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Abstract: Active contours are a form of curves that deforms according to an energy minimising function and are widely used in 
computer vision and image processing applications to extract features of interests from raw images acquired using an image 
capturing device. One of the major limitations in active contours is its inability to converge accurately when the object of 
interest exhibits sharp comers. In this study, a new technique of active contour model to extract boundaries of objects having 
shaip comers is presented. By incorporating a priori knowledge of significant comers of the object into the deforming 
contour, the proposed active contour is able to deform towards the boundaries of the object without surpassing the comers. 
The ability of the new technique to accurately extract features of interest of anatomical structures in medical X-ray images 
having sharp comers is demonstrated.

1 Introduction

Image segmentation and boundary detection are the 
challenging tasks in the area of image processing and the 
techniques developed to achieve these tasks facilitate many 
computer vision based applications. Numerous techniques 
and models have been developed to accomplish this 
segmentation task, specific for different contexts. In the 
context of medical image analysis, deformable active 
contour models are the widely accepted models, which are 
used to segment medical images such as computer 
tomography, magnetic resonance imaging, X-ray and 
ultrasound images [1 , 2].

A noteworthy challenge in the arena of medical imaging is 
segmenting boundaries of same structure of interest [3]. 
Although various medical image segmentation techniques 
have been developed to achieve this task, they do not 
produce accurate results because of anomalies present in 
medical images such as high noise level, image blur, low 
contrast, irregular boundaries and several unwanted 
structures that surround the object under observation.

Deformable models are used to segment medical images by 
incorporating a priori knowledge of the structure such as the 
position, area and the shape that can be blended with image 
data itself. These models can be further classified into two 
categories, namely, parametric and geometric models. In 
parametric models, the initial contour is defined as a set of
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parametric curve segments which get attracted towards the 
targeted object by varying its shape over space and time. 
Parametric models are ideal in many image processing 
scenarios such as to extract very thin structures, when the 
structures consist of highly irregular boundaries, and in 
real-time segmentation [4],

There are two types of formulations for parametric deformable 
models: energy minimising and dynamic force formulation. The 
energy minimising formulation behaves according to the 
minimum principle while the dynamic force formulation 
depends on external forces. The original snake [5] has several 
limitations on its performance. Thus, several new ideas, such 
as topological adaptive [6, 7], balloon [8], fast greedy [9], 
gradient vector flow (GVF) [10], geodesic [11], B-spline [12] 
and non-uniform rational B-splines (NURBS) [13], have been 
proposed. Although deformable models are still claimed to be 
the most successful model-based approaches to segment 
medical images [14], associated problems such as poor capture 
range, initialisation errors, problems with the concavities, high 
user interaction and problems with sharp comers have not 
been addressed fully in the literature.

The former snake models given above [5-13] are unable to 
capture sharp discontinuous comers of the target object 
precisely. This paper proposes a new technique to overcome 
the above problems. First, significant comers of the desired 
object are selected manually by the operator or 
automatically by a comer detection algorithm such as the
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Harris comer detector [15]. By re-parameterising the model at 
user-specified iterations of the deformation process, the 
pre-defined comer points are added to the deforming snake. 
Experiments indicate that the new technique can improve 
the snake’s precision to capture the boundary with sharp 
comers, a task that is difficult to accomplish with former 
models.

2 Parametric deformable model

The snake s is defined as a parametric curve v(s) = (x(s), 
y(s))T, where x and y  are the coordinates of a given snaxel. 
The total energy of the snake, Esrmke, is defined as

^ sn a k e  f E^ vM s))ds

° ( 1 )

=  [ înternalW'O) +  îmageW*)) +
Jo

where represents the internal energy because of
stretching and bending, E;m,„r refers to image energy 
derived from image data and Econ is the constraint energy. 
The summation of the image energy E ^ ^  and the 
constraint energy E ^  is known as the external energy.

The internal energy of the snake is given as

^in ternal =  (a(s)|v,(s)j2+/3(s)|v„(s)|2/2 (2)

where |v/s)|2 determines the elasticity and |v„(.y)|2 gives the 
curvature of the parametric curve which forms the 
deforming snake. The parameters a(j) controls the ‘tension’ 
while fi(s) controls the ‘rigidity’.

The image energy E;„„z„ is written as

£image =  - |V / ( * ,y ) |2 (?)

where V/(x, y) is the gradient of the image 7 at (x, y).
A snake that minimises the total energy must satisfy the 

Euler equation

a x " (s )-fix " " (s )-V E mag' = 0 (4)

To express the physical motion of the snake, the expression 
can be further written as a force balanced equation as:

înternal êxternal =  ® (^)

where Einternal "  (j) fix (s) and E~xtemal VEim3gC
The snake deforms over time towards the desired object 

minimising the total energy Em,v,. If v(s, t) denotes a point on 
a dynamic curve at time r, the point at time 1+ 1 , v(j, f + 1 ) is 
given as

v(s, t +  1) =  arg min £ snakcv(.s, t) (6)
v(y)ei'

where v is the set of all potential curve points v(s, /).

3 Recent work

The original snake model [5] must be initialised closer to the 
desired object to obtain accurate results. As an example, if the 
initial contour is plotted far away from the object boundary,
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the snake tends to move arbitrarily because of the absence 
of an image force or it might deform towards incorrect 
lines, edges and noise points.

The T-snake [7] exhibits more robustness over the former 
method because of its topological flexibility. Snakes with 
balloon forces have been introduced recently having the 
capability to determine the direction automatically by 
analysing the region information of the image [8, 16, 17]. 
However, these balloon models are incapable of capturing 
irregular boundaries, sharp comers, weak edges and 
sometimes forms circular loops. Another landmark is 
introduced by adding a distance potential force into the 
snake [18] that exploits the concept of a distance map in 
which it keeps the track of the distance between each pixel 
and its nearest boundary point [19]. Unfortunately, this 
model too is unable to deform accurately into boundaries 
with concavities and sharp comers.

Xu and Prince [10, 20] have proposed a new deformable 
model called GVF snake where the spatial distribution of 
the gradient is considered to calculate the quality of the 
edge. This model is also capable of deforming towards the 
remote object regardless of its initial position. Caselles [11] 
and Malladi [21] have introduced the geodesic active 
contour model based on the evolution theory [22, 23] and 
the level set method [24],

All the above snake models suffer from a common 
drawback, known as global propagation, in that even a 
slight movement on an individual snaxel will globally 
propagate through the entire snake so that the movement of 
each snaxel cannot be treated separately. As a solution, 
Menet [12] introduced the B-spline snake supporting local 
control [25, 26]. Unfortunately, this model handles local 
control by adding extra control points during deformation. 
Based on this phenomena, dynamic-NURBS (D-NURBS) 
[27] and NURBS [13] snake models, having local control, 
are introduced. Although a NURBS snake has the ability to 
deform without adding more control points near high 
curvature regions, it is unable extract a discontinuous 
boundary as NURBS are inherently continuous.

As such, none of the above implementations provide a 
satisfactory solution for extracting complex object 
boundaries with sharp (discontinuous) comers.

4 Methodology

4.1 Sharp corners

The issue of the snake surpassing comer points and sliding 
into the object occur because of the strength of the 
elasticity force as well. The elasticity force is responsible 
for holding the curve together (by minimising the distance 
between two adjacent snaxels at each deformation step) 
while shrinking towards the targeted object. However, if the 
distance between two adjacent snaxel points is too high, 
especially near a comer, the elasticity force tries to drag the 
snaxel away from the comer and into the object as shown 
in Fig. la.

4.2 Definition o f corner points and initialisation

Perhaps the most widely used comer detector is the Harris 
operator [15] which is based on the local auto-correlation 
function of a signal. Given a shift (Ax, Ay) and a point
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a

Fig. 1 B e h a v io u r o f  sn ake s  n e a r s h a rp  c o m e rs

a  Elasticity force FeUlticity drags the snaxel into the object near the sharp 
comer
b  Position of the initial contour located around the target object (shaded 
region)

(x, y), the auto-correlation function is defined as

C(x, y) =  £  yd -  y, + Ay)]2 (7)
w

At the initial step, all the significant comers of the desired 
object are detected either using Harris operator or by 
manual placement. The comer points, numbering n, are 
placed in a separate array as

comer-points[] =  {C((x, y)\i =  0, 1, 2, . . . ,  n -  1} (8)

The initial contour is plotted 13-25 pixels outside (this range 
is empirically selected) the desired object boundary using a 
set of snaxel, numbering m, kept at equal distances apart. 
These snaxels are placed in a separate array as

snaxel_points[] =  {V fx , y)|i =  0 ,1 ,2 , . . . ,  m -  1} (9)

The algorithm finds the nearest four adjacent snaxels to each 
Q  by considering the distance between the comer point and 
each snaxel to extract the nearest three adjacent curve 
segments to each comer point. As illustrated in Fig. lb, 
Vi- 1  -  Vh Vi~ Vj+i and VM -  Vi+2 are the nearest three 
adjacent curve segments to the user defined Ct. Therefore it 
reduces the amount of computation required to find the 
nearest curve segment at each re-parameterisation step. 
These three nearest curve segments, associated with each 
comer point, are stored and tracked along with the comer 
point and are recalculated and modified after each 
re-parameterisation step. The model then starts deflating 
towards the object boundary by minimising £ snake.

4 .3  Deform ation and  re-param eterisation

The proposed model is re-parameterised after every r  time 
steps, referred to as a deformation step which is set 
empirically between 3 and 10 by the user. The threshold Td 
gives die distance between a specific comer point and its 
nearest curve segment and is again set empirically between 
4 and 7. If the boundary of the target object does not 
contain a comer region, Td is placed on a higher value. On 
die other hand, if the boundary of a specific object contains 
comers or concavities, Td must be undoubtedly low. Apart 
from that, low values for Td helps the snake to preserve the 
smoothness and the shape during deformations. However, it 
is advisable to maintain a low value for r if Td is low.

After each deformation step r, a local search computes die 
absolute perpendicular distance d  from each comer point to its 
nearest candidate contour segments. If d< Td, C, is added 
between the respective curve segments and it is declared as 
a new snaxel. Subsequently, this particular curve segment is 
pushed/pulled towards the comer point. If there are several 
distances that fall less than the Td, the algorithm selects the 
closest curve segment. Now, the comer point is merged 
with the deforming snake and becomes a new snaxel of the 
updated snake.

The movement of the newly added comer point is restricted 
to remain stable during the deformation. At the same time, the 
second-order continuity term is released (set /J=0) on Ct to 
facilitate building up die contour near the comer. However, 
the rest of the snaxels can move the contour towards the 
target object by minimising the total energy of the snake.

After adding a new comer point, the new set of curve 
segments should be detected again from the beginning for 
the remaining comer points. This new comer point is 
removed from ‘comer_points’ [] and added into the correct 
position in ‘snaxel_points’ []. As an example; after five 
iterations (r=5), if d< Td, Ct is added in between Vt and 
Vi+i as shown in Fig. 2a and Ct is also considered as a 
snaxel of the deforming contour. The parameter Td controls 
the deformation speed of the curve segment towards the 
nearest comer point. For example, if Td=5 and when the 
curve segment Vt -  VM  is closer (d< 5) to Ch the curve 
segment V, -  VM  steps over more than one pixel but less 
than four pixels towards the comer point.

However, in certain cases, the contour may step over the 
comer point as well. Note that in Fig. 2c, the curve segment 
Vi+i -  Vi+2 has already stepped over Cj. In such a scenario, 
the curve segment is pulled backwards to the comer area 
during the next re-parameterisation step.

Figs. 2b and d  also depicts the new connection after adding 
C,and Cj into the deforming snake. The arrows represent the

Vw

vw Vw

VM

V,

V„

b

VM VM

Fig. 2 R e -p a ra m e te ris a tio n  s te p  o f  th e  d e fo rm in g  sn ake  

a  d < T j
b  C om er point C , is added between V, and  and the curve segm ent is
pushed towards the com er
c d < T d
d  C om er point C j is added betw een FI+2 the curve segm ent is pulled back 
to  the com er
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ALGORITHM____________________________________________
/ /  Specify a, 8, y, Tdl d, r, N = number of iterations
/ /  n = total number of corner points detected by the Harris operator
/ /  m = total number of snaxels defined by the operator

Step 1:
corner_points [ ] = getCornerPoints (Harris corner detector /  mouse input) 
snaxel_points [ ] = getCotrolPoints (mouse input)

//Finding the nearest three adjacent curve segments 

Step 2: For each corner point C,:
2.1: Calculate the distance d from C, to each snaxel 
2.2: Select four nearest adjacent control points 

2.3: Select three nearest adjacent curve segments

Step 3: Deform the initial contour according to energy minimising formulation 
3.1: After each deformation step r , for each corner point:

3.1.1: Compute d from the comer point to each contour segment 
If d < T d;

•  Push/Pull the curve segment towards C,
•  Add C, into the corresponding contour segment
•  Release 6  on r point C, and restrict the movement
•  Remove C, from corner_points[ ]
•  Push C, into snaxel_points[)
•  Go back to Step 2

F ig . 3  Initialisation, deformation and re-parameterisation

direction of movement of the curve segment towards the 
object boundary.

The algorithm given below explains the deformation 
scheme of the proposed model (See Fig. 3).

5 Results and discussion

The proposed model is tested on synthetic images of simple 
two-dimensional shapes to X-ray images of human 
anatomical structures. For all the experiments, the model 
parameters used are: r = 5, Td=5, a  = 0.40, /J = 0.20 and 
y= 1.00 and the stopping criterion = 200 iterations. 
Although these parameters are selected empirically, the 
comer points are manually marked exactly on top of the

significant comers. The performance of the proposed snake 
model is compared with the major landmark snake models, 
namely, Kass [5], balloon [8], GVF [10] and NURBS [13].

The average distance error (e) [28] is used to validate die 
accuracy of the test results as follows

e(v, i>) =  -J- [ min]v(.s) — v(.sj|ds (10)
L ) sS'SV

where v(U represents the original contour position of the 
deformed snake, v(s) represents the extracted true boundary 
of the target object and L is the length of the snake. For all 
the experiments, the actual boundary around the target

e t

g h i j  k I

F ig .  4  Deformation o f  the proposed snake model in a synthetic image

a Com er points defined by the operator 
b Initial contour
c to k  Intermediates taken after each 30 iterations 
I Final position after 300 iterations
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Kass Balloon OVF NURBS Proposed model

Image (a)

Image (b)

linage (c)

Fig. 5 C o n ve rg e n ce  o f  th e f iv e  d iffe re n t sn a k e  m o d e ls  o n  th re e  d iffe re n t sy n th e tic  im a g e s: ( f ir s t c o lu m n ) K a s s  sn ake , (se co n d  co lu m n ) b a llo o n  

sn ake , ( th ird  co lu m n ) G V F  sn ake , (fo u rth  co lu m n ) N U R B S  sn ake  a n d  (fifth  co lu m n ) p ro p o s e d  sn ake

Table 1 Comparison of average distance errors (e) for different 
snake models applied to images in Fig. 5

Image Average distance error (e)

Kass Balloon GVF NURBS Proposed

Fig. 5a 6.73 5.78 2.76 3.21 0.87
Fig. 5b 5.35 6.10 1.23 1.32 0.08
Fig. 5c 5.90 5.68 1.31 2.34 0.03

Table 2 Comparison of average distance errors (e) for different 
snake models applied on the synthetic image in Fig. 4

Snake model

Kass balloon GVF NURBS proposed
8.81 6.92 5.72 6.82 1.59

object is manually obtained by carefully sketching it out by a 
skilled medical clinician.

5.1 Experim ents w ith synthetic im ages

The convergence ability of the proposed algorithm is tested 
on a synthetic image of size 256*256 pixels where the 
region of interest (ROI) contains three sharp comers as in 
Fig. 4. Four comer points are manually marked exactly on 
top of the comer regions of the object by the operator and 
the initial contour is plotted using 2 1  snaxels.

In this experiment, after every fifth iteration, the deforming 
snake performs a local search for significant comers within a 
radius of 5 pixels ( r=5 and Td=5). If a comer is present, it is 
added and the snake is re-parameterised. This behaviour is 
clearly seen in Fig. 4d  where the contour is attracted 
towards the left significant comer during deformation. 
Capturing the remaining two comer points are shown in 
Figs. 4e and /  It can also be noted in Figs. 4g - i  that the 
snake is still moving towards the target object while 
restricting further movement near the comers already 
detected.
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Table 3 Average distance errors <e) obtained by the proposed 
snake model under different SNR values on the synthetic image 
in Fig. 4

SNR

5 10 15 20 25 30

average distance error (e) 2.91 2.69 1.59 0.87 0.24 0.08

Furthermore, the performance of the proposed algorithm is 
compared with respect to existing major snake models as in 
Fig. 5. Three synthetic images of size 256 * 256 pixels are 
selected where the ROI contains discontinuous comers. The 
same initial contour and model parameters are used to 
initialise the same object using all five different snake 
models. Table 1 gives the accuracy of boundary extraction 
of the above experiment using the average distance errors 
[28]. It is notable that the error values are considerably low 
in die proposed model.

The X-ray images inherently contain a considerable 
amount of noise. Therefore the robustness of the proposed 
snake is further tested in the presence of noise by adding 
Gaussian noise into the synthetic image in Fig. 4 to form a 
signal-to-noise ratio (SNR) of 15. Table 2 shows die 
corresponding standard distance errors of this experiment.

As seen in Table 2, the performance of the proposed model 
is best when compared to others. The model is also further 
tested with different noise levels where the SNR varies 
from 5 to 30 on the same synthetic image. The resulting 
average distance errors are given in Table 3 which indicates 
that the proposed snake model performs well for the images 
having an SNR of >20.

5.2  Experim ents with rea l m edical im ages

The edges in medical images are extremely difficult to extract 
using non-adaptive segmentation algorithms because of high 
noise levels, low contrast, discontinuous boundaries, etc. The 
capability of the proposed model to detect discontinuous 
boundaries is tested using several X-ray images of human 
bones with a fracture. Such images are useful to test the
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Fig. 6 Illustrations o f  convergence o f  a linear fra c tu re  o f  the arm  bone with

a Kass snake 
b Balloon snake 
c GVF snake 
d  NURBS snake 
e Proposed snake model

proposed algorithm because these objects contain very-sharp 
regions near the fractured spot. First, an X-ray image of size 
256 x 256 pixels is selected where the ROI is an arm bone 
having a very-sharp linear fracture as seen in Fig. 6.

Five different snake models are used to extract the head 
side of the fractured arm bone as seen in Fig. 6. In all 
cases, a skilled clinician placed the initial contour and a 
single comer point at the sharp tip (right side) of the 
fractured bone. Table 4 shows the corresponding standard 
distance errors (e) of this experiment.

The proposed model is also tested with four different X-ray 
images of human bones injured by a fracture. These images 
are arbitrarily selected from a 25 image data set obtained 
from (http://www.shutterstock.com/). Fig. 7 illustrates the 
convergence results of the proposed model on each image 
and Table 5 gives the corresponding average distance errors 
(e). As seen, the proposed model managed to extract the 
boundary of the desired object while capturing the sharp 
regions with an increased accuracy than other models.

Detecting the accurate physical shape of a bone fracture is 
useful when it is difficult to measure and quantify the extent 
of injury by performing an external examination. The accurate 
physical shape of the fractured region facilitates an 
orthopaedic surgeon to decide on subsequent treatment 
protocols.

The proposed snake model is further tested on a dental 
X-ray image (http://periodontics-dentalimplants.com) as 
seen in Fig. 8 to detect the exact boundary and the shape of 
each tooth. The initial contour is first plotted by a skilled 
clinician using 20 snaxel points for all the cases and 
additional comer points are defined near the sharp comers 
of the ROI.

Table 4 Comparison of average distance errors (e) for different 
snake models applied on the image in Fig. 6 (bone fracture of 
the arm)

Snake model

Kass balloon GVF NURBS proposed
7.34 9.09 5.72 6.81 1.21

c d

Fig. 7 C onvergence o f  the p ro p o sed  snake

a Pathological fracture on right humerus because of bone cyst 
b Broken collar bone 
c Linear fracture
d Fractures of the greater trochanter

Table 5 Average distance errors (e)) for different snake models 
applied to images in Fig. 7

Snake model Average distance error (e)

Fig. 7a Fig. 7b Fig. 7c Fig. 7d

Kass 6.35 4.24 4.98 5.92
balloon 5.24 5.49 4.51 5.01
GVF 3.02 2.94 3.24 4.92
NURBD 4.09 1.38 3.95 3.93
proposed 1.21 0.82 0.92 1.21

The top image in Fig. 8 represents the maxillary (upper 
jaw) and mandibular (lower jaw) teeth of an adult. The 
proposed model is applied on each tooth showing
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Fig. 8 Extraction o f  boundaries o f  teeth fro m  d en ta l X -ra y  im ages

(top) dental X-ray image of teeth and (bottom two rows) convergence of the proposed snake on each tooth

discontinuities and sharp regions. The same initial contour 
and model parameters are used to initialise the same tooth 
using all five different snake models. Each model is applied 
on 31 different teeth separately and the average distance 
errors (e) are given in Table 6.

In order to confirm the test results statistically, we first 
conducted one-way analysis of variance (one-way analysis 
of variance (ANOVA) for five different groups with a 5% 
significance level. The ANOVA output values (F= 124.09 
and P-value = 0.000 with R2 = 76.79) revealed that there is 
a significant difference between mean distance error values 
of the groups.

Because of the significant difference of average distance 
errors between the groups, Tukey’s pairwise comparisons 
are performed by taking two groups at a time (proposed 
model with one of the other models). As seen in Table 7, a 
significant difference of distance errors between the 
proposed model and each one of the other models are 
observed.

Consequently, as seen in Table 8, it is evident that the mean 
value of the proposed model is comparatively low (1.78), 
meaning a good segmentation. Such accurate detection of 
the shape of each tooth is important during teeth 
replacements, tracking substantial changes in the shapes and

T ab le  6  Average distance errors (e) for different snake models applied to images in Fig. 8

Image Average distance errors (e)

Kass Ballon GVF NURBS Proposed

Fig. 8(1): maxillary right third molar 6.33 5.33 3.23 2.90 1.03
Fig. 8(2): maxillary right 2nd molar 6.25 5.23 1.94 2.88 1.19
Fig. 8(3): maxillary right 1st molar 5.94 4.35 2.00 3.02 1.23
Fig. 8(4): maxillary right second premolar (bicuspid) 6.09 4.14 2.82 3.28 1.22
Fig. 8(5): maxillary right first premolar (bicuspid) 6.12 5.09 3.93 2.99 1.71
Fig. 8(6): maxillary right canine 5.92 5.94 3.02 3.01 1.23
Fig. 8(7): maxillary right lateral incisor 5.99 6.92 2.03 2.98 1.44
Fig. 8(8): maxillary right central incisor 7.94 6.74 3.41 4.09 3.22
Fig. 8(9): maxillary left central incisor 6.42 4.34 3.00 3.91 1.50
Fig. 8(10): maxillary left lateral incisor 7.01 5.23 4.02 3.65 2.01
Fig. 8(11): maxillary left canine 7.42 5.93 4.25 3.90 2.13
Fig. 8(12): maxillary left first premolar 6.91 5.00 3.33 2.97 1.89
Fig. 8(13): maxillary left second premolar 5.94 5.02 4.35 2.83 1.01
Fig. 8(14): maxillary left first molar 4.51 4.24 3.33 2.12 1.24
Fig. 8(15): maxillary left second molar 5.15 4.23 4.91 3.82 1.83
Fig. 8(16): maxillary left third molar 5.55 5.33 4.10 3.09 1.34
Fig. 8(17): mandibular right third molar 6.01 5.70 5.35 4.02 2.09
Fig. 8(18): mandibular right second molar 6.32 6.09 5.41 2.34 2.13
Fig. 8(19): mandibular right first premolar 7.32 6.35 5.92 5.02 4.98
Fig. 8(20): mandibular right first premolar 6.23 4.35 4.24 2.35 1.25
Fig. 8(21): mandibular right canine 5.35 4.00 2.92 3.34 0.98
Fig. 8(22): mandibular right lateral incisor 5.42 5.94 2.42 2.32 1.09
Fig. 8(23): mandibular right central incisor 5.25 4.25 3.29 3.19 1.24
Fig. 8(24): mandibular left central incisor 5.67 4.24 2.40 2.08 1.23
Fig. 8(25): mandibular left lateral incisor 6.26 5.28 3.49 2.82 2.45
Fig. 8(26): mandibular left canine 6.14 6.41 4.24 2.34 2.65
Fig. 8(27): mandibular left first premolar 5.33 4.04 3.99 2.08 1.10
Fig. 8(28): mandibular left second premolar 5.14 4.02 3.43 3.24 1.08
Fig. 8(29): mandibular left first molar 7.42 5.92 4.92 4.24 3.52
Fig. 8(30): mandibular left second molar 6.97 5.59 3.46 3.92 2.12
Fig. 8(31): mandibular left third molar 6.78 5.32 4.25 3.33 2.12
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Table 7 Tukey's simultaneous tests applied on different snake models
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Tukey's pairwise comparisons

T P-value Mean difference Std. error difference 95% confidence interval
of the difference

Lower Upper

proposed against Kass 20.10 0.00 4.38 0.218 3.78 4.99
proposed against balloon 15.57 0.00 3.40 0.218 2.79 4.00
proposed against GVF 8.60 0.00 1.88 0.218 1.27 2.48
proposed against NURBS 6.33 0.00 1.38 0.218 0.78 1.98

Table 8 Comparison of mean values of average distance errors (e) between the snake models

N Mean Std. deviation Std. error 95% Confidence interval for mean 

Lower bound Upper bound

Minimum Maximum

Kass 31 6.17 0.79 0.14 5.88 6.45 4.51 7.94
balloon 31 3.66 1.01 0.18 3.29 4.03 1.94 5.92
GVF 31 3.66 1.01 0.18 3.29 4.03 1.94 5.92
NURBS 31 3.16 0.71 0.13 2.90 3.43 2.08 5.02
proposed 31 1.78 0.88 0.16 1.46 2.11 0.98 4.98

the position of the teeth after certain treatments and 
automating the process of forensic dentistry to recognise 
individuals when other cues of biometric identification (e.g. 
fingerprint, blood samples, face and so on) are not available.

The balloon snake gives a slightly better result in capturing 
comer regions compared to the original Kass model. The 
coefficients of elasticity and curvature have a great effect on 
the behaviour of the evolving snake in that if a  and P are 
high, the internal energy has a major influence over image 
forces resulting in the curve becoming smooth. The GVF 
gives poor results near sharp comers as it has a tendency to 
produce a continuous curve near a sharp region of the 
desired object

The proposed model is useful in medical imaging to 
segment fractured bones, tiny tissues, discontinuous 
anatomical structures, teeth and so on where detecting 
discontinues boundaries helps medical practitioners to arrive 
at important conclusions to provide better treatment options. 
The main reason for the proposed model to demonstrate 
better results on detecting comers compared with the other 
existing models is the inclusion of a priori knowledge about 
the significant comer points at the boundary of the target 
object into the deformation process. At certain times, 
however, the contour may step over the comer point after a 
certain number of iterations. This situation may occur if Td 
is quite high. Even in such a scenario, during the next 
re-parameterisation step, it has the ability to pull the curve 
back to reach a comer point and recapture the actual 
boundary.

The accuracy of the proposed model is based on the values 
of its model parameters. Tuning of contour parameters a, /J, y, 
r and Td is an image specific process and has to be performed 
empirically for each of the analysed image types. A distance 
of 20 pixels between adjacent snaxels is maintained to 
facilitate computation of die perpendicular distance to the 
nearest curve segment.

With respect to computational complexity, the original 
Kass model needs to perform matrix-vector multiplications 
over the penta-diagonal banded matrix taking O (n2)

iterations to traverse through the entire length of the snake 
to solve the fully explicit Euler equations. Although the 
balloon snake consumes the same time complexity as that 
of the original Kaas model, the GVF snake has a relatively 
high computational complexity of O (n2m2). The 
computational complexity of the NURBS snake, which is a 
spline-based formulation, is O (ifn), where n is the number 
of control points over the snake and k is the degree of the 
spline. In the proposed snake model, the re-parameterisation 
step consumes the longest time taking 0  (nm), where n is 
the number of re-parameterisation steps and m is the 
number of comer points.

The proposed snake model suffers from few limitations as 
well. The detection of the closest curve segment from each 
comer point after each deformation step is a 
computationally intensive process. Unfortunately, this 
cannot be avoided as the local search and computational 
steps should be carried out continuously while the contour 
deforms. Secondly, the application of the Harris operator to 
detect comer points is limited and it purely depends on the 
nature of the image under consideration. If a point having 
strong intensity exists between the region of the target 
object boundary and the initial contour, the Harris operator 
tends to detect such a point also as comer yielding a false 
segmentation. In such a case, where the intensity variation 
within this region is not uniform, the operator must 
manually define the comer points. We have integrated such 
manual operations to the proposed snake model to 
overcome such anomalies.

It must be mentioned that the proposed active contour 
model is capable of only deflating the contour towards a 
desired object Therefore the initial contour should be 
placed outside the target object. The main objective of this 
research is to capture sharp comers and discontinuous 
boundaries and as such, if the initial contour is placed 
inside the object it makes it difficult to capture such 
protruding regions while the model is inflating. As a result, 
the balloon force cannot be introduced to the proposed 
model at this stage.
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6 Conclusion

The complexity of discontinuous boundaries in X-ray medical 
images makes the segmentation task very difficult. In this 
paper, a new snake model is proposed to capture 
discontinuous boundaries present in X-ray medical images 
accurately by incorporating a priori knowledge of 
discontinuous region into the segmentation process. The 
results obtained after applying the technique on several 
synthetic and X-ray medical images show the performance 
of the proposed model even with complex discontinuities. 
Further studies on improving the algorithm to achieve 
accurate results on other medical images containing a high 
amount of noise and low contrast need to be explored.
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