mrs.) Rupika Perera, assistant course coordinator, M. Sc. Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura for the guidance offered during my research.

I would like to express my deep respect and heartfelt thanks to Mr. Rohitha Gunarathna, Manager – Analytical/Food Laboratory, Bureau Veritas Consumer Products Services Lanka (Pvt) Ltd, Katubedda, for his valuable guidance, encouragement, training me on the use of Gas Chromatography-Mass Spectrometry (GC-MS) and support to all my endeavors.

Also I would like to pay my gratitude to the consultancy panel of the Department of Statistics and Computer Science, Faculty of Applied Sciences, University of Sri Jayewardenepura, who gave their immense support to do the Statistical analysis in this thesis.

I am highly grateful to my family members and friends, for their continuous encouragement and help throughout this research.

There are numerous others whose names though not mentioned to whom thanks are due.

ABBREVIATIONS

°C	- Celsius
°F	- Fahrenheit
BBP	- Benzylbutyl phthalate
BMR	- Basal Metabolic Rate
DBP	- Dibutyl phthalate
DEHP	- Diethylhexyl phthalate
DIDP	- Diisodecyl phthalate
DINP	- Diisononyl phthalate
DnOP	- Di-n-octyl phthalate
EC	- European Commission
EFSA	- European Food Safety Authority
EU	- European Union
FAO	- Food and Agriculture Organization
g	- gram
GC-MSD	- Gas Chromatography - Mass Spectrometric Detector
kg	- kilogram
1	- liter
mg	- milligram
ml	- milliliter
ND	- Not Detected
PAL	- Physical Activity Level
SML	- Specific Migration Limit
TDI	- Tolerable Daily intake
UNU	- United Nations University
WHO	- World Health Organization

Analysis of Phthalate Concentrations in Coconut Oil Available in the

Sri Lankan Market

By

Dharmakantha K. H. P.

ABSTRACT

The main objective of this study was to determine the concentration of some selected Phthalates; DBP, BBP, DEHP, DnOP, DINP and DIDP in Coconut oil found in the Sri Lankan market. Phthalate concentrations were also compared with the values from the international standards for food and human health. The Coconut oil samples were collected from two retail shops and four brands which were in bottles or packets, taken from a convenience store.

Statistically it was identified that the DEHP levels detected are dependent on the brands or for retail samples, on the shop it was taken from. DEHP was detected in all the samples taken from the retail shops, and two brands contained in bottles. Other two bottled and packaged coconut oil samples did not contain DEHP. In the detected samples all DEHP concentrations were above the Specific Migration Limits (SML) which is 1.5 mg/kg established by EU standards (EU,2007), but all samples except for retail shop B samples will not exceed the Tolerable daily intake (TDI) value for DEHP by consuming, which is 0.05 mg/kg bodyweight/day as specified by the European Food Safety Authority (EFSA,2005).

But with increased uptake of coconut oil as the fat source, due to increased energy requirement and relatively low bodyweight retail shop B samples can exceed the TDI value which may pose a risk to health of those consumed.

DBP, BBP, DnOP, DINP and DIDP were not detected in any of the samples taken for analysis in this research, due to this DBP, BBP, DINP and DIDP levels of these samples were below the SML, and the TDI values will not be exceeded by consuming.

CHAPTER 01

INTRODUCTION

edible oil extracted kernel Coconut is from the meat of oil an or mature coconuts harvested from the coconut palm (Cocos nucifera). It has various applications in food industry. Coconut oil is commonly used in cooking, especially for frying, and is a common flavor in many South Asian curries. In recent years despite its high saturated fat content, virgin coconut oil has become popular, which works well in baked goods, pastries, and sautés.

Domestic requirement of coconut oil is between 130,000 - 150,000 metric tons and around 65,000 to 80,000 metric tons are produced domestically.

Phthalates, or phthalate esters, are esters of phthalic acid and are mainly used as plasticizers (substances added to plastics to increase their flexibility, transparency, durability, and longevity).

Phthalates are used in a wide range of common products, and are released into the environment. There is no covalent bond between the phthalates and plastics; rather, they are entangled within the plastic as a result of the manufacturing process used to make PVC articles. They can be removed by exposure to heat or with organic solvents. However, people are exposed to phthalates, and most Americans tested by the Centers for Disease Control and Prevention have metabolites of multiple phthalates in their urine. Phthalate exposure may be through direct use or by indirect means through leaching and general environmental contamination. Diet is believed to be the main source of di(2-ethylhexyl) phthalate (DEHP) and other phthalates in the general