
In. Proc. International Conference on Engineering and Technology, Colombo, 2015

3D Animation framework for sign language

M. Punchimudiyanse
Department o f Mathematics and Computer Sciem

Faculty o f Natural Sciences
The Open university o f Sri Lanka

Nawala, Nugegoda, Sri Lanka

R.G.N. Meegama (rgn@sci.sjp.ac.lk)
Department o f Computer Science

Faculty o f Applied Sciences
University o f Sri Jayewardenepura

Nugegoda, Sri Lanka

Abstract

A critical part of animating a sign language using virtual avatar is to display a sign
gesture having multiple rotational arm poses to identify a word instead of a single
static arm pose. Sequencing a group of gestures related to a sentence requires each
gesture in the middle of a sentence to be animated using different initial arm
positions. Sequencing pre-captured arm videos, ordering preset animations compiled
by 3D animations, and ordering motion capture data are the widely used techniques
used by sign language animators presently. The transition from one word to another is
not smooth as the initial and the terminating positions of each animation is not the
same. This paper presents a technique with smooth transitions between gestures to
animate a sign language. A sequencing technique is also presented to animate known
words using gestures that are already defined and also to animate unknown words
using character-to-character sign animation. New sentences are dynamically added in
real-time and the system will adjust the animation list automatically by appending the
required animations of the words in the new sentence to the end of the playlist.
Results indicate an average distance of 3.81 pixels for 27 static pose finger spelling
characters.

Keywords: Animation framework, Sign gesture animation, Virtual avatar, Gesture
sequence model.

Introduction
Animating a human model on demand is a key part of Sign Language gesture
animation. Commercial laymen language to sign language applications such as
iCommunicator (PPR Direct, 2006) for American Sign Language (ASL) uses
commercially available graphical human models built for computer games or film
industry for making video sequences using complex graphic cards and sophisticated
and expensive motion capture hardware to model human gestures.

Instead of moving a 3D hand based on keyboard inputs it is essential to initiate
hand movement using an ordered set of commands when a sign language gesture is
animated. There are two types of sign gestures in a laymen language: Static and

mailto:rgn@sci.sjp.ac.lk

varying gestures For example a word such as “you” (cDn)) shows the right hand index
finger pointing towards the observer in a static posture in Sinhala sign language.
Therefore, irrespective of the initial position of the arm, the final position of the index
finger is taken as the gesture. The latter considers the movement of the arm from one
posture to another to represent a word in laymen language. For example, representing
the word “ugly” (25)i255) in Sinhala sign language requires moving the right hand little
finger clockwise around the face while the other fingers are flexed (ed. Stone, 2007).

In a majority of techniques available to animate a sign language gestures, a human
model that moves the fingers of either in one hand or both hands simultaneously is
required. This process is also known as manual signing. Moreover, Phonetic symbols
that contain complex torso movement and facial expressions combined with mouth
movements are referred to as non-manual signing or finger printing.

Literature Survey
A technique developed by Pezeshkpour et al.(Pezeshkpour et al., 1999) makes use of
a sequencing mechanism of motion captured British sign language (BSL) words based
on English sentences. The TESSA framework developed by Cox et al. (Cox et al.,
2002) uses the BSL gestures to ease communication barriers between a healthy and a
deaf person in British post offices. Adding new gestures to both these systems involve
expensive motion capture process.

The Signing Gesture Markup Language (SiGML) notation breaks down a sign
gesture into a collection of movements of different parts of a human body in an XML-
like application language developed by Elliott et al. (Elliott et al., 2001) under the
ViSiCAST project (ViSiCAST project, 2000) based on the HamNoSys version 2 by
Prillwitz et al.(Prillwitz et al., 1989). This markup language has a core set of
commonly used hand postures such as flat hand and fist while other hand poses are
defined by the transition of hand location from these core set of hand postures.
Transitions can take the form of a straight line, rotation or zigzag motion (Glauert et
al., 2004). The SiGML notation supports defining signs of BSL, Dutch and German
Sign languages. A virtual avatar, vGuido, is developed under the e-SIGN project
(eSIGN project, 2002) to perform a synthesis of signs in SiGML notations from the
content of government web sites and weather forecasts in the European Union.
Defining a sign in SiGML notation is a complex task even with a supporting editor
because it requires a complete and comprehensive knowledge of existing core
gestures.

Kaneko et. al. has developed a technique to word-to-word translation of Japanese
text to Japanese Sign Language (JSL) using TV program Making Language (TVML)
(TVML, 2014). TVML is a text-based markup language that generates graphically
animated TV programs by simply writing a script in TVML and played in a TVML
player. TVML supports embedding motion data of bio vision hierarchy (BVH)
format (BVH, 2000) into key frame positions and supports moving the scene camera
to point a specific virtual character with different close up positions. Researchers have
also developed a Microsoft DirectX based new TVML player to display sign gesture
animations of the JSL (Kaneko et al., 2010). This technique too requires expensive
motion capture data of sign gestures.

In this paper, we propose a novel animation framework having the following
characteristics:
a) complete control to the sign animator
b) support for defining sign gestures in non hierarchical manner
c) animate hand gestures based on posture coordinates

d) move hands to a final position irrespective of initial position
e) manage movement of different skeleton component by an external increment
f) ability to add new gestures to the system without altering code .

The proposed animation framework is not bound to a specific human model and as
such, the animator can change the human model at any time, add new skeleton
bending points and improve the script on new movements. The asynchronous nature
of the framework supports accommodating new sentences in real time to while an
animation is being played back. Seamless switchover to character-to-character finger
printing technique using specific sign alphabet is supported when an unknown word is
found in a sentence for which an animation does not exist in the database of known
gestures.

Methodology

Building human avatar for sign animations
Building an animation avatar require modeling a human figure in a graphical
environment using a mesh and covering it with appropriate texture. The Makehuman
software, which provides facilities to build a human avatar based on gender, age and
skin color (African, Caucasian and Asian) is used in the present research. Because
Makehuman does not support face rigs, the model is exported in Makehuman
exchange (MHX) format without a skeleton attached to the mesh.

The human model generated by Makehuman is imported to Blender animation
software which automatically initiates the rigging facility (adding a bone skeleton to
the mesh) to the model to be animated with different animation channels attached to
skeleton bones.

The camera has to be positioned facing the human model and proper lighting needs
to be enforced on the model to minimize shadows and to display proper arm
movements for all the signs. In this study, 3 light sources and one scene camera is
focused to the human model displaying the upper body of the avatar in the view port.

Animation engine and scripting environment
As the sign language animations, it is required to have real time rendering of each
display frame. Therefore, the blender game engine (BGE) has to be selected as the
animation engine. The BGE works in sensor, controller and actuator modes. When a
defined sensor is triggered, the BGE initiates action/activity through an actuator. The
“Always Sensor” in BGE, which runs in the idle frequency of 60Hz with a python
controller, is used for the present research.

Human avatar rig structure for the sign animation
To animate a given sign gesture, each bone/bone group of the model has to be
animated independently. The arm is broken down into sub components named
clavicle, deltoid, upper arm, fore arm, hand (palm) and five fingers as depicted in
Figure. 1.

Animators are free to include more channels for the animation because the data
structure that defines gesture contains sufficient flexibility to add new channels. As
each bone in the animated human model has an idle position, any gesture that does not
exhibit a movement in a specific channel automatically sets in an idle position.

Table 1 illustrates how the rotations of each arm are defined. Two types of rotation
functions are used. The quaternion function avoids gimbal lock in 3D rotation.

Table 1. Rotations functions used for components in the arm.

Rotation function Bone list utilizing the rotation function

Quaternion Clavicle, Deltoid, Upper arm, Fingers
Eular Forearm, Hand

Sign guesture classification
Sign gestures are classified into three categories. The first category requires arm/
fingers to end up in a static posture irrespective of the initial arm position. The second
category forms an animation sequence related to a gesture from a known starting
position to a known final position. Animating such a gesture requires moving the arms
from an unknown position to a known starting position and subsequently, to a known
final position. As this involves multiple postures, it is specified as a multi-posture sign
gesture. The third category of sign gestures is the use of a group of gestures
corresponding to alphabetical letters to create a sign. The best example is gesturing
one’s name using sign language. As a sign is not defined for a particular name, it has to
be finger printed.

Animation algorithm and the sign data structure
Animating a human model according to a given sign gesture has to commence from
the present position of the each bone structure. In the proposed technique, each bone
is moved to the required position by incrementing the distance by 1/10th of the final
location at each frame.

To animate a static posture it is required to have the set of coordinates of the final
arm position ten bone channels (CV, DT, UA, FA, HA, TF, IF, MF, RF, SF) for the
left and the right arms.

The animator also has the flexibility to specify an increment value for each bone.
A global adjustment to this value for each bone can be specified to accommodate
control of the speed of animation in slow machines.

The loop that executes the BGE script through the "Always Sensor" is executed
once every 1/60 seconds as the game engine default setting. Because the values in the
variables are initialized in every loop, text files are used to store the states and
animation playlist that need to be persistent across script rounds. In addition, the
initial and the current XYZ Euler coordinates of a bone or WXYZ quaternion
coordinates of each bone is stored as a property variable. The playlist and other
necessary temporary files that are dynamically generated by the BGE script are saved
as text files. The algorithm given below is used to change the properties of each bone.

ARM ANIMATION ALGORITHM:
//relevant update position function line should be present for each bone channel
// Euler function will not work for a bone having quaternion rotation
// Quaternion function will not work for a bone having Euler rotation

For each bone in bone list
For Each position in bone of given bone
IF current position not equal to new position

IF current position > new position
IF (current position - new position) < increment

current position = new position
else

current position = current position - increment
endif

else
IF current position < new position

IF (new position - current position) < increment
current position = new position

else
current position = current position + increment

endif
endif
end for

end for
Update positions rotation eular (bone, current position XYZ /radian conversion)
Update positions rotation quaternion (bone, current position WXYZ)
If Wait for required frames till given pause of posture expires

Signal bone animation complete
endif

In order to simplify the scripting process, a four character position variable
convention where the first 2 letters denote the boneid, the 3rd letter for left or right
arm (L / R) and the last for the axis (X,Y,Z,W) is used. (eg. UALX - left upper arm
x-axis position)

Sign data structure of gesture vocabulary
Three lines of expressions define a static gesture. The expression of the first line
contains rotational coordinates of the both hands from clavicle up to die hand bone.
The expression of the second and third line contain rotational coordinates of the
fingers of the left hand and right hand respectively. Multi-posture-based signs contain

multiples of 3 lines to animate the hands to different positions. The composition of
data in these 3 lines are as follows:

Linel: laymenword, single/multiple, bothhand, no_of_lines_in_gueture, coordinates of
CVL separated by commas, increments of CVL separated by commas, coordinates of
CVR separated by commas, increments of CVR separated by commas,.., coordinates
of HAL separated by commas, increments of HAL separated by commas, coordinates
of HAR separated by commas, increments of HAR separated by commas, waittime,
needtowait Y/N.

Line2/3: laymenword, single/multiple, fingerleft / fingerright, no_of_lines_in_gueture,
coordinates of TFL separated by commas, increments of TFL separated by commas/
coordinates of TFR separated by commas, increments of TFR separated by commas,..,
coordinates of SFL separated by commas, increments of SFL separated by commas/
coordinates of SFR separated by commas, increments of SFR separated by commas,
waittime, needtowait Y/N.

The bone order of the expression in line 1 is CV,DT,UA,FA,HA. Line 2 and 3 has
the bone order of TF,IF,MF,RF,SF.

Modular structure of the sign guesture animation plan
Although typical sign language does not contain gestures for every word of laymen
language, gesture may represent a multiple words of a laymen language. The
important part of an animation framework is to build the animation playlist of sign
gestures based on a given list of sentences in laymen language. This framework
supports dynamically appending the sentences to the sentence list. The animation
framework detects the presence of a new sentences and the playlist file is appended
accordingly. The modular structure of the animation plan and the associated files are
given in Figure. 2.

File A: Contains the sentences of laymen language populated either by ASR or any
other mechanism.

File B: Contains the list of sign gestures corresponding to each known laymen word
or phrase. Both multi and static posture sign gestures are defined in this file.

File C: Contains the playlist of the sign gesture definitions sorted in the playing
order according to the sentences added to File A. This will be dynamically generated
and expanded by the animation framework in every sign gesture play session.

File D: Contains the list of gesture definitions for the phonetic alphabet of the
laymen language to construct laymen language words not found in the sign language.

Three more files are used in addition to the above to store the number of sentences
read from file A, to store global parameters related to the animation framework and to
specify the set of phonetic symbols of the alphabet of the laymen language.

A SR or
Translator

Module

append new sentences at
the end and update the new

sentence added flag

i
Sentence List

(File A)

1r

BGE script splits sentence
to words and look up
corresponding gesture

from File B
i

r
i

Gesture
vocabulary

corresponding to j
layman words

with coordinates
(File B)

Gesture vocabulary
with coordinates
for each character

in the alphabet
(F ileD)

If the word is not found
in the vocabulary add the

character to character
animation to play list

Playlist with
sequence o f
animations

(FileC)

If the word is
found Add the
corresponding
gesture to the

playlist

Play Hand,
Finger

Animations
based on
playlist

coordinates

Figure 2. Sign Guesture Animation plan.

SEQUENCE ALGORITHM:
1. On application start clear word count and sentence count.
2. Play Idle Animation
3. If sentence count is less than sentences present in sentence file(File A)

remember sentence count in file A and generate playlist (File C) otherwise go
to step 4

4. if word count is less than word count in playlist file Read playlist (File C) and
get next word to play from current position otherwise go to step 2.

5. Adjust the default increments of each bone position based on the parameters
specified in global settings file and the settings in File C related to each
gesture using increment adjustment module.

6. Make the change to arm position based on the increment in each frame and
play the frame in view port

7. Check the end of gesture play back comparing the current position with
required position

8. Wait for the number of frames as specified in File C.
9. Update the word count (i.e. keep number of words that already played from

the playlist).
10. If end of playlist is true go to step 3.

Based on the sequencing algorithm given above, the proposed system executes
steps 2,3,4,2 sequence until a new sentence is added to File A by the external
component of the system (such as a speech recognizer or a web crawler to signal the
animator framework in step 3 that there are new sentences to be played). The word
count and the sentence count is kept within the application to continue building the
playlist from the position where it has most recently stopped.

Increment adjustment
The increments specified for each bone position is adjusted according to global
settings. For instance, if the speed of the animation is slow due to the speed of
processor and the capability of graphics hardware, the global increment is increased to
move the arm to the correct position in lesser number of frames.

Specific sign gestures require arms to be moved faster than movement of hand
rotation or finger orientations. In such cases, the increments of the arm bones could be
increased without changing the increments of the finger bones to make the movement
customized based on the requirement of the sign gesture.

The other feature of this increment module is to have a rotation function of a bone
around a given axis by ceasing the increment of the other axis while maintaining the
original increment of the given axis based on the gesture header information.

Playlist format
The playlist file (File C) contains a list of sign data structures to be played
sequentially. When a play list is built, a header line is introduced to each segment of
sign gesture that is being played. The header line format given below excludes header
and the colon sign. The static posture based sign in the playlist contains a header line,
animation details of bones in both hands in line 2 and animation details of both left
hand and right hand fingers in lines 3 and 4, respectively.

Header : Linenumber# NP/P (play/notplay)# laymen word#single/multiple
#no_of_lines_in_symbol#extraparameters

Data Analysis
To test the animation framework, a prototype is built using BGE and a sentence file
containing five sentences having static posture words, multi-posture words and
unknown words is used.

A sign vocabulary consists of ten static posture signs and five multi-posture signs.
Twenty seven static posture and five multi-posture finger spelling alphabet is used to
animate unknown words.

The screenshots of animating two word sentences in Sinhala language “®q)0
^Dg@o)id)2S5 (obata aayuboovan’, meaning “long life for you”) is depicted in Figure.
3. Both words belong to the category of static postures of which the final position of
the arms is used to express the meaning of the word.

The animation framework provided the expected functionality of decoding the
sentence to two known gestures, looking up the sign database, populated the playlist
and then animated each static posture sign according to the sign posture defined in the
sign vocabulary.

Figure 3. Animating two static posture words in a sentence.

The second example, having a multi-posture sign gesture, is used to animate the
phrase "(£)o)0 @25)3@S0D<S)<£" ("obata kohomadha", meaning “how are you") as
depicted in Figure. 4. Animation framework properly displayed the multi posture sign
gesture according to the definition listed in sign vocabulary.

Figure 4. Animating multi-posture gesture

In the third example, a finger-spelled word that does not have a sign gesture is
animated. A person's name such as "gayan" is pronounced as "gayaan" (GOcS32St) is
animated as given in the Figure. 5.

The proposed animation framework first identifies it as an unknown word then
decodes it to phonetic sounds g + a + y + aa + n(cr f+ef + cd’+^D + 2sS). It then looks
up the relevant phonetic sign gestures through a file containing the phonetic
vocabulary (file d) and appends the gesture coordinates to the playlist file. Finally, the
finger-spelled word is played letter-by-letter as a regular word.

Figure 5. Animating Finger spelled word gayan.

The Sobel operator (Sobel and Feldman, 1968) is used to extract the contours of
the hand in both the original and the output images. Then, the hand contour of a finger
pose of a character in the sign alphabet is compared with the corresponding hand
contour output of the finger pose generated by the animation framework.

The average distance error (Staib and Duncan. 1996) between the actual and the
generated position of the hand gesture is used to compare the accuracy of the
proposed technique as given in Table 2.

Overall, an average distance error of 3.81 pixels is observed for 27 static pose
finger spelling characters. Although visual comparison between images does not show
a significant deviation, original images of the sign alphabet drawn by hand using
different scales contributed to higher pixel distances in some character signs.

Table 2. Average distance error between output and original images o f finger spelled signs
(In Pixels)

Char Err Char Err Char Err Char Err

ef a 3.86 6 e 3.81 c f 1 2.19 0 t 3.75
aa 5.13 x3 ee 6.98 e> m 5.45 25$ th 3.51

epl ae 4.72 f 2.57 25$ n 2.19 6 u 5.80
q) b 1.70 erf g 3.05 C o on 2.72 £<9 uu 3.63
0 ch 7.54 erf h 2.29 & P 3.02 S V 2.15
& d 6.18 i 2.64 6 r 2.87 erf y 5.43
rfdh 5.81 25$ k 2.03 erf s 1.96 Overall 3.81

Discussion and Conclusion
The definition of the sign is based on the posture coordinates. A typical static posture
sign coordinates are collected as in the format defined in Table 3. These data are then
defined in the sign vocabulary according to the format specified in section sign data
structure of gesture vocabulary.

As seen in Table 3, a value of 0 for the XYZ and a value of 1 for the W is given as
the idle positions of a particular bone. A multi-posture sign gesture contains two or
more sets of posture coordinates for different middle positions of each sign gesture.
Also, every position of a bone consists of a corresponding increment value defined by
the animator to have different speeds of the arm movement across a series of frames.

Table 3. Posture coordinates o f a static posture sign.

Bone Left Hand Right Hand
X Y Z W X Y Z W

CV 0 0 0 1 0 0 0 1
DT 0 0 0 1 0 0 0 1
UA 0.25 -0.2 1.32 0.04 -0.5 • o oo 1__ 2.2 0.07
FA 100 59.5 21.5 — 15.4 2.1 24.5 —

HA 87.5 96.1 -3.8 — 9.8 64.3 128 —

TF 0 0 0 1 0 0 0 1
IF 0 0 0 1 0 0 0 1
MF 0 0 0 1 0 0 0 1
RF 0 0 0 1 0 0 0 1
SF 0 0 0 1 0 0 0 1

It must be noted that although the general word based component of the animation
framework is universal to any sign language, the phonetic symbols of the finger
spelling component has to be defined according to8 a specific layman language that
matches the corresponding sign language. Finger spelling phonetic symbols of the
Sinhala language is defined using a three-line format in an external file that is loaded
to the animation framework as given below.

cnssingle#a,i,u,e,o,k,g,t,d,n,p,b,m,y,r,l,v,s,h,l,f
cnsdual#aa,ae,ii,uu,ee,ai,oo,au,on,ng,chjh,cn,nd,th,dh,mb,sh
cnslg#aeaejhcn,njh,ndh

The human model must be loaded into the Blender software to define a new
gesture for this animation framework. The arms of the model are moved to the final
position of the gesture using the mouse or keyboard shortcuts. At this point, the
Blender software displays the coordinates of each bone when a bone is selected.
Table 3 is populated using the coordinates of the bone positions and subsequently, the
sign vocabulary (File B) is defined using the posture coordinates.

In comparison to the techniques presented by Pezeshkpour et al., Cox et al. and
Kaneko et al., (Pezeshkpour et al., 1999; Cox et al., 2002; Kaneko et al., 2010) the
proposed system provides a means of animating sign gestures without motion
captured data.

The system developed by Elliott et al. (Elliott et al., 2001) contains animations
recorded as video clips and requires training the SiGML to define a new gesture.
Moreover, it is limited to specific European sign languages with their own avatars.
The technique proposed by Kaneko et. al. (Kaneko et al., 2010) requires training the
TVML (TVML, 2014) to define a sign gesture. In contrast, the proposed framework
is capable of defining any sign with the sole requirement of identifying gesture
coordinates of the final bone position..

Further experiments must be carried out to animate facial expressions and also to
obtain a smooth animation that prevents arm movements bisecting the body.

Nevertheless, the proposed technique provides a complete framework to an
animator of any sign language in both word/phrase-based animation as well as
pronunciation-based finger printing. It is implemented with open source software and
does not require expensive motion capture hardware. Moreover, it provides complete
flexibility to the animator to move specific bones at different speeds.

Acknowledgements

This research is funded by National Science Foundation Technology grant number:
TG/2014/Tech-D/02

References

PPR Direct, Inc. (2006). iCommunicator - Speech to Text to Sign-Language Conversion... in real time!.
[ONLINE] Available at: http://www.icommunicator.com/downloads/iCommunicator. [Accessed 08
February 14].

Stone, A. (Ed.)(2007) An introduction to Sri Lankan Sign Language. Karunaratne & Sons, Sri Lanka.
Pezeshkpour, F., Marshall, I., Elliott, R. and Bangham J.A. (1999) Development of a legible deaf

signing virtual human. In - Proceedings o f IEEE International Conference on Multimedia
Computing and Systems, Florence, Italy, vol. 1, pp. 333-338.

Cox, S.J. et al. (2002) TESSA, a system to aid communication with deaf people. In - Proceedings o f
Fifth International ACM Conference on Assistive Technologies (ASSETS), Edinburgh, Scotland,
UK, pp. 205-212

ViSiCAST project (2000) ViSiCAST project website. [Online]. Available : http://www.visicast.co.uk/.
[Accessed 30 April 14],

Elliott, R., Glauert, J., Kennaway, R. and Parsons, K. J. (2001) D5-2: SiGML definition, working
document, University of East Anglia, UK, ViSiCAST Project

Prillwitz, S. et al. (1989) HamNoSys Version 2.0 : Hamburg notation system for sign languages - an
introductory guide. International Studies on Sign Language and the Communication of the Deaf,
University of Hamburg, Germany, vol. 5

eSIGN project (2002) eSIGN project web site. [Online], Available a t : http://www.sign-lang.uni-
hamburg.de/esign/. [Accessed 17 May 14],

Glauert, J., Kennaway, R., Elliott R. and Theobald, B. J. (2004) Virtual human signing as expressive
animation, In - Proceedings o f Symposium on Language, Speech and Guesture for Expressive
Characters, The Society for the study o f artificial intelligence and simulation o f behaviour (AISB),
U K , pp. 98-106.

Kaneko, H., Hamaguchi, N., Doke, M. and Inoue, S. (2010) Sign language animation using TVML,
In - Proceedings o f 9th International Conference on Virtual-Reality Continuum and Its Applications
in Industry (VRCAI), Seoul, Korea, pp. 289-292.

TVML (2014) TVML Language Specification Version 2.0 [Online]. Available :
http://www.nhk.or.jp/strl/tvml/english/onlinemanual/spec/index.html. [Accessed 15 September 14].

BVH (2000) BVH File Specification. [Online]., Available : http://www.character-
studio.net/bvh_file_specification.htm. [Accessed 07 August 14],

Sobel, I. and Feldman, G. (1968) A 3x3 isotropic gradient operator for image processing, presented at
the Stanford Artificial Intelligence Project (SAIL)

Staib, L. H. and Duncan, J. S. (1996) Model-based deformable surface finding for medical images, In -
IEEE Transactions on Medical Imaging, vol. 15, no. 5, pp. 720-731.

http://www.icommunicator.com/downloads/iCommunicator
http://www.visicast.co.uk/
http://www.sign-lang.uni-hamburg.de/esign/
http://www.sign-lang.uni-hamburg.de/esign/
http://www.nhk.or.jp/strl/tvml/english/onlinemanual/spec/index.html
http://www.character-studio.net/bvh_file_specification.htm
http://www.character-studio.net/bvh_file_specification.htm

