arXiv:1610.08222v1 [cs.Al] 26 Oct 2016

A self-tuning Firefly algorithm to tune the parameters
of Ant Colony System (ACSFA)

M. K. A. Ariyaratne! | T. G. I. Fernando? and S. Weerakoon?
IDepartment of Computer Science, Faculty of Computing, General Sir John Kotelawala
Defence University, Sri Lanka.

?Department of Computer Science, Faculty of Applied Sciences, University of Sri
Jayewardenepura, Sri Lanka.

3 Department of Mathematics, Faculty of Applied Sciences, University of Sri
Jayewardenepura, Sri Lanka.

Abstract

Ant colony system (ACS) is a promising approach which has been widely used in
problems such as Travelling Salesman Problems (TSP), Job shop scheduling problems
(JSP) and Quadratic Assignment problems (QAP). In its original implementation,
parameters of the algorithm were selected by trial and error approach. Over the last
few years, novel approaches have been proposed on adapting the parameters of ACS in
improving its performance. The aim of this paper is to use a framework introduced for
self-tuning optimization algorithms combined with the firefly algorithm (FA) to tune
the parameters of the ACS solving symmetric TSP problems. The FA optimizes the
problem specific parameters of ACS while the parameters of the FA are tuned by the
selected framework itself. With this approach, the user neither has to work with the
parameters of ACS nor the parameters of FA. Using common symmetric TSP problems
we demonstrate that the framework fits well for the ACS. A detailed statistical analysis
further verifies the goodness of the new ACS over the existing ACS and also of the
other techniques used to tune the parameters of ACS.

1 Introduction

The collective behavior of natural insects - ants, bees, fireflies and termites mimic the problem
solving capabilities of the swarms [10, I3, [4]. These capabilities were adopted in various
heuristics and meta-heuristics to solve difficult optimization problems. Each meta-heuristic
has a real world inspiration of optimization. As such, the main inspiration for the ant
colony system algorithm is the natural food finding strategy of ants. Ants are capable of
finding the shortest path from the food source to their nests. A chemical inside them call
pheromone is the reason for this optimized behavior. Following this real world strategy,
the ant colony system algorithm was developed by Marco Dorigo et al.[6] to suit for path
optimization problems. Initially the algorithm was developed to solve the T'SP. This original
implementation supports the hypothesis that the ant colony algorithm is successful in finding
the shortest path for the TSP.

Similar to any meta-heuristic, the ant colony system also has algorithm specific parame-
ters. The initial implementation used the trial and error method to find the best collection
of parameters. The values of the parameters depend on the problem at hand and hence at
each instance, the most suitable parameter set for the problem should be evaluated. The

task of parameter tuning again is an optimization where the optimal parameter set will give
the optimum performance.

Though the initial study relied on trial and error, Dorigo had stated some important
features of parameters such as pheromone behavior, the number of ants and how they affect
the performance of the algorithm [6]. The original paper discusses the ranges for different
parameters so that an idea about the distribution of each parameter is given. The results
were in an encouraging position ascertaining that the algorithm is successful in solving the
TSP. Instances from TSPLIB and randomly generated TSPs’ were used to evaluate the
algorithm.

Since the original ACS works well with pre-tested parameter values, finding approaches to
set better parameters without trial and error can improve the performance of the algorithm.
The best way is to consider setting of parameters as another optimization problem. The
same matter of tuning parameters of an ACS is considered by many other researchers. Yet
none was successful in maintaining fully parameterless environment. An Adaptive Parameter
Control Strategy for Ant Colony Systems by Zhi-Feng Hao et al. is a study carried out to
enhance the performance of the ant system solving the TSP [8]. Although it has been
mentioned as the ant colony system, they have used the ant system for the study. The
particle swarm optimization (PSO) has been used to optimize the parameters of the ant
system (PSOACS). The parameters of the ant system were considered as a whole where
one particle represents approximation for the set of parameters. The number of particles
is the same as the number of ants, and once ants complete a tour the PSO will update
the parameters. The conclusions are based on the performance of the new algorithm and
the existing ACS. The results support the conclusions, but the following matters were not
addressed. Although the study focused on a parameter tuning technique, the effects of the
method towards the parameters were not mentioned. Basically the study was focused on
improving the TSP results of the existing approach. For both PSOACS and original ACS,
the results obtained conflict with the optimal results given in the TSPLIB. The reason may
be the differences in the implementations. Also in PSOACS, the equations used are not clear
enough to get an idea about the new algorithm.

In Evolving Ant Colony Optimization, another research by Hozefa M. Botee and Eric
Bonabeauy, they have made the use of genetic algorithm (GA) to evolve the best set of
parameters [3]. Here also, one parameter set represents an individual of the genetic algorithm.
However the implementation was tested only over two TSP instances. The results were
encouraging, but the parameters of the ACS depend on the selection of the parameters of
GA such as crossover and mutation probability.

Apart from meta-heuristics, machine learning techniques have also been used to tune
parameters of ACS. For example Ayse Hande Erol et al. in their research, have used artificial
neural networks (ANN) to find the best parameter set for ACS solving a given TSP [7]. The
research focuses on only two parameters, a: pheromone decay parameter and 3: the relative
importance of the pheromone vs. distance. Initially the ACS-ANN hybrid algorithm runs
with different o and S values for 50 times. These parameters work as the inputs to the
ANN. Then ANN predicts the best parameter values for a given TSP instance. The hybrid
algorithm was tested with several TSP instances from the TSPLIB [21I]. The results support
the hypothesis that the hybrid algorithm performs well in finding better parameter values.
However the study focused on tuning only two parameters. The information about the ANN

such as the training methods, weights and their effects are not mentioned in the research.

As such there are other researches which have been conducted to find better parameter
sets for the ACS in solving TSP [9, 20]. But as a whole, all these methods rely on another
algorithm or technique, where it again contains its own parameters. Therefore the perfor-
mance of the ACS again depends on the parameters of the used algorithm. To overcome
this issue we have designed an algorithm with the help of the firefly algorithm and the self-
tuning framework for optimization algorithms proposed by Xin-She Yang, to optimize the
parameters of the ACS algorithm solving symmetric TSP instances. Xin-She Yang et al.,
in the implementation of the self-tuning framework have used the firefly algorithm to apply
the framework to tune FA’s parameters [19]. In their framework, the problem solved by the
optimization algorithm and the parameter set of the algorithm both were considered as a
single problem. The framework was initially tested for the firefly algorithm and proved its
capability of tuning parameters of itself (FA). In a research done by M.K.A. Ariyaratne et
al., use this self tuning framework combined with the firefly algorithm to solve nonlinear
equitations [2]. They have solved univariate nonlinear equations having complex roots with
the help of a modified firefly algorithm. To find the best parameters values, the self tuning
framework was implemented on the firefly algorithm. In their research, a firefly carries an
approximation for a root as well as approximations to the parameter values. Finally as the
output, they receive best approximations for the roots in a given range as well as best ap-
proximations for the parameter values. The research again confirms the powerfulness of the
self tuning framework in optimizing parameters.

The significance of this research lies in the potential of the developed ant colony opti-
mization algorithm for the TSP with the self tuning framework to optimize the parameters.
Despite the recent advancements in the field of route optimization and parameter optimiza-
tion, the following issues have not been addressed by other researchers (See Table for
details of previously applied approaches) where our research has accomplished.

e None of the existing systems are capable of providing virtually parameter-free environ-
ments for the ant colony systems to solve T'SPs.

e In most of the researches, parameter optimization is done using another meta-heuristic
algorithm whose parameters should be manually selected.

e None of the approaches have used a designed framework for parameter optimization.

Author Year | Parameter # of | Advantages Limitations
Optimization TSP
method prob-
lems
tested
Only some parameters
of ACS were optimized.
Hozefa M. Botee and | 1998 | GA 2 GA optimizes the pa- | The parameters of GA
Eric Bonabeauy rameters of ACS should be manually up-
dated
Raed Abu Zaitar and | 2005 | GA 8 GA optimizes the pa- | Only two parameters of
Hussein Hiyassat rameters of ACS ACS (« and () were up-
dated in the first phase.
The parameters of PSO
- should be manually
D. GAgmez-Cabrero and | 2005 | PSO 24 PSO optimizes the | updated.
D. N. Ranasinghe parameters of ACS High computational
overhead
. PSO optimizes the
Zhi-Feng Hao et al. 2006 | PSO 10 The parameters of PSO
parameters of ACS should be manually up-
dated.
Artificial Neural ANN optimizes the
Ayse Hande Erol et al. 2012 16 Only some parameters of
Networks (ANN) parameters of ACO ACO were optimized.

Table 1: Previous work on parameter optimization of Ant Systems

GA-Genetic Algorithms, PSO-Particle Swarm Optimization, ACS-Ant Colony Systems,
ACO-Ant Colony Optimization

In this paper, Yang’s self-tuning framework is studied, and a parameter selection strategy
based on the firefly algorithm is developed. To deliver a better idea about the present work,
the remainder of this paper is structured as follows. Section 2 provides some preliminaries
related to the Ant colony system and the firefly algorithm. In section 3, we briefly describe the
self-tuning framework for the firefly algorithm and how we adopt it to tune the parameters
of the ACS when solving symmetric TSPs. There, we also present the hybrid ACS-FA.
Section 4 points out the TSP examples, the parameters used and the results obtained from
the new approach. To emphasize the goodness of the new algorithm, we compare the results
with the original ACS and with some other parameter tuning approaches. Finally, we draw
conclusions briefly in Section 5.

2 Preliminaries

2.1 Traveling Salesman Problem (TSP)

The Traveling Salesman Problem is one of the most intensively studied problems in compu-
tational mathematics which is simple to state but very difficult to solve [I]. The problem is
NP hard, making it not computable in polynomial time [I5]. The problem is about finding
the shortest possible tour through a set of n cities/nodes so that each city/node is visited
exactly once. A weighted graph G(V, E) can represent a TSP, where N represents the cities
and F represents the set of edges connecting cities. There is a specific distance d for each
(1,7) € E. If d(i,7) = d(j,1), it is known as a symmetric TSP where in an asymmetric TSP,
d(i,7) # d(j,i) can occur. In our study we consider only the symmetric situation.

2.2 Ant Colony Systems (ACS)

Ants, the popular social insects normally live in colonies represent a highly structured dis-
tributed system. There are many ant species, some of which are blind. All ant species are
known to be deaf [I1]. Despite of these incapabilities, ants are inbred with a strong indi-
rect communication using a chemical produced within them. While foraging, ants lay the
chemical; pheromone on the ground and follow the pheromone placed by other ants. The
pheromones tend to decay over time and hence the ants in the colony will choose the path
with high pheromone density at the moment. This pheromone communication allows the
ants to find the shortest path from the food source to their nest. The optimized behaviors
of real ants are based on implementing artificial ant colonies.

The ant colony systems is an example of an ant colony optimization method from the field
of swarm intelligence, meta-heuristics and computational intelligence. Around 1990’s Marko
Dorigo introduced the idea of the ant system and later Dorigo and Gambardella introduce
the ant colony system. In the original implementation, ACS was applied to solve the TSP
[6]. Initially, ants in the artificial colony are positioned on random nodes/ cities. They travel
from one node to another keeping the travel history in a data structure. The likelihood of
selecting a node is based on the pheromone density of the cities laid by other ants, which in
the algorithm known as the state transition rule. Once visiting a city, an ant lays an amount
of pheromone using the local pheromone updating. Upon completing the tours by all ants,
the cities belong to the globally best path again get updated with pheromones using global
pheromone updating rule.

2.2.1 State Transition Rule, Local and Global updating

State transition rule is responsible for an ant to find its next visiting city. Assume the ant
is in the node r. It’s next city s is determined by the equation [1}

5 — arg mamueJk(T){[T(rv U)e]-[n(ﬁ u)]ﬁ} q<qo (1>
S Otherwise

where 7(r,u) is the pheromone density of an edge (r,u), n(r,u) is [1/distance(r, u)] for TSP.
Ji(r) is the set of cities that remain to be visited by ant k positioned on city r. The relative

importance of the pheromone trail and the heuristic information are represented by the
parameters 6 and 3 (6,5 > 0). ¢ is a random number uniformly distributed in [0, 1], go is a
parameter (0 < gy < 1), and S is a random variable from the probability distribution given
by the equation (2).

[7(r, w))’.[n(r, w))” ,
Pulrs) ={ Suenorra)P fnrp 40 €M)
0 Otherwise

(2)

ACS local and global updating happens according to the equation (3) and equation (4)
respectively.
7(r,s) < (1 —p).7(r,s) + p.A7(r, 5) (3)

where 0 < p < 1 is a parameter.

7(r,s) < (1 —).7(r,s) + a.A7(r, s) (4)
where)
) (Lg)™ if(r,s) € global best tour
Ar(r,s) = { 0 Otherwise (5)

0 < a < 1 is the pheromone decay parameter and Ly, is the length of the globally best
tour. In the original implementation, Dorigo et al. have given the set of parameter values
obtained from the trial and error approach to suit the selected TSP instances.

The ACS grasped the attention of the world of optimization and hence many researches
have been carried out to improve the algorithm as well as to check its ability over solving
other optimization problems.

2.3 Firefly Algorithm (FA)

Firefly is a winged beetle commonly known as the lightning bug due to the charming light
it emits. The light is used to attract mates or preys. Biological studies reveal many factors
about fireflies’ life style that are interesting [14]. Focusing on their flashing behavior, the
firefly algorithm was developed by Xin-She-Yang in 2009 [I8]. The algorithm basically
assumes the following.

e Fireflies’ attraction to each other is gender independent.

e Attractiveness is proportional to the brightness of the fireflies, for any two fireflies, the
less brighter one is attracted by (and thus moves toward) the brighter one; however,
the brightness can decrease as the distance increases; If there is no brighter one than
a particular firefly, it moves randomly.

e The brightness of a firefly is determined by the value of the problem specific objective
function.

As many meta-heuristics, the initial population for the particular problem is generated ran-
domly. In FA also, the parameter set should be specified properly. After these initial steps,
the fireflies in the population start moving towards brighter fireflies according to the following
equation.

x; = x; + B(z; — x;) + a(rand — 0.5) (6)

where

B = Bo.e (7)

Bo is the attraction at » = 0. The three terms in equation (6) represent the contri-
bution from the current firefly, attraction between two fireflies and a randomization term
respectively. The equation supports both exploitation and exploration. « plays an impor-
tant role in the randomization process, which is from Uniform or Gaussian distribution. To
control the randomness, Yang has used ¢, the randomness reduction factor which reduces «
according to the equation (8).

a= a0 where ¢ €]0,1] (8)

FA, as a newcomer in the world of meta-heuristics marked its remarkable capability of
handling optimization problems. Yang et al. in 2013 introduced a framework for self-
tuning algorithms and it was implemented with the firefly algorithm successfully [19]. The
framework allows a meta-heuristic algorithm to solve a problem while optimizing it’s own
algorithm specific parameters.

3 Self-tuning firefly algorithm optimizing Ant colony
system’s parameters (ACSFA)

In this research, the main aim is to tune the parameters of the ant colony system algo-
rithm solving symmetric TSP problems while obtaining the shortest path for the selected
TSP. FA as an outstanding performer, has used here in tuning the parameters of the ACS.
Another reason is that the self-tuning framework can be easily implemented with firefly al-
gorithm rather than directly on ACS, since the ACS solves a discrete problem (TSP) and
the parameters are continuous in nature.

Regarding the ACS, 3,60, p and ¢y parameters have to be tuned. The FA also has several
parameters such as «,~, 5 and the randomness reduction factor 4. The main aim of the
self-tuning concept is to find the best parameter settings that minimize the computational
cost. When applying the self-tuning framework to the firefly algorithm solving a given
optimization problem, both the problem domain and the parameter domain are considered
as a single domain in solving the problem. The objective could be the objective of the
problem.

In our case the FA is used to tune the parameters of ACS and the ACS solves a given
TSP. The objective of the algorithms is to find the optimal solution of a given TSP instance.
The problem of this study contains both parameters of ACS and FA. The pseudo code of
the proposed ACSFA algorithm is presented in algorithm [I}

After initializing parameters and parameter ranges, inverse of a tour distance is set as
the objective of the TSP. The problem is set as a minimization problem. The algorithm will
build tours until a predetermined end condition is completed. As in the original ACS, ants
are positioned on random starting nodes where each ant completes a tour using the state
transition rule stated in equation [1] While completing the tour ants will lay pheromones
on the visited cities according to the equation [3] Upon completing tours by all ants, a
globally best tour will be identified and the cities belong to the globally best tour will be
awarded with extra pheromone values according to the equation 4 Apart from building
tours, each ant also carries approximations of the parameters of both ACS and FA.

After completing a tour, all ants will work as fireflies. They now represent approxima-
tions of the parameters of FA and ACS. The parameters of ACS and FA will get updated
using the self tuning firefly algorithm. The fireflies will move in the direction of better pa-
rameters/fireflies according to the equation |§] At the end of each tour, the best parameter
set will be detected.

Algorithm 1 : Pseudo code of the ACSFA

1: Begin;

2: Initialize parameter values and ranges of parameter values to be tuned
3: Assign approximations of the parameters to be tuned to each ant (Firefly).
4: Define the objective function (I — Inverse of the distance)

5: while End condition do

6: Begin Tour

7: Position ants on starting nodes

8: Build the tour while local pheromone update

9: End Tour
10: Do global pheromone update
11: fori=1:n (all n ants) do
12: for j =2:n (n ants) do
13: if I; < I; then
14: Move firefly ¢ towards firefly j by using equation ({));
15: end if
16: Attractiveness varies with distance 7 via e using equation |D
17: Evaluate new solutions and update parameter values;
18: end for

19: end for
20: Rank the fireflies and find the current best (best parameter values);
21: end while

22: Post process results and visualization;
23: End

4 Experimentation

The goal of this experiment is to analyze the performance of the ACSFA algorithm solving
symmetric TSPs” while selecting the most suitable parameter values for ACS and FA. We aim
to formulate the new algorithm with minimum number of user input parameters where all
other parameters of the two algorithms are to be tuned while optimizing the TSP instances.

4.1 Parameter values and problem instances

The new algorithm is implemented to solve symmetric Traveling Salesman problems. 12
symmetric TSPs are selected for testing [21]. The parameters of ACS include: f3, «, p, qo, m, 7o
and 7. 79 is based on the nearest neighbor heuristic. Pheromone density 7 depends on «
and p parameters. Since o works only with the globally best ant, we initialize o to be 0.1.
Here, we consider 3, p and qg to be tuned by the self-tuning firefly algorithm. . The range
for these parameters are 5 € [0 8], p € [0.5 1] and ¢y € [0.5 1] which are large enough
to select the best parameter values for many symmetric TSP instances. Apart from that,
we tune the parameters of the FA. The parameters of firefly algorithm include «, 3,7, ¢ and
number of fireflies. In equation |7} the brightness 5 depends on three main factors; 5y which
we initiate to be 1, ; the light absorption coefficient and r; the Cartesian distance between
two fireflies which should be calculated during iterations. in equation [§] the value of o get
reduced with o and 0. «g is initialized to be 2.3. Therefore the value of o depends on §.
Hence the only factors to be tuned in FA are v and §. For convenience, we will use FF'_ «y,
FF By, FF _~vand FF ¢ to indicate the parameters of FA. These parameters varies in the
ranges FF_~vye€[0 10] and FF_§ € [0.8 1]. For further clarification a detailed list of the
parameters used for the algorithms are presented in Table (2).

ACSFA ACS PSOACS

Parameter Value/ Parameter Value/ Parameter Value/
Range Range Range

a 0.1 a 0.1 6] 0 8]

8 0 8] B 2 p 0.5 1]

p 0.5 1] p 0.1 qo 0.5 1]

qo 0.5 1] PSO_@Q, 2

FF o 2.3 PSO_@Qy 2

FE 5 1

FF ~ [0 10]

FE § 0.8 1]

Table 2: Parameter values and ranges used for ACSFA, ACS and PSOACS

The new algorithm is implemented using MATLAB [12] and the experiment is conducted
on a laptop with an Intel (R) Core (TM) i5-5200U CPU @ 2.20 GHz processor and 8GB
memory. Since the speed relies on the programming language, structure and the type of the
machine, the comparing algorithms were also implemented using the same environment. The

new algorithm is compared with the original ant colony algorithm (ACS) [6] and an adaptive
parameter control strategy for ACO implemented using the PSO algorithm (PSOACS) [§].
The TSP instances and their best known solutions are indicated in Table (3)).

TSP Instance Optimal Tour Length

ulysses16 6859
bays29 2020
Oliver30 420
eil51 426
pr76 108159
kroA100 21282
lin105 14379
tsp225 3916
gil262 2378
lin318 42029
ratb7b 6773
rat783 8806

Table 3: Problem instances and the Optimal tour lengths found so far

5 Results

To accomplish the experimental comparison, we considered randomly selected 12 TSP in-
stances from the TSPLIB, that have been presented in the Table (3D [2I]. Table (4D
presents the results. Each algorithm executed 10 times with each TSP instance to get the
results. Results are formatted as the best TSP distance, the average, the worst and the
average time taken by each algorithm. The obtained results illustrate the strength of the
ACSFA over other two algorithms. The interesting factor is that, in ACSFA, results are
better and most of the parameters are handled by the self tuning firefly algorithm.

10

TSP Instance Algorithm Best Average Worst tavg (S) ‘

ACSFA 6859 6891.2 6909 11.02
ulysses16 PSOACS 6909 6909 6909 11.47
ACS 6875 6891.2 6909 11.02
ACSFA 2026 2065 2085 36.58
bays29 PSOACS 2028 2033.6 2036 36.87
ACS 2038 2041.25 2042 33.30
ACSFA 421 425 426 22.27
Oliver30 PSOACS 425 425.5 426 23.85
ACS 426 428.83 434 19.77
ACSFA 428 432.6 438 67.30
eil51 PSOACS 429 429.8 431 70.40
ACS 430 434 439 60.16
ACSFA 108358 108474 108644 116.80
pr76 PSOACS 108358 103755.8 110488 157.92
ACS 110281 111342.6 112714 91.16
ACSFA 21396 21390.71 21537 163.67
kroA100 PSOACS 21835 21874 21914 180.48
ACS 22011 22703.16 23385 131.25
ACSFA 14412 14706.25 14860 211.09
lin105 PSOACS 14492 14503.33 14571 194.43
ACS 14844 15051 15353 153.10
ACSFA 3978 4107.8 4283 519.57
TSP225 PSOACS 4009 4039.25 4059 611.89
ACS 4077 4220.2 4308 395.20
ACSFA 2435 2448.16 2471 686.22
gil262 PSOACS 2442 2472 2488 788.59
ACS 2722 2872 2859 489.55
ACSFA 43061 43718.6 44192 1031.35
lin318 PSOACS 43191 43737.6 44211 1156.92
ACS 47960 48445 49427 595.66
ACSFA 7097 7420.33 7674 2952.31
ratb7h PSOACS 7189 7242.33 7346 3373.18
ACS 7819 7877.5 7965 1609.39
ACSFA 10067 10226.2 10382 5998.23
rat783 PSOACS 10540 10540 10540 6216.225
ACS 10165 10491.25 10642 5143.26

Table 4: The best, average , worst performance and the average time of the algorithms

11

However, to prove the results in a convenient way, a statistical analysis is also conducted
over the obtained results.

5.1 Statistical Analysis

A convenient statistical analysis was conducted to prove the validity of the results. The guide-
lines provided by Derrac et al. [5] were followed to perform the statistical analysis. However,
here we have used parametric methods to conduct the statistical comparison. To test the
hypothesis’ related to the study, we have used ANOVA (Analysis of variance) technique [17].
ANOVA is useful when we need to do an experiment to conduct a comparison over more
than 2 samples. Therefore, to compare the 3 Algorithms in terms of error, ANOVA with
RCBD (Randomized Complete Block Designs) has been applied. The hypothesis tested here
is:

Hy: There is no any significant difference between 3 algorithms

H;: At least one algorithm is different from others

The results of the performed statistical test is as follows:

Analysis for error

Method
Factor coding (-1, 0, +1)
Factor Information

Factor Type Levels Values
Algorithm Fixed 3 ACS, ACSFA, PSOACS
TSP Fixed 12 Bays29, eilbl, gil262, kroA100, 1inl05, Analysis

1in318, 0Oliver30, pr76, ratb575, rat783,

TSP225, ulyssesl6
of Variance

Source DF Adj SS Adj MS F - Value P - Value

Algorithm 2 4043366 2021683 3.00 0.070

TSP 11 21614129 1964921 2.92 0.016 Model Summary
Error 22 14808697 673123

Total 35 40466192

S R-sq R-sq(adj) R-sq(pred)

820.440 63.40% 41.78% 2.01%

Table 5: Results of ANOVA for the ‘error’

P value of the algorithm field (0.07) is less than 0.1. Based on that, we reject Hy and the
conclusion can be made as that there exist at least one algorithm which is significantly different
from others at a 0.1 significance level. To find which algorithms are different from which, we have
conducted a pairwise comparison over the algorithms. To conduct a pairwise comparison over the
error, Tukey’s method was applied [16]. The results were as follows.

12

Tukey Pairwise Comparisons: Response = error, Term = Algorithm

Grouping Information Using the Tukey Method and 90% Confidence

Algorithm N Mean Grouping
ACS 12 1016.75 A

PSOACS 12 366.67 AB
ACSFA 12 257.58 B

Means that do not share a letter are significantly different.

Tukey Simultaneous 90% Cls

Differences of Means for error = Gbest-best

ACSFA- ACS | |

L]

PSOACS - ACS I

L]

Algorithm

PSOACS - ACSFA |

*

-1500 -1000 -500 1] 500 1000

If an interval does not contain zero, the corresponding means are significantly different.
Figure 1: Tukey Pairwise Comparisons for ‘error’

The hypothesis used this time is as follows.

Hy: There is no any difference between 2 algorithms
H;: There is a difference between 2 algorithms

The pairwise comparison on the error concluded that there is no any difference between ACSFA
and PSOACS at 90% confidence level and there is a difference between ACSFA and ACS at 90%
confidence level.

The same procedure was conducted considering the average and the best results of the algo-
rithms for 12 TSP instances. Having P- values as 0.072 and 0.070, Analysis of variance in both
cases supported to reject Hy concluding that at least one algorithm is significantly different from
others at a 0.1 significance level. Pairwise comparisons were also conducted in both cases. The
results are as follows.

13

Tukey Pairwise Comparisons: Response = Average, Term = Algorithm

Grouping Information Using the Tukey Method and 90% Confidence

Algorithm N

ACS 12
PSOACS 12
ACSFA 12

Mean

19399.8
18525.5
18163.5

Grouping
A

AB

B

Means that do not share a letter are significantly different.

ACSFA - ACS

PSOACS - ACS

Algorithm

PSOACS - ACSFA

-2500

Tukey Simultaneous 90% Cls

Differences of Means for Average

L]

-2000 -1500 -1000

*

-500 1] 500 1000

If an interval does not contain zero, the corresponding means are significantly different.

Figure 2: Tukey Pairwise Comparisons for ‘average’

Tukey Pairwise Comparisons: Response = Best, Term = Algorithm

Grouping Information Using the Tukey Method and 90% Confidence

Algorithm N

ACS
PSOACS
ACSFA

12
12
12

Mean

19137.3
18487.2
18378.2

Grouping
A

AB

B

Means that do not share a letter are significantly different.

14

Tukey Simultaneous 90% Cls

Differences of Means for Best

ACSFA-AGS |

*»

PSOALCS - ACS I

L]

Algorithm

PSOACS - ACSFA }

*

-1500 -1000 -500] 500 1000

If an interval does not contain zero, the corresponding means are significantly different.

Figure 3: Tukey Pairwise Comparisons for ‘best results’

Both states support the conclusion that there is no any difference between ACSFA and PSOACS
at 90% confidence level. Considering the best case, ACSFA and ACS appeared to be different at
90% confidence level.

Finally the analysis support the facts that the performance of ACSFA and PSOACS is equally
strong where the performance of ACS is not as strong as ACSFA and PSOACS. But the results
considering the best case, demonstrate that ACSFA outperforms other two algorithms. However
although there is no significant difference between ACSFA and PSOACS from the statistical view-
point, there exists a strong advantage of ACSFA over PSOACS: the ability of performing well
without considering the selection of suitable parameter values for both ACS and FA.

5.2 Parameter Optimization

The statistical study emphasizes that there is no significant difference between ACSFA and PSOACS.
But still ACSFA is better since it does provide a parameter-free environment to the user. The firefly
algorithm with the self-tuning framework tunes the necessary parameters of ACS as well as FA.
The figure [4 represents the evolution of parameter values of ACS over the iterations for the eil51
TSP instance. Here the mean value of each parameter for each iteration is calculated.

15

Average 3. p and gy values

(BN (4] 1571 B 0 11 M1 s 511] 514 1

p—
o
=1 ..

]

Iterations

Figure 4: Variation of the average 3,p and ¢y values over iterations for eil51 TSP instance

It is necessary to see the behavior of the parameters of the FA as well. Figure [f] shows the
evolution of the parameters of FA during iterations for the eil51 TSP instance. Here also, the mean
value of each parameter for each iteration is calculated.

Average v and § values

0 50 100 150 200 250 300 330 400 450 500
[terations

Figure 5: Variation of the average F'F_ v and F'F'_§ values over iterations for eil51 TSP
instance

Figures [4 and [f] point out that the parameter values varies up to some number of iterations and
then stabilize over an optimum value.

16

6 Concluding Remarks

The study has focused on implementing an ant colony algorithm to solve symmetric TSP problems
whose parameters are handled by a self tuning firefly algorithm. The algorithm was successfully
implemented and tested with standard TSP problems. According to the results obtained, some key
conclusions can be drawn. In terms of optimization, the results show that the ACSFA performs
well in finding the shortest path for a given TSP instance. The comparisons done with ACS and
PSOACS shows ACSFA works well. Although the statistical analysis concludes that both ACSFA
and PSOACS have same performance, ACSFA outperforms PSOACS by providing a parameter
free environment. The self tuning framework worked fine with the firefly algorithm in tuning both
parameters of ACS and FA. The graphical representations of the evolution of parameters of both
ACS and FA clearly demonstrates the ability of the self tuning firefly algorithm. With these we
can consider the new ACSFA as a better performer to solve TSPs using ACS.

For further development, this research encourages us to study the performance of the self tuning
framework with other nature inspired algorithms such as particle swarm optimization, bees algo-
rithm etc. Also since the increasing number of cities drops the performance of the algorithm, more
experimentation should be done on the population size and the initialization of parameter ranges
as well.

Acknowledgment

The authors would like to thank Dr. Xin-She Yang for his valuable suggestions and explanations on
implementing the self tuning framework and Ms. W.J. Polegoda, lecturer at the Faculty of Animal
Science & Export Agriculture, Uva Wellassa University, Sri Lanka for the guidance given on the
statistical analysis.

References

[1] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. The Travel-
ing Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics).
Princeton University Press, Princeton, NJ, USA, 2007.

[2] M. K. A. Ariyaratne, T. G. I. Fernando, and S. Weerakoon. A self-tuning modified firefly
algorithm to solve univariate nonlinear equations with complex roots. In 2016 IEEE Congress
on Evolutionary Computation (CEC), Vancouver, Canada, July 2016.

[3] Hozefa M. Botee and Eric Bonabeau. Evolving ant colony optimization. Advances in Complex
Systems, 01(02n03):149-159, 1998.

[4] R. De Cock and E. Matthysen. Sexual communication by pheromones in a firefly, phosphaenus
hemipterus (coleoptera: Lampyridae). Animal Behaviour, 70(4):807 — 818, 2005.

[5] JoaquAnn Derrac, Salvador GarcAna, Daniel Molina, and Francisco Herrera. A practical tuto-
rial on the use of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1):3 — 18, 2011.

[6] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning approach to
the traveling salesman problem. Trans. Evol. Comp, 1(1):53-66, April 1997.

17

[7]

[19]

[20]

21]

Ayse Hande Erol, Merve Er, and Serol Bulkan. Optimizing the ant colony optimization algo-
rithm using neural network for the traveling salesman problem. In Actas de la Conferencia
Internacional de, 2012.

Z. f. Hao, R. c¢. Cai, and H. Huang. An adaptive parameter control strategy for aco. In 2006
International Conference on Machine Learning and Cybernetics, pages 203-206, Aug 2006.

D Gomez-Cabrero and DN Ranasinghe. Fine-tuning the ant colony system algorithm through
particle swarm optimization. In Proceedings of the International Conference on Information
and Automation, 2005.

D. M. Gordon. Collective Wisdom of Ants. Scientific American, 314(2):44-47, January 2016.
B. Hélldobler and E.O. Wilson. The Ants. Belknap Press of Harvard University Press, 1990.
MATLAB. wversion 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2010.
Roger A. Morse. Swarm orientation in honeybees. Science, 141(3578):357-358, 1963.

Adam South, Kathrin Stanger-Hall, Ming-Luen Jeng, and Sara M. Lewis. Correlated evo-
lution of female neoteny and flightlessness with male spermatophore production in fireflies
(coleoptera: Lampyridae). Evolution, 65(4):1099-1113, 2011.

Wikipedia. Np-hardness — Wikipedia, the free encyclopedia, 2001.
Wikipedia. Tukey’s range test — Wikipedia, the free encyclopedia, 2007.
B.J. Winer. Statistical Principles in Experimental Design. McGraw-Hill, New York, 1991.

Xin-She Yang. Firefly algorithms for multimodal optimization. In Proceedings of the 5th
International Conference on Stochastic Algorithms: Foundations and Applications, SAGA’09,
pages 169-178, Berlin, Heidelberg, 2009. Springer-Verlag.

Xin-She Yang, Suash Deb, Martin Loomes, and Mehmet Karamanoglu. A framework for
self-tuning optimization algorithm. Neural Computing and Applications, 23(7-8):2051-2057,
2013.

Raed Abu Zitar and Hussein Hiyassat. Optimizing the ant colony optimization using standard
genetic algorithm. In Artificial Intelligence and Applications, pages 130-133, 2005.

TSPLIB, 2008. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

18

	1 Introduction
	2 Preliminaries
	2.1 Traveling Salesman Problem (TSP)
	2.2 Ant Colony Systems (ACS)
	2.2.1 State Transition Rule, Local and Global updating

	2.3 Firefly Algorithm (FA)

	3 Self-tuning firefly algorithm optimizing Ant colony system's parameters (ACSFA)
	4 Experimentation
	4.1 Parameter values and problem instances

	5 Results
	5.1 Statistical Analysis
	5.2 Parameter Optimization

	6 Concluding Remarks

