
An Archived firefly Algorithm; A mathematical 
software to solve univariate nonlinear equations

M.K.A. Ariyaratne1, T.G.I. Fernando1 and S. Weerakoon2

Department of Computer Science, Faculty of Applied Sciences, University of Sri
Jayewardenepura.1

Department of Mathematics, Faculty of Applied Sciences, University of Sri Jayewardenepura.2

Abstract - The future of optimization is now being 
conquered by modern meta-heuristic algorithms. 
Genetic algorithms, differential evolution, harmony 
search, firefly algorithm and cuckoo search are such 
meta-heuristic algorithms which have marked their 
success over many optimization tasks. Simplicity of the 
algorithm, less memory consumption and the accuracy 
of the approximations can be stated as the major 
reasons for their popularity. In this article, we are 
presenting a software solution that proposes some 
modifications to the existing firefly algorithm. The 
modification; archived firefly algorithm [AFFA] 
exhibits the ability of finding almost all the real and 
complex roots of a given nonlinear equation within a 
reasonable range. The software implementation 
includes two main properties; an archive to collect the 
better fireflies and a flag to determine poor 
performance in firefly generations. The new 
modification is tested over Genetic algorithms (GA), a 
phenomenal in the field of nature inspired algorithms 
and also with a modified GA embedded with same 
properties the AFFA has. A simple GUI is developed 
using Matlab GUIDE to present the findings. Computer 
simulations show that the AFFA performs well in 
solving nonlinear equations with real and complex roots 
within a specified region. The suggested method can be 
further extended to solve a given system of nonlinear 
equations.

Index Terms - Firefly Algorithm, Nonlinear Equations, 
Archive, Real Roots, Complex Roots.

I. IN TRO DUC TIO N

Optim ization leads the world for finding the best 
from being better. H ence the com puter scientists are 
looking forward for finding various approaches that 
can contribute towards optim ization. Natural 
optim ization techniques are am ong them  and are 
becom ing popular due to the long lasting existence o f  
the real world such natural practices. Genetic 
algorithms; w hich have com e to the stage around 
1970 go ing  along w ith the theory o f  evolution  by 
Charles Darwin, can be identified as one o f  the first 
such algorithm s and still p lays an important role

am ong nature inspired algorithm s [1, 2], Ant colony  
optim ization algorithm s w hich m im ic the ants’ 
strange com m unication behavior are other popular 
algorithm s w hich have been adopted for many real 
world optim ization tasks [3, 4 ]. Bat inspired 
algorithm [5], Cuckoo birds algorithm [6], Firefly 
algorithm [7] are m ore recent nature inspired 
algorithm s that represent different real world
optim ized phenom ena. T hese algorithm s can be 
classified  in to tw o m ain fields as Evolutionary  
algorithm s and Swarm intelligence algorithm s.
Evolutionary algorithm s are population based
algorithm s w hich uses mutation, recom bination, and 
natural selection  to reproduce better generations [8]. 
G enetic algorithm s, differential evolution [9] and 
genetic programming [10] are exam ple evolutionary  
algorithm s. Swarm intelligence, by its nam e m im ics 
the co llective  behavior o f  different elem ents in the 
natural world. Particle swarm  optim ization [11], ant 
colony system s, firefly algorithm s are som e
exam ples. O ne o f  the m ost advantageous properties 
o f  these algorithm s is that m ost o f  them  are the type 
o f  m eta-heuristic. Therefore these algorithm s can be 
adopted to so lve  a  variety o f  optim ization problem s 
rather than heuristic algorithm s. This paper aim s to 
present the research carried out to find the 
accountability o f  using a modern nature inspired 
algorithm; firefly algorithm  to so lve  univariate 
nonlinear equations having real and com plex roots 
and the m athem atical software that has been  
developed to accom plish the task.

II. N O N L IN E A R  EQ UATIO N S

Solving a nonlinear equation is finding x  which  
satisfies f ( x )  =  0 , where / (x)  is nonlinear. M any 
numerical m ethods exist, but they have som e major 
drawbacks like need o f  derivative information, 
strongly depends on the initial guess, inability o f  
giv in g  all the roots w ithin an interval. W hen the 
equation is having either real and com plex roots or 
com plex roots on ly , the situation is even more



difficult. Scientists have m oved towards in finding 
better algorithms to m inim ize these drawbacks. But 
w e have to ensure the m eaningfulness o f  the 
computational effort as w ell. The algorithms should  
maintain the speed, accuracy and low  memory 
consum ption. The research literature reveals that 
there have been taken many steps to tune these 
existing approaches as well as finding new  w ays to 
solve nonlinear equations reducing the mentioned  
drawbacks.

A Variant o f  N ew ton 's M ethod for Accelerated  
Third-Order Convergence is a suggested  
improvement by S. W eerakoon and T.G.I. Fernando 
[12]. The research involves changing the derivation 
o f  N ew ton’s method. The original derivation involves 
approximating an indefinite integral o f  the derivative 
o f  the function by a rectangle. In their research they 
have m odified it to be a trapezium so that the error o f  
the approximation is reduced. They have shown that 
the order o f  convergence o f  the suggested  
m odification is three and for som e cases it is even  
higher than three. The main concern in this research 
was on accuracy o f  the approximation. But the 
m entioned drawbacks o f  numerical methods remain 
same.

M oving beyond numerical m ethods there can be seen  
a handful o f  research done with nature inspired 
algorithms to fulfill the task. U se o f  genetic  
algorithms to so lve  system s o f  nonlinear equations is 
addressed in som e researches [13, 14, 15]. A  hybrid 
algorithm im plem ented with Genetic algorithms and 
particle swarm optim ization also has been tested in a 
research [16]. Applicability o f  harmony search in 
solving system  o f  nonlinear equations is also 
addressed [17].

Heuristics were also in use o f  solving system s o f  
nonlinear equations. One research has introduced the 
use o f  continuous global optim ization heuristic called  
“continuous G R A SP” to so lve a nonlinear system  
[18]. They are addressing the problem o f  finding all 
the roots o f  a system  o f  equations assum ing that all 
roots are real.

M ost o f  these approaches are focused on solving  
system s o f  nonlinear equations rather than a single  
equation. In alm ost all the research, they have deal 
only with the real roots. Finding all roots in a 
reasonable range within a single run is also left 
untouched.

Our problem o f  interest is to so lve a univariate 
nonlinear equation having real and/or com plex roots. 
W e need to find all the roots within a reasonable 
interval/ reasonable range. Since w e have touched the

problem as an optim ization problem, w e can define 
the above problem as follow s.

Let /  be a function s .  t i f :  D -> R where D c  C. 
Neither the differentiability nor the continuity o f  f  is 
required. The problem is to find all 
x  €  D s . t . f ^ x )  =  0. Since w e treat the problem as 
an optim ization problem, it becom es finding x  €  D 
s .  t . | / ( x ) |  =  0. However, since the function f ( x )  
may have m ultiple roots, the optim ization problem  
1 /0 ) 1  =  0, also will have m ultiple optimal solutions. 
Our objective turns out to be finding all such optimal 
solutions.

111. ARCH IVED FIREFLY ALGORITHM  
[AFFA]

AFFA is the software solution proposed in this paper 
to so lve univariate nonlinear equations with real and/ 
or com plex roots. Many nature inspired algorithm s 
are good solution providers for various optim ization  
tasks and they are very sim ple in the algorithm s. That 
made researches easy to develop these algorithm s for 
different optim ization tasks. Firefly algorithm is a 
newly im plemented such algorithm with the 
follow ing assum ptions about fireflies behavior [7].

1. An attraction o f  the fireflies to each other is 
gender independent.

2. Attractiveness is proportional to the 
brightness, for any two fireflies, the less 
brighter one will attracted and m ove towards 
the brighter one. this attraction decreases 
when distance increases, the brightest firefly  
w ill m ove randomly.

3. Brightness o f  a particular firefly is 
determined by its objective function.

The follow ing pseudo code describes the original 
firefly algorithm and a sim ple 20  line Matlab 
program can im plem ent the algorithm solving a 
mathematical optim ization problem. Matlab as a 
mathematical software provides an easy environm ent 
to implement these types o f  algorithms.. It is also  
capable o f  creating user interfaces and enrich with 
plotting different functions and data so that the 
solutions can be graphically represented.

Algorithm 1: Original Firefly Algorithm

B egin -,

I n i t i a l i z e  a l g o r i t h m  p a r a m e t e r s :

M a x G e n :  t h e  m a x i m u m  n u m b e r  o f  g e n e r a t i o n s  

y:  t h e  l i g h t  a b s o r p t i o n  c o e f f i c i e n t



r: the particular distance between two fir e flie s  

D: the domain space

D efine the objective function  /(X ), where 
X = (*!,..... ,x dY

Generate the initial population o f f  ire f lies, Xf
(i = 1,2,.....,n)

Determine the light in tensity f  o f
ith fir e fly  Xf via f(X t) 

w hite t  <  MaxGen do
fo r  i = 1  : n (a/Z n fir e flie s ) do 
fo r  j  = 1 : n (a/Z n fire flie s ') do , 

i f l j > I i

Move fir e fly  i towards j  by using eq (1); 
End i f
A ttractiveness varies w ith distance 
r via e~Yr2 using eq (2);
Evaluate new solutions and update 
light in tensity, 

end fo r  
end fo r

Rank the fir e flie s  and fin d  the current best-, 
end while
Post process resu lts and visualization-,

End-,

The initial population can be defined randomly with a 
set of feasible solutions for the problem. Then each 
firefly’s light intensity is calculated using the 
problem specific objective function. Then each firefly 
in the population starts moving towards brighter 
fireflies according to the following equation.

x( = Xj + P(Xj -  Xi) + a(rand  -  0.5); -» (1)

Where

P = Po e~yr2 -» (2),

p0 is the attraction at r = 0;

The second term of theEqn(l) is due to the 
attraction between two fireflies and the third term is a 
randomization term where a is the randomization 
factor drawn from the Gaussian or the uniform 
distribution.

In the modified version we have added few more 
qualities to the original algorithm by introducing an 
archive and a flag. The new algorithm is named after 
its archiving property as Archived firefly algorithm

[AFFA]. The pseudo code of the modified algorithm 
is as follows.

Algorithm 2: Archived Firefly Algorithm

Begin-,
Initialize algorithm  param eters:
MaxGen: the maxim um num ber o f generations 
y: the light absorption co effic ien t 
r: the particular distance between two fir e flie s  
D : the domain space
D efine the objective function  /(X ), where 

X = f o , ..... ,x d)T
Generate the initial population o f fire flie s , Xt 

(i = 1,2,.....,n)
Determine the light in tensity It o f

ith f i r e f ly  Xt via f (X t) 
while t  < MaxGen do 
f la g  = true;
while f la g  = true and t  < MaxGen do 

fo r  i = 1  : n (all n fire flies)  do 
fo r  j  = 1  : n (all n fire flies)  do 

i f l j > h
Move f i r e f ly  i towards j  by using eq (1);

End i f
A ttractiveness varies w ith distance 
r via e~Yr2 using eq (2);
Evaluate new solutions and update 
light intensity; 

end fo r  
end fo r

Find the f ir e f l ie s  w ith the e lig ib ility  criteria
|/(X)| < 0:001;

Put them  into the archive and replace the positions
w ith random  fire flie s ;

I f  no f ire flie s  m atching with eligibility criteria  
f lag  = false;

End i f

I f  f la g  = false

count = random integer between 0 and n;
Create random f ire flie s  up to count and 

replace the population;
End i f

end while 
end while

Post process results and visualization;
End;



The archived firefly algorithm is specially designed 
to solve univariate nonlinear equations. Here finding 
a root of a nonlinear equation is considered as an 
optimization problem.

IV. MATLAB SIMULATOR

A simulator is developed successfully to graphically 
represent the results of AFFA. To create GUIs. 
Matlab GUIDE (graphical user interface design 
environment) is used [21]. Matlab GUIDE provides 
tools for designing user interfaces for custom 
applications. Using the GUIDE Layout Editor, we 
have designed a simple user interface. GUIDE then 
automatically generated the MATLAB code for the 
user interface, and the user can modify the program 
to control the application.

The first step was taken to solve nonlinear equations 
with real roots only. The user has to provide the 
equation, the lower and the upper bounds to specify 
the interval to find roots and the values for problem 
specific parameters (s.t Population size, number of 
iterations, alpha and gamma values). Then the 
simulator will display the root approximations. A 
simple GUI in the Matlab environment is 
implemented to display results graphically.

Fig 1. A Matlab GUI implemented to solve univariate 
nonlinear equations with real roots

When it comes to complex roots the environment is 
different. It is difficult to plot the function and 
display the roots: instead we used a real and an 
imaginary axis' to plot the roots. Apart from that we 
add a text box to display the root approximations. 
With all these modifications the new GUI to solve 
univariate nonlinear equations with real and/or 
complex roots is as follows.

Fig 2. A Matlab GUI implemented to solve univariate 
nonlinear equations with real and/or complex roots

The new application displays the roots in an argand 
diagram and the root approximations are displayed in 
a list box. Because of the archiving property we can 
expect more than one approximation for an existing 
root. Apart from these, the application has a reset 
button to reset the inputs.

We have solved nonlinear equations having both real 
and complex roots using the new application.

y = x 13 — 2x12 + 1 -> (3)

The above polynomial has 13 roots; 3 real roots and 
10 complex roots. We have used our application to 
find the approximations with the accuracy of 1 0 ~ 3 .



Fig 3. Root approximations given by the application 
for the Eqn 3.

V. NUMERICAL EXAMPLES

Several nonlinear equations are tested against the 
proposed Matlab application of AFFA. Main concern 
is to identify different varieties of nonlinear equations 
where the modified algorithm can be applied. The 
following equations represent different types of 
nonlinear equations tested with the AFFA. '

a. Following one dimensional trigonometric 
equation (adapted from Goldberg and 
Richardson, 1987) [19] has 51 real roots 
within the given interval and the AFFA 
approximated all 51 roots with an accuracy 
of 10- 3 . This equation proves the ability of 
AFFA in finding all the real roots of a 
nonlinear equation within a given interval.

y  = si n 3(Srix) where x  6 [—5,5]

b. Usual numerical methods need the equation 
to be differentiable to apply them for find 
roots. The Weierstrass functions possesses 
the property of being continuous everywhere 
but differentiable nowhere [20], Therefore 
numerical approaches are not suitable for 
such situations. But the AFFA as a 
mathematical simulator for a modified 
nature inspired algorithm is capable of 
facing such situations successfully: Here we 
present an example Weierstrass function 
having 25 real roots within [-20, 20] 
interval.

3

W(z) = ^ ( l / 2 i)sin(2 i x)
i =1

c. Numerical methods also require the property 
of continuity of a nonlinear equation to be 
solved, y  =  tan (x~) is a popular nonlinear 
equation with discontinuities. Our solution 
does not need the continuity of the function 
and is capable of approximating all the roots 
in a large interval. (As an example we have 
used the interval [-40,40].

y  =  tan(x)

d. There are some nonlinear equations where 
there is additional difficulty in calculating 
the roots. These are functions in which the 
desired root has a multiplicity greater than 1 . 
We can define it as follows. Let a  be a root 
of the function/(x), and imagine writing it 
in the factored form/(x) = (x -  a)mh(x), 
with some integer m  > 1  and some 
continuous function h(x) for which h(a) =£ 
0. Then we say that a  is a root of f ( x )  of 
multiplicity m. One of the main difficulties 
with the numerical calculation of multiple 
roots is

a. Methods such as Newton’s method 
and tiie secant method converge 
more slowly than for the case of a 
simple root.

We have solved the following nonlinear 
equation with multiple roots and found that 
our approach is successful.

y  = x* -  2x2 +  1 , [—2 , 2]

e. The suggested application is capable of 
finding complex roots too. When the 
function is having both real and complex 
roots within a reasonable range, the 
application calculates accurate 
approximations. The following equations 
were tested using the software.



Equation Region #of Roots
1

+ii [-1.5,1.5] X [- 
1.5, 1.5]

2 complex

2 y [-2, 0] X [-2, 2 Complex, 1
=  x 3 +  2 x z +  3 x  

+ 4

0] Real

3 y H ,3 ] X [ - 1 , 4 Complex. 1
= Xs -  3 x 4 

+  3X3 -  Z x 2 -  5

3] Real

4 y [-L  2] X [-1, 6 Complex, 1
=  x 7 -  x 6 +  2 x s

-  3 x 4 +  3X3

-  l x 1 -  5

2] Real

5 y [-1, 4] X [-1, 8 Complex, 2
=  x 10 -  3 x 9 

+  x 8 -  7 x 7 +  x 6 
-  x 4 +  2 x 2 -  5

4] Real

6 y [-1. 6] X [-1, 10 complex, 2
=  x 12 -  6 X 11 

+  x 10 -  5
6] Real

7 y [-1. 2] X [-1, 10 Complex. 3
=  x 13 -  2 x 12 

+  1

2] Real

Table 1: Nonlinear equations with complex roots

As the interval for the real roots situations, for the 
complex roots we seek roots within the specified 
region. Region of the function is the area we seek for 
the roots. According to the notation we adopted, [-1, 
2] X [-1, 2] region describes the area surrounded by 
the [-1, 2 ] real axis and the [-1, 2 ] imaginary axis.

. Imaginary axis

<------- 1----------1---------- 1---------- 11 -------------------------------------- j--------- j-------- 5* R ea l axis

■* -3 -2 *1_________ 2 5 t

Fig 4. [-1, 2] X [-1, 2], an example region used for 
the root finding

VI. RESULTS AND DISCUSSIONS

The quality of the developed software was compared 
with the original firefly algorithm, the original 
genetic algorithm and also with a genetic algorithm 
embedded with AFFA’s qualities. For the 
comparative purpose we have kept the population

size and the number of iterations per run 2 0 0 , as a 
reasonable scale for real roots and for both real and 
complex situations we kept it to 600. We have run 
our application for 100  times (1 0 0  runs) and the 
average number of roots given by each algorithm, 
(maximum number of roots found / total roots)’" 100% 
are calculated. As an example a result 19, (49%) 
indicates the average number of roots found in 100 

runs is 19 and the (maximum number of roots found 
in a run / total roots)* 100% is 49%.

Function GA Modifie 
d GA

FA AFFA

y = sin3 (57rx) 0, 51, 19, 51,
(0 %) ( 100%) (49%) (1 0 0%)

y 1. 25. 13, 25,
3

i=l

(4%) ( 100%) (6 8 %) (1 0 0%)

y = tan(x) 1. 25. 2 1 , 25,
(4%) (1 0 0%) (96%) ( 1 0 0%)

y = x4 -  2 x 2 + 1 2 . 4. 4, 4,
(50%) (1 0 0%) (1 0 0%) ( 1 0 0%)

Table 2: Performance of the algorithms for real
roots over 100 runs

The real roots situations were smoothly handled by
both Modified genetic algorithms and the proposed 
AFFA. The archiving property and diversifying the 
population during iterations is the reason for the good 
performance. When it comes to original algorithms,
firefly algorithm performs better than GA.

Equation GA Modified FA Modified
GA FA

T a b l e  1: E q u a t i o n 1 0. 2 . 2 , 2 ,
(0 %) ( 100%) ( 100%) ( 1 0 0%)

T a b l e 1: E q u a t i o n  2 1. 3, 3,
(33%) (33%) ( 1 0 0%) ( 1 0 0%)

T a b l e 1: E q u a t i o n 3 1. 5, 5,
(2 0 %) (2 0 %) ( 1 0 0%) ( 1 0 0%)

T a b l e 1: E q u a t i o n  4 1. 7, 7,
(14%) (14%) (1 0 0%) (1 0 0%)

T a b l e 1: E q u a t i o n  5 1. 9, 10 ,
( 10%) ( 10%) (90%) ( 1 0 0%)

T a b l e 1: E q u a t i o n 6 •>J. 11, 12,
(8 %) (25%) (92%) ( 1 0 0%)

T a b l e 1: E q u a t i o n  7 2 . 8 , 13,
(8%) (15%) (92%) ( 1 0 0%)

Table 3: Performance of the algorithms for real 
and complex roots over 100 runs



The modified genetic algorithm  perform ed well for 
real roots but it fails in finding com plex roots. 
Experim ents done w ith larger population sizes (1200, 

1500) w ere able to give com plex roots to some 
extent. To solve for com plex roots, modified GA 
needs a  large chrom osom e population under the 

given param eter setting to  provide approximations. 
To check its availability over com plex roots, we have 

to do m ore research on its recom bination and 
selection param eters. W ith the obtained results we 

claim  that A FFA  under sam e conditions perform ed 
well for the com plex roots as well. It is capable o f  
handling nonlinear equations having both real and 

com plex roots.

VII. CONCLUSIONS

A new  softw are application to  find roots o f  a 
univariate nonlinear equation having real and 
com plex roots is successfully im plem ented. Matlab, 
m athematical package is used to  im plem ent the 
application and graphical user interface design 
environm ent o f  m atlab (G UIDE) is also applied 
successfully. This can be stated as the first 
m athematical softw are tool im plem ented to solve 
nonlinear equations using a nature inspired algorithm 
w ith a  GUI component. The modification is 

successful in solving univariate nonlinear equations 
having both real and/or com plex roots w ithin a 
reasonable interval/ region. The m odification 
includes an archive to  collect best fireflies during 
iterations and replacing their positions w ith random 

ones. A lso a  flag w as used to identify poor iterations 
and to  change the random ness o f  the existing 
population. The sim ulation results for finding roots o f  

several num erical exam ples including an application 
o f  W eierstrass function and com plex polynom ials 
suggest that this new  firefly algorithm  w ith the 
archiving property is capable o f  finding alm ost all 
real and com plex roots o f  a  nonlinear equation 

simultaneously w ith the given accuracy o f lO -3 . It 
w orks for the m ultiple roots situations too. 
Com parison w ith other sim ilar nature inspired 
algorithm s including the original firefly algorithm 
clearly shows that th is m odified firefly algorithm 
outperform s all o f  them . This evidence suggests that 
the proposed firefly algorithm  is by far the best 
perform er in solving nonlinear equations w ith several 

real and com plex roots.

A lthough the im plem ented software application 

w orks well we w ould like to suggest some 
modifications to im prove it further. The algorithm 

lacks a good param eter optimization. That is any user 

w ho uses the software has to enter algorithm  specific 
param eters by them selves. Since the users are not 

experts in the field o f  nature inspired algorithm s we 
can’t expect them  to enter good param eter values. In 

this initial step w e have set all the param eters in to 
som e reasonable values where most o f  the equations 
can deal with. But research is open to find m ethods to 
do a good param eter optim ization for the algorithm 

for given situation.

W ith the results obtained, w e can conclude that the 
proposed firefly algorithm  is capable o f  giving 

reasonably good approxim ations for the nonlinear 

equations:

a. w ith several roots.
b. w ith m ultiple roots.
c. w hich are continuous but not differentiable.
d. w hich have discontinuities w ithin the 

interval.
e. w hich are having a pattern w ithin the given 

range.
f. w hich have roots over a  large interval.
g. having com plex roots as well as real roots in 

a  given interval.

Accuracy o f  the roots found by the modified FA is 

w ithin 1 (In to lerance . For higher accuracies one can 

treat these solutions as initial guesses and try out a 
suitable numerical approach. The accuracy o f  the 

solutions is lim ited to 1 0 -3  because our objective 

here is to  find alm ost all the solutions w ithin the 
given region. The approxim ations provided here 
highly depend on the population size, num ber o f  
iterations and also on the algorithm  specific 
param eter values. It is essential to define the num ber 
o f  iterations and the population size properly 
according to  the num ber o f  roots w ithin the specified 
interval.

D ifferentiability and continuity o f  the nonlinear 
functions are inessential w hen applying nature 
inspired algorithm s to obtain roots; thus they could 
be applied to  the functions arising from various 
practical situations where it is im possible to  apply 
formal numerical schem es. This can be considered as



the biggest advantages o f  using nature inspired 

algorithms.

The basic firefly algorithm introduced by Yang is 
powerful, but the problem o f  finding all real and 
complex roots o f  a given nonlinear equation 
simultaneously has not been addressed before. Thus 

our approach o f  introducing an archive is 

undoubtedly advantageous. The software with a 
graphical user interface gives users a user-friendly 
environment to use the application. But still this 
approach needs higher number o f  iterations and a 

large firefly population when we need higher 
accuracies in approximations. As an improvement we 
can test param eter optimization techniques which are 
able to adapt with our algorithm. Apart from that, one 

can check the application's ability o f  solving a given 
system o f  nonlinear equations.
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