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Decision trees are a popular technique in statistical data classification. They recursively 
partition the feature space into .disjoint sub-regions until each sub-region becomes 
homogeneous with respect to particular class. The basic Classification and Regression 
Tree (CART) algorithm partitions die feature space using axis parallel splits. When the true 
decision boundaries are no^ilignefr%itlfthe feature axes, this approach can produce a 
complicated boundary structure. Oblique decision trees use oblique decision boundaries 
to potentially simplify the^qndaryStructure. The major limitation of this approach is 
that the tree induction algorithm is Computationally expensive. Hence, as an alternative, 
a new decision tree algorithm called HHCART is presented. The method uses a series of 
Householder matrides to reflect the training data at each non-terminal node during tree 
construction. Each reflection is based on the directions of the eigenvectors from each class' 
covariance matrix. Considering of axis parallel splits in the reflected training data provides 
an efficient way of finding oblique splits in the unreflected training data. Experimental 
results show that the accuracy and size of HHCART trees are comparable with some 
benchmark methods. The appealing feature of HHCART is that it can handle both qualitative 
and quantitative features in the same oblique split

© 2015 Published by Elsevier B.V.

1. Introduction

Decision trees (DTs) are an increasingly popular method used for classifying data. In the typical tree building procedure, 
the space that the data occupies {feature space) is iteratively partitioned into disjoint sub-regions until each sub-region 
is homogeneous (or nearly so) ̂ i/ith respect to a particular class. In a DT, each sub-region is represented by a node in the 
tree. The node can be either terminal or non-terminal. Non-terminal nodes are impure and can be split further using a 
series of tests based on the featurefranables, a process called splitting. Each split is determined by considering a series of 
hyperplanes that separate the feature space into two sub-regions. The best hyperplane split is chosen as the one which 
maximises the change in an impurity function (A(l)). To obtain a fully grown tree, this process is recursively applied to each 
non-terminal node until terminal nodes are reached. The terminal nodes correspond to homogeneous or near homogeneous 
sub-regions in the feature space. Each terminal node is assigned the class label that minimises the misdassification cost at the 
node.

DTs play an important role in statistical learning and have been a popular technique for data classification over several 
decades (see Breiman et a!., 1984; Murthy et al., 1994; Lopez-Chau et al., 2013). In the tree building process, the aim is to
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produce accurate and smaller trees while minimising the computational time. Accuracy, size and time mainly depend on the 
way non-terminal nodes are split in a DT. Three types of splits are considered including axis parallel, oblique and non-linear 
splits. Axis parallel splits partition the space parallel to the feature axes. Therefore, axis parallel trees are desirable when the 
decision boundaries are aligned with the feature axes. Oblique splits are hyperplane splits defined by a linear combination 
of the feature variables. These splits are more appealing when the decision boundaries are not aligned with the feature axes. 
Non-linear splits (Ittnerand Schlosser, 1996; Li et al., 2005) are general class of splits. Decision boundaries generated by 
these splits can take arbitrary shapes and can easily be influenced by noise data (U et al., 2005).

Many algorithms have been proposed to induce DTs. In general, these algorithms differ in the way they search for the 
best split at each non-terminal node. Many studies show that trees which use oblique splits generally produce smaller trees 
with better accuracy compared with axis parallel trees (Li et al., 2003). Therefore, they have become increasingly popular in 
DT literature and motivated us to propose anew  methodology to construct a DT that uses oblique splits at each non-terminal 
node. These DTs are called oblique decision trees (Murthy et al., 1994). More specifically, let the feature vector consists of 
p attributes, x =  [X], x2, . . .  ,xp]T where x, e  R. The oblique splits can be defined as linear combinations of features of the 
form:

P , . .
< 0 . whereO i,a2,... ,O p +1 e R . (1)

k= 1

One of the major issues when inducing an oblique DT is the time complexity of trie induction algorithm. In a data structure 
with p feature variables and n examples at a non-terminal node, the number of splits to be evaluated to find the best axis 
parallel split is 0(np). Therefore, the globally optimal split (with respect to an impurity function) at a non-terminal node can 
be found by exhaustively searching all possible splits along the feature axes. However, the number of splits to be evaluated
to find the best oblique split at a node by exhaustive searching is. at most; O jV  x (p))-(M urthy et al., 1994). Hence an
exhaustive search for the best oblique split is impractical. Furthermore, the best split at a node does not necessarily lead to 
the optimal tree. Spending more time searching for the best split at a node in general may not be beneficial (Iyengar, 1999). 
Furthermore, Hyafil and Rivest (1976) pointed out that the problem rif finding an optimal binary DT is an NP-complete 
problem. This led us to search for efficient heuristics for constructing near optimal DTs. In this work, we propose a simple, 
and effective heuristic method to induce oblique decision trees, ' x

The remaining sections of this paper are organised as follows: Section 2 highlights related work. Section 3 introduces the 
proposed method. Comparisons with some commonly used DT algorithms are presented in Section 4. Section 5 concludes 
the paper with a discussion. x

2. Related work

Most of the oblique DT induction algorithms construct DTs in a top-down fashion (Rokach and Maimon, 2005). The 
induction algorithms differ in the way they search for the best split and can be categorised as follows. We define three 
categories: (1) induction algorithms that use optimisation techniques, (b) standard statistical techniques and (3) those that 
use heuristic arguments. x

/'* .
2.1. Tree induction methods based on optimisation techniques

The first major oblique DT algorithm was Classification and Regression Trees—Linear Combination, which is commonly 
known as CART-LC (Breiman ef al., 1984). CART-LC uses a deterministic hill-climbing algorithm to search for the best 
oblique split at a non-terminal node. A backward feature elimination process is also carried out to delete irrelevant features 
from the split CART-LC will not necessarily find the best split at each node because there is no built-in mechanism to 
avoid getting stuck in the local maxima of A ( I ) .  The best split found may be only a local, rather than global, maximiser 
ofri(f).

Simulated Annealing Dedsion tre e  (SADT) was introduced by Heath et al. (1993). This DT uses the simulated annealing 
optimisation algorithm, which uses randomisation, to search for the best split The use of randomisation potentially avoids 
getting stuck in local maxima of A ( l ) .  The main disadvantage of the algorithm is the time taken to find the best split. In 
some cases, it may require the evaluation of tens of thousands of hyperplanes before finding an optimal split (Murthy et al.. 
1994). "

The concepts of CART-LC and SADT are combined to produce a new oblique DT methodology called OC1 by Murthy et al. 
(1994). Their method uses a deterministic hill-climbing algorithm to perturb the coefficients of an initial hyperplane until 
a local maximum of A ( I )  is found. The hyperplane is then perturbed randomly in an attempt to find a hyperplane that 
improves A ( l )  further. These two steps are repeated several times. Each time, the algorithm starts with a different initial 
hyperplane, with one being the best axis parallel split and the others chosen randomly. After many hyperplanes have been 
evaluated, the one that maximises A ( I )  is taken as the splitting hyperplane. The time complexity at each non-terminal 
node for OC1 in the worst case scenario is shown to be O (pn2 log n), provided that Max Minority or Sum Minority impurity 
measures are used. However, the complexity may increase for other impurity measures and for multi-class problems. One
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feature of both SADT and OC1 is that both algorithms can construct different decision trees on different runs using the 
same learning sample. Therefore, it is possible to run these algorithms multiple times and pick the best tree. However, this 
advantage is only realised on relatively small training example sets.

2.2. Tree induction methods based on standard statistical techniques

Various oblique DT induction algorithms have been developed using standard statistical techniques, and can be found 
in Gama and Brazdil (1999), Kolakowska and Malina (2005), Li et al. (2003) and Lopez-Chau et al. (2013). The advantage 
of this approach is that the time required to induce DTs is generally lower than those based on optimisation algorithms. 
Fisher’s Decision Tree (FDT) (Lopez-Chau et al., 2013) finds separating hyperplanes using Fisher’s Linear Discriminant At 
each non-terminal node, examples are projected onto the vector given by Fisher’s linear Discriminant analysis. Axis parallel 
splits are then searched along the vector to find the best split Quick Unbiased Efficient Statistical Tree (QUEST) (Loh and 
Shih, 1997) uses Linear Discriminant Analysis (LDA) to find file best split at each node and hence there is no requirement for 
searching for the best sp lit QUEST’S axis parallel tree begins by performing an analysis of variance test at each non-terminal 
node to select the best feature. LDA is then applied on the selected feature to find the best splitting point. QUESTS oblique 
DT simply applies LDA on all features to find the best splitting hyperplane. Furthermor£"QUEST is able to find oblique splits 
that are a linear combination of qualitative and quantitative features. For multi-class problems, QUEST groups the classes 
into two super-classes using the k-means clustering algorithm, where k =  2, which increases the time complexity of the 
algorithm. . ' -

2.3. Tree induction methods based on heuristics

DTs based on heuristic arguments have gained popularity in the recent ;past (Amasyah and Ersoy. 2008; Manwani 
and Sastry, 2012). In this approach, an argument is constructed by assuming the structure of the class boundaries. If the 
assumption is true, DTs based on heuristic arguments can produce accurate and small trees.

The Cline algorithm (Amasyah and Ersoy, 2008) uses three heuristics to find three “best” splits at each non-terminal 
node. The overall best split is taken as the separating hyperplane. Die d ine algorithm is a two-class classifier, so therefore, in 
multi-class problems, it constructs several classifiers each to distinguish each class from the other classes. More specifically,
if there are C classes then the d ine  algorithm constructs ( 0  classifiers.

The CARTopt algorithm introduced by Robertson et al.(2013) uses a two-class oblique tree to find a minimiser of a non­
smooth function/(x) where x  € E". Initially, the examples inE" are labelled as high and low, depending on their value 
of f ix ). An oblique DT is then used to form a partition on E" that separates the low points from high points. Rather than 
forming the oblique DT directly, the authors reflected the training examples using a Householder matrix. Axis parallel splits 
are then searched in the reflected training data. These splits are oblique in the original space.

In summary, DT algorithms use various methodstofind the best split at a non-terminal node. Some methods tty to expand 
the search space, as higher search space potentially leads to  finding better splits. For example, OC1 uses a randomisation step 
to pdtentially avoid the local maximum of A(I) found by the hill-climbing algorithm. This can be perceived as an attempt to 
expand the search space. Furthermore, the FDT uses axis parallel splits along Fisher’s discriminate vector. The d ine algorithm 
uses three different methods to find the best split at a non-terminal node. The search space of each method is different from 
that of the others and thus indirectly creates a higher space for searching. Hence, the literature shows that expansion of the 
search space would be one of the strategies for finding better splits in the DT context However, the key point is to use an 
efficient searching method in the expanded search space.

CARTopt introduces a new heuristic to induce oblique decision trees. It uses the simplest form of splits, axis parallel 
splits, to find oblique splits. Hence the time complexity of searching oblique splits using CARTopt’s approach is less than 
those based on optimisation algorithms. In this study, we extend CARTopt’s idea in a number of ways to develop a complete 
oblique DT for statistical data classification. In particular, the Householder reflection is used to: (1) find the oblique splits in 
the original feature space using the axis parallel splits in the reflected feature space and (2) expand the search space where 
the best split can be found at a miiiimal cost.

3. Methodology

We extend the oblique DT method used in the CARTopt optimisation algorithm of Robertson et al. (2013) in a number 
of ways to develop a complete oblique DT called HHCART. First, CARTopt is designed to classify two classes, whereas 
HHCART can handle multi-class classification problems. Second, CARTopt reflects the training examples at the root node 
only, whereas HHCART performs reflections at each non-terminal node during tree construction. Finally, CARTopt is only 
defined for quantitative features, whereas HHCART is capable of finding oblique splits, which can be linear combinations of 
both quantitative and qualitative features.

In our approach, we find each separating hyperplane by considering the orientation of each class. We propose the 
dominant eigenvector of the covariance matrix of a class to represent the orientation of that class. If this orientation is 
parallel to one of the feature axes, the best separating hyperplane may be found by performing axis parallel splits. Otherwise,

Please c ite  th is  a rtic le  in  press as: W ickram arachch i. D .C ,e t al., HHCART: A n  ob lique  decision tree. C om puta tiona l S tatistics and Data Analysis (2015), 
h ttp ://dx .do i.O rg /10 .1016/j.csda.2015.11.006

http://dx.doi.Org/10.1016/j.csda.2015.11.006


ICOMSTA: 61771

4 D.C Wickramamchchi e ta l /  Computational Statistics and Data Analysis xx (xxxx) xxx-xxx

Fig. 1. M echanism  o f  th e  H ouseho lder re fle c tio n . The separating hyperp lane  is para lle l to  the  d o m in a n t e igenvector o f  Class 1. (a) Scatter in  the  o rig in a l 
space, d 1 is  d ie  d o m in a n t e igenvector o f  th e  class covariance m a tr ix  o f  Qass 1. (b )S ca tte r in  th e  re fle c te d  space and th e  best axis para lle l s p lit  found , (c ) 
O blique  s p lit  in  th e  o rig in a l space. / , '

we reflect the set of examples to a new coordinate system such that the orientation of one of the classes becomes parallel to 
one of the axes in the reflected feature space. Axis parallel splitslean then be searched in the reflected feature space to find 
the best split This split will be oblique in the original feature space (Robertson et al., 2013).

Consider the two-dimensional two-class classification problems shown in Figs. 1(a) and 2(a). The separating hyperplane 
in Fig. 1(a) is parallel to the dominant eigenvector of Class 1, whereas die separating hyperplane for in Fig. 2(a) is 
perpendicular to the dominant eigenvector of Class 1.

We reflect the examples using a Householder matrix that can be defined as follows. Let d 1 be the dominant eigenvector of 
the estimated covariance matrix of Qass 1 examples. Therefore, an orthogonal symmetric matrix Hpxp (where p is number 
of features) exists such that: /? ' \  ;

H =  / — 2uur where u  =  ------ — - 7-,
l le i-d ’ lb

T / /  .
and elpxl =  (1 ,0 ........0)V  . /  '

(2)

Let ©„xp be rite training example s e t  The reflected example set 2)„xp is obtained using f> =  DH. Since Hpxp is symmetric 
and orthogonal, a point in the transformed space can be mapped back to the original space at a minimal cost (HH =  I). The 
mechanism of the Householder,reflection is that it reflects vector d 1 onto e! by a reflection through the plane perpendicular 
to vector ei — d 1. The reflected example sets are shown in Figs. 1(b) and 2(b). Each column of H represents the direction 
of a coordinate axis in the reflected space. Axis parallel splits are searched along these axes. These splits are oblique in the 
original space. For each illustration, the best axis parallel split found in the reflected space that is oblique in the original 
space is shown in Figs. 1(c) and 2(c).

The time complexity ofthe proposed method is mainly dependent on the time taken to: (1) transform the example set 
and (2) perform the aids parallel splits. The time complexity of the transformation can be reduced using the Householder 
reflection. A simple rotation could have been used for the transformation; however, mapping an arbitrary non-zero vector 
to a coordinate axis ran be done more efficiently using a Householder reflection than a rotation.

Therefore, the Householder reflection helps efficient oblique DT construction because, firstly, if the class separation 
boundary is notaligned with the feature axes, the Householder reflection potentially makes it parallel to a feature axis 
of the transformed space that can search using axis parallel splits. Secondly, one Householder reflection constructs a new 
p-dimension feature space and therefore can enhance the search space for split finding. Better splits can potentially be 
found by expanding the search space but this increases the time complexity of the tree induction process. However, the 
Householder reflection provides an elegant way to construct new feature spaces where axis parallel splits are effective; 
hence searching for the best split can be performed with a minimal cost in a higher search space. Thirdly, transformation of 
example set can be done efficiently.
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Fig. 2 . M echanism  o f  th e  H ouseholder re fle c tio n . The separating hyperp lane  is pe rp e nd icu la r to  th e  d o m in a n t e igenvector o f  Class 1. (a) Scatter in  the 
o rig in a l space, d 1 is  th e  d o m in a n t e igenvector o f  th e  class covariance m a tr ix  o f  Class l, . (b )  S ca tte r in  the  re flected space and the  best axis para lle l s p lit 
found, (c ) O blique  s p lit  in  th e  o rig in a l space.

The axis parallel search space can be further enhanced by using all possible eigenvectors for reflection. For a 
p-dimensional classification problem with C classes, there are Cp eigenvectors and hence there are Cp p-dimensional search 
spaces. However, this increases the time complexity of tree induction but provides an opportunity to produce better trees.

Here, we explain the complete algorithm of HHCART. We propose two versions of HHCART: HHCART(A) is based on all 
possible eigenvectors of all classes and HHCART(D) is based on only the dominant eigenvector of each class. For any given 
non-terminal node t, let Dt and Ct be the set of examples in d  classes available at that node respectively. At node t, both 
algorithms first find the best axis parallel split, h°p. HHCART(A) then finds all eigenvectors of the estimated covariance matrix 
for each class, whereas HHCART(D) finds the dominant eigenvector of each class only. A Householder matrix is constructed 
for each eigenvector. £>t is then reflected using each Householder matrix, and axis parallel splits are performed along each 
coordinate axis in the reflected space. Letht be the best axis parallel split found in the reflected space. Out of ht and hap 
the better one is chosen as the separating hyperplane at node t. However, if the eigenvector is already parallel to any of the 
feature axes, no reflection is done. The hyperplane found divides node t into two child nodes. The algorithm is recursively 
run on all child nodes until each child node satisfies either of the following:
(a) The misdassification rate at the child node is either 0 or is not greater than a user-specified threshold (MisRate); or
(b) The number of examples in the node is less than or equal to a user-specified threshold (MinParent).

In both algorithms, the reflection is done if an eigenvector is not parallel to any feature axis. However, there may be a 
situation where the eigenvector is almost parallel to a feature axis and thus the reflection may not be beneficial. Therefore, 
another parameter r  is introduced to  the algorithms that can be used as a threshold to determine the parallelism between an 
eigenvector and a feature axis. That is, if ||e —d|| < r , where e is a basis vector and d is an eigenvector, no reflection is done. 
If r  is a small positive value, then those eigenvectors which are nearly parallel to any feature axis are not considered for the 
reflection because: (1) the axis parallel search in the reflected space may not be more effective than the axis parallel search in 
the original space and (2) it speeds up the tree induction by avoiding possible duplicate search spaces. In the experiments, r 
was set arbitrary to 0.05. However, the user can choose any small positive value or use a separate cross-validation procedure 
to estimate the optimal value for t .

An overview of HHCART(A) algorithm at node t  is given in Algorithm T. The time complexity at a node for HHCART(A) in 
the worst case is 0  (Cp2 (p +  nlogn)) (see Appendix for the derivation). However, if HHCART(D) is used, the time complexity 
reduces to 0  (Cnp (p +  log n)). For n »  p, the time complexities of HHCART(A) and HHCART(D) simplify to 0  (Cp2n log n) 
and 0  (Cnp log n) respectively. The time complexity of OC1 in the worst-case scenario is 0  (pn2 log n) when Max Minority 
or Sum Minority impurity measures are used. Hence for large, n, both HHCART(A) and HHCART(D) are more efficient than 
OC1.
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Data: Input: Examples at node t, called 2)t, Minparent, MisRate, and r  >  0. 
initialisation;
Define Nt = Number of examples in S t ;
Define mpt = misdassification rate at node t;
Define Ct = number of classes at node t;
Define p = number of features;
A(Imax)  =  0 ; 
ht =  empty;
if (Nt > Minparent) and (MisRate < mpt) then 

h f  = The best axis parallel split; 
ht =  ti?\
AQmax) = Impurity reduction due to h f ; 
for i=l :Ct do

Extract the examples that belong to the ith class in £ t, called D,;
Compute the normalised eigenvectors and eigenvalues of estimated covariance matrix for D,;

((d1', A1'), ...(dpi, Xp ))
for j=l:p do 

if X1' ±  0 then
if ||ei — tP'll <  r  or ||e2 -  tf'|| < z o r  . . . o r  \\ep -  rf‘|| <  r  then 
| /ff =  I, the Identity matrix; 

else
j Construct the Householder matrix Hj' using tP ; 

end
Reflect 2)t : Dt =  Dt * H}';
Find the best axis parallel hyperplane split, called hf; 
if impurity reduction o//r[' >  A(lmax) then

Replace ht with frf, the best hyperplane found so far; 
Replace A(Imax) with the impurity reduction of ft? 

end 
end 

end 
end 

end
Algorithm 1: Overview of the HHCART(A) algorithm at a single node.

3.1. Small samples

As the tree grows, the number of examples at each node usually becomes small. This raises two questions to be answered, 
(a) Is it worthwhile searching for an oblique split or is an axis parallel split sufficient? (b) Covariance matrices tend to be 
singular with small samples. The first problem is common for any oblique DT. In the OC1 algorithm, the authors suggest 
using oblique splits if the number of examples at a node is greater than twice the number of feature variables. The second 
question has two parts: The effect of a small sample for HHCART is as follows:

1. Lack of information in eigenvectors with zero eigenvalues from a singular covariance matrix:
2. Eigenvectors are not informative for classes with only one example or several examples with the same feature vector.

The first problem can be solved without modifying the method because the reflection is done using the available 
eigenvectors. For the second problem, these classes are disregarded from eigenanalysis. However, if all the classes suffer 
from this problem, axis parallel splits are performed. A

32. Qualitative variables

Data classification problems often contain a mixture of quantitative and qualitative feature variables. Since the class 
discriminatory information may be contained in both types of feature variable, an effective classifier should be able to handle 
both types of features in the classification process. For a qualitative feature variable X, the form of the split is given by X e  A, 
where A is a non-empty subset of values taken by X. If a qualitative feature has M non-empty levels, 2M_1 — 1 splits are 
possible. Axis parallel algorithms that consider qualitative splits can be found in Quinlan (19S6). Incorporating qualitative
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Table 1
Real exam ple sets w ith  q u a n tita tive  features, dow nloaded fro m  d ie  UCI repository.

Dataset No. o f  feature No. o f  classes No. o f  exam ples

H e a rt (HRT) 13 2 270
Pima Ind ian  (PIND) 8 2 768
Breast Cancer (BC) 9 2 638
Boston H ousing  (BH) 13 2 506
W in e  (W IN E) 13 3 178
BUPA 6 2 345
Balance Scale (BS) 4 3 625
Class (GLS) 9 7 214
S hu ttle  (SHUT) 9 7 5 8 0 0 0
L e tte r (LET) 10 26 2 0 0 0 0
S urviva l (SUR) 3 2 306

features in oblique splits has not been explored to any great extent. The QUEST algorithm (Lqh and Shih, 1997) is capable of 
finding oblique splits with both qualitative and quantitative features. QUEST transforms each unorflered qualitative feature 
variable into a new ordered quantitative feature variable. Each level of an unordered qualitative feature is mapped to a 
ordered value called a CRIMCOORD. The exact CRIMCOORD algorithm can be found in Loh and Shih (1997). We implement 
the same CRIMCOORD algorithm in HHCART to induce oblique splits that contain both qualitative and quantitative features. 
At each node, a new quantitative feature is constructed for each qualitative feature by mapping its levels to CR1MCOORDS. 
These new quantitative features are then amalgamated with the existing quantitative features in the example set. The 
HHCART algorithm can then be applied to find the best oblique split. At each node, the CRIMCOORD corresponding to 
each level of each qualitative feature is stored. During prediction, the level o f each qualitative feature of an unclassified 
observation is replaced by the corresponding CRIMCOORD attached to each node along its path.

4. Experiments

Two sets of experiments were carried out to compare the performance of HHCART with other DT methods. The first 
experiment considered quantitative example sets and the second experiment considered example sets with both qualitative 
and quantitative features. Both HHCART(A) and HHCART(D) methods were considered in the experiments.

4.1. Comparison on example sets having quantitative features only

In this section, we compare the HHCART methods with FDT, OC1, OC1-LC (the OC1 version of Breiman's linear 
combination methods) and OC1-AP (the OC1 version of axis parallel splits). All of the OCl’s methods are freely available in 
the OC1 system at Murthy et al. (1993) and FDT is freely available at http://alchau.com/research/src/. However, the backward 
feature elimination process o f Breiman’s CART-LC method is not included in 0C1-LC and hence is somewhat different from 
the original method. For all the methods, accuracy and tree size are estimated using fivefold cross-validations. FDT uses 
stratified random sampling to construct cross-validation samples, whereas the 0C1 algorithms use simple random sampling. 
Hence, comparisons of the methods are done separately. In the first case, the HHCART methods are compared with the 
0C1 algorithms using simple random sampling cross-validations. In the second case, the HHCART methods are compared 
with FDT using stratified random sampling cross-validations. Experiments were performed on real example sets that were 
downloaded from Bache and Lichman (2013) and are given in Table 1.

4.1.1. HHCART methods versus 0C1 algorithms
For HHCART(A) and HHCART(D), the parameters are set as follows: MinParent =  2, MisRate =  0 (to avoid pre-pruning) 

and r =  0.05 (arbitrary). All the algorithms used the Twoing rule as the measure of impurity (Breiman et al„ 1984) and 
Cost complexity pruning (Breiman et al.. 1984) with zero standard error. For OC1, the number of restarts and the number 
of jumps were set to 20 and 5 (default values) respectively. Fivefold cross-validations (based on simple random sampling) 
were used to estimate the classification accuracy. For each fold, 10% of the training set was used exclusively for pruning. We 
then used 10 fivefold cross-validations to estimate the accuracy and the size of the tree. Therefore, to estimate accuracy and 
tree size (number of terminal nodes), the average over 10 runs was used. The results are reported in Table 2 along with the 
respective standard deviations.

The Shuttle dataset comes with its own training set containing 43,500 examples and a test set with 14,500 examples. 
Therefore, instead of performing a cross-validation experiment, we induced 10 trees, each using 90% of the training examples 
for induction and the remaining 10% for pruning. The accuracy of all the trees was estimated using the Shuttle data test se t  
Since approximately 80% of the examples belong to Class 1, the aim is to achieve an accuracy of 99%-99.9% (Bache and 
Lichman, 2013).

Table 2 shows the results for our first experiment. The average accuracies and the average tree sizes of 10 fivefold 
cross-classifications are listed in the table. It is clear that oblique splits reduce the average tree size for all the datasets
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Table 2
Results o f  HHCART and o th e r DT m ethods. The tree  size is measures as th e  n u m b e r o f  te rm in a l nodes.

Dataset DT Average accuracy Average tree  size Dataset DT Average accuracy Average tree  size

BS HHCAR7IA) 9 2 5  ±  1 5 7.4 ±  1 5 PIND HHCART(A) 7 3 5  ±  1.4 11.9 ± 6 5
HHCART(D) 88.3 ±  1.7 12.1 ±  3 5 HHCART(D) 73.7 ±  1 5 1 1 5  ± 8 .4
OC1 9 1 5  ±  0 5 8 .7  ± 3 .4 OC1 73.4 ±  1.0 9 5  ± 5 .4
OC1-AP : 7 8 5 ± 1 5 3 7 5  ± 1 6 .8 OC1-AP 73.6 ±  1.4 15.9 ±  8.7
OC1-LC 84.3 ±  1 5 12.6 ±  6 5 OC1-LC 7 2 5  ±  1 5 11.4 ± 9 .6

BH HHCART(A) 83.4 ±  12 7.0 ±  2.9 SHUT HHCART(A) 99.94 ±  0.02 25.4 ± 5 5
HHCART(D) 82.0 ±  1.1 8.0 ±  2 5 HHCART(D) 9 9 5 7  ±  0.05 28.8 ± 4 5
0C1 82.2 ±  12 9.3 ±  3.4 OC1 9 9 5 5  ±  0.03 32.6 ± 7 .7 1
OC1-AP 82.0 ± 0 .7 13.0 ± 5 5 OC1-AP 9 9 5 7  ±  0.02 26.5 ±  5.6
OC1-LC 8 1 5  ±  1 5 10.6  ±  6 .0 OC1-LC 88.4 ± 7 .0 7 44.7 ± 4 2 .4

BC HHCART(A) 9 7 5  ± 0 .3 2 5  ± 0 .4 W INE HHCARTIA) 91 .4  ±  1 5 3.4 ± 0 5
HHCART(D) 9 7 5  ± 0 5 2 .6  ±  1.1 HHCARITD) 8 8 5  ±  1.8 4.7 ±  0.7
OC1 95.4 ± 0 5 3 5  ±  1.4 OC1 8 9 5  ±  2.1 3 5  ±  0.3
OC1-AP 94.0 ± 0 .8 8 5  ±  3 5 OC1-AP 8 9 5  ±  4.6 4.6 ± 0 .6
OC1-LC 9 5 5  ± 0 .6 3.4 ±  1.6 OC1-LC 89.4 ± 2 .7 3.8 ±  0.6

BUPA HHCART(A) 6 4 5  ±  3.0 7.8 ±  1 5 LET HHCART(A) 82.1 ±  0 5 759.2 ±  88.1
HHCA RITD ) 64.8 ± 2 .1 1 0 5  ±  3.0 HHCARITD) 83.1 ± 0 5 11355  ±  122
OC1 6 6 5  ± 2 5 8 5  ±  6.1 OC1 83.6 ±  0.4 11975 ± 8 8 5
OC1-AP 64.7 ±  2 5 1 3 5  ± 1 0 5 OC1-AP 8 6 5  ± 0 5 1611.7 ± 6 0 .0
OC1-LC 64.4 ±  2.4 8.9 ±  3.6 OC1-LC 84.5 ±  0 5 1332.6 ±  146.3

GLS HHCARUA) 6 1 5  ± 3 .1 8 .8  ±  3.1 SUR HHCARITA) 725 ±  1.7 6.5 ±  2.6
HHCART(D) 61.7 ±  3.4 10.7 ±  2.7 HHCARITD) 7 2 5  ±  2 5 10.6 ±  5.5
OC1 61.1 ± 3 5 10.8 ± 4 5 OC1 71.0 ± 2 .1 6.4 ±  3 5
OC1-AP 64.6 ± 3 5 14.6 ±  8.7 OC1-AP 7 1 5  ±  15 10.7 ±  6 5
0C1-LC 6 7 5  ±  2.0 12.0 ±  3.6 OC1-LC 7 0 5  ±  2.4 8.1 ± 4 .4

HRT HHCART(A) 75.0 ± 2 5 5 5  ±  1.9
HHCARITD) 7 5 5  ±  3.6 8.1 ± 3 .1
OC1 77.1 ±  2 5 3.6 ±  1.0
OC1-AP 76.3 ±  2.3 6.7 ±  2.4
OC1-LC 7 6 5  ±  2 5 4.0 ±  1.1

while increasing the accuracy for most datasets. The average accuracy of HHCART(A) is significantly (more than 2 standard 
deviations) higher than all the other methods tested for the BC dataset except for HHCART(D). For all other example sets, 
there is no significant difference between HHCART(A) and the other methods in terms of the average accuracies, except for 
LET. However, the average accuracy of HHCART(A) is higher than the other methods for the BS, BH, WINE and SUR example 
sets.

The average tree sizes of HHCART(A) are consistently smaller than the average tree sizes of other methods except for the 
HRT, PIND and SUR datasets. Therefore, the performance of HHCART( A) with respect to accuracy and tree size is better than 
the other methods for the BS, BH, BC WINE and SUR datasets.

Eight of the 11 datasets have at least eight features. For five (BH, BC, PIND, WINE and SHUT) of these relatively high­
dimensional datasets, the performance of HHCART(A) is comparable with OC1 and OC1-LC Therefore, we can conclude that 
the proposed method works well in relatively high-dimensional feature spaces.

For all the datasets except BS and WINE, HHCART(D) performs as well as HHCART(A) in terms of the average accuracy. In 
addition, the tree sizes of HHCART(D) are comparable with those produced by HHCART(A) except for the BS, BUPA, HRT, LET 
and SUR datasets. The performance of HHCART(D) is similar to OC1 with respect to both the accuracy and tree size for all the 
datasets except the BS, BUPA, HRT and SUR datasets. The time complexity of HHCART(A) is higher than that of HHCART(D) 
by a factor of 0(p). The results show that HHCART(D) produces DTs with similar accuracies and sizes to HHCART(A) and OC1 
for most of the datasets. Hence HHCART(D) would be a more efficient method to use for higher-dimensional problems.

Some of the example sets have imbalanced class distributions. Hence, in addition to the average accuracy, the measures 
such as the true positive rate, the true negative rate and the F-measure (F-measure is the harmonic mean of precision and 

o  recall.) are computed and reported in Tables 3 and 4 respectively. However, OC1, OC1-LC and OC1-AP do not have an inbuilt 
functions to obtain the true negative rate and the F-measure. Therefore, only the true positive rate is reported for the OC1 
algorithms. All additional measures are reported for HHCART(A) and HHCART(D). The true positive rate and the true negative 
rate are computed for each class. However, for the F-measure, a common value is obtained by combining the class-wise 
F-measures. Two combined F-measures are proposed in Sokolova and Lapalme (2009) namely: (1) the macro F-measure 
and (2) the micro F-measure. The macro F-measure is suitable for classification problems with imbalanced class distributions 
(Sokolova and Lapalme, 2009). Therefore, in this study, the macro F-measure is used as the combined F-measure. All values 
in Tables 3 and 4 are the averages of 10 repetition of fivefold cross-validations. The true negative values for HHCART(A) and 
HHCART(D) are given in HHCART(A) and HHCART(D) columns in Table 3 within parentheses.

It is clear from Table 3 that in general, minority classes have lower true positive rates for all methods. For the BS and 
BC example sets. HHCART(A) has higher true positive rates for minority classes, whereas for the BUPA and PIND example 
sets, OC1 has higher true positive rates for minority classes. HHCART(D) performs well for the BC, SHUT and SUR example
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T ab le  3
C om parison o f  tru e  p o s itive  rates. T rue  negative  ra tes fo r  HHCART(A) and  HHCART(D) are g iven  in  the  parenthesis in  th e  respective colum ns. S tandard 
de v ia tio n s  w h ic h  are less th a n  0.2 are o m itte d . A lg o rith m s  are ranked  based on  th e  tru e  p o s itive  rates o f  th e  m in o r ity  classes and th e  m ean ra n k  is reported. 
The LET exam p le  set has 26  classes and is  th e re fo re  o m itte d  fro m  th e  tab le  due to  space constra in ts.

E xam ple set □ass
No. o f  exam ples

HHCART(A) HHCART(D) OC1 OC1-AP OC1-LC

1(49) 0 .6 6 (0 .9 7 ) 0 .3 4 (0 .9 6 ) 0 .6 0 .02 0.1
BS 2(288) 0 .9 5 (0 .9 6 ) 0 3 2 (0 .9 3 ) 0.95 0.84 0 3

3(288) 0 .9 4 (0 .9 6 ) 0 3 3 (0 .9 1 ) 0.94 0.85 0 3 1
BH 1(246) 0.83 (0.83) 0 3 4 (0 3 0 ) 0.83 0.84 0.82

2(260) 0 .8 3 (0 .8 3 ) 0 3 0 (0 3 4 ) 0 3 1 0.81 0.81
BC 1(444) 0 .96(0 .98 ) 0 3 6 (0 3 8 ) 0 3 5 0.95 0 3 5

2(239) 0.98(0.96) 0 3 8 (0 .9 6 ) 0 3 5 0 3 2 0.96
BUPA 1(145) 0 J 0 (0 .7 6 ) 0 3 2 (0 .7 4 ) 0 3 5 0.48 0.46

2 (2 0 0 ) 0 .7 6 (0 3 0 ) 0 .7 4 (0 3 2 ) 0.76 0.77 0.78
GLS 1(70) 0 .7 5 (0 .7 9 ) 0 .7 (0 .80 ) 0.69 0.78 0.76

2(76) 0 .6 3 (0 .7 9 ) 0 .64(0 .77 ) 0.61 0 3 9 0 .68
3(17) 0 .0 8 (0 .9 7 ) 0.1 (0 .97) 0 .12 0.19 0.18
5(13) 0 .3 2 (0 .9 7 ) 0 .43(0 .97 ) 0.47 0 3 9 0 3 2
6(9) 0 .3 (0 .98 ) 0.34 ± 0 3 2  (0 .98) 0 3 2  ± 0 3 7 0 3 2 0.68 ± 0 3 2
7(29) 0 .8 2 (0 3 4 ) 0.81 (0 .95) 0 3 0.81 0 .82

HRT 1(150) 0 .7 8 (0 .7 1 ) 0 3 2 (0 .6 7 ) 0 .8 0 .8 0.77
2 ( 1 2 0 ) 0.71 (0 .78) 0 .6 7 (0 3 2 ) 0.73 0.72 0.75

PIND 1(500) 0 .8 3 (3 4 ) 0 .8 4 (0 3 5 ) 0.82 0.83 0 3 2
2(268) 0 3 4 (0 3 3 ) 0 3 5 (0 3 4 ) 0 3 8 0 3 7 .0.56

SHUT 1(1 1 4 78 ) 1 ( 1 ) 1 ( 1 ) 1 1 0.97
2 (13) 0 3 5 (1 ) 0 .9 (1 ) 0 3 5 0.92 0 3  ± 0 3 4
3(39) 0 .9 7 (1 ) 0 3 9 (1 ) 0.97 0.99 0 3 6  ± 0 .3 7
4(2155) KD KD 1 1 0 3 7  ± 0 .3 4
5(809) KD 0 .1 ( 1 ) 1 1 0.39 ± 0 .4 3
6(4) 0.45 ± 0 .4 9 (1 ) 0.85 ± 0 .3 1 (1 ) 0 3 8  ± 0 3 4 0.7 ± 0 .4 8 0 3
7(2) KD KD 1 1 0 3 5  ± 0 .4 2

W INE 1(59) 0 3 3 (0 3 6 ) 0 3 1  (0.94) 0 3 1 0.92 0.93
2(71) 0 3 8 (0 .9 5 ) 0 .8 5 (0 .9 3 ) 0 3 7 0.87 0.87
3(48) 0 3 5 (0 3 6 ) 0 3 8 (0 .9 5 ) 0 3 0 3 8 0 .88

SUR 1(225) 0 3 9 (0 3 8 ) 0 3 7 (0 .3 1 ) 0.87 0 .88 0.87
2 (81) 0 3 8 (0 .8 9 ) 0.31 (0 .87) 0 3 7 0 3 8 0 3 6

M ean ra n k 3.1 2.4 2 3 3.1 3.7

T ab le  4
C om parison o f  F f  measures.

E xam ple set HHCARTfA) HHCART(D)

BS 0 3 5  ± 0 .0 3 0.74 ± 0 .0 4
BH 0.83 ± 0 .0 1 0.82 ± 0 .01
BC 0 3 7  ± 0 .0 1 0.97 ± 0 .0 0 3
BUPA 0.63 ± 0 .0 3 0.63 ± 0 .0 2
CIS 0 3 0  ± 0 .0 8 0 3 2  ± 0 .0 5
HRT 0.74 ± 0 .0 2 0.74 ± 0 .0 4
PIND 0.7 ± .0 .02 0.70 ± 0 .0 1
SHUT 0.89 ± 0 .0 8 0.97 ±  0.03
W INE 0 3 1  ± 0 .0 2 0 3 8  ± 0 .0 2
SUR 0.6 ± 0 .0 3 0 .6  ± 0 .02

1 sets. CART-LC and OC1-AP produces a higher classification accuracy for the minority classes in the GLS and SHUT example
2 sets respectively. The BH, WINE, HRT and LET example sets are excluded from the comparison, as they have nearly uniform
3 class distributions. £ach algorithm is ranked based on the true positive rates of the minority classes and the mean rank
4 for each algorithm is given in the last row of Table 3. For example sets with several minority classes (GLS and SHUT), the
5 algorithms are ranked by considering the overall performance of the true positive rates of the minority classes. The HHCART
e methods perform well when the class imbalance is not too large. However, based on the mean rank, the OC1 and HHCART(D)
7 algorithms produce better true positive rates for the minority classes.
s Table 4 shows the F-measures (along with the respective standard deviations) obtained for HHCART(A) and HHCART(D)
9 on each example se t  According to the results, it can be seen that the performances of both algorithms on the example sets

10 are similar except BS and SHUT. HHCART(A) has a higher F-measure for BS, whereas HHCART(D) has a higher F-measure for
it SHUT. For all other example sets the F-measures are more or less the same.
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T a b le  5
Results o f  HHCAKT m ethods and FDT. H H (A ) stands fo r  HHCARTfA) and H H (D ) stands fo r HHCARTfD).

Exam ple
set

Decision
tree

Average
accuracy

Average tree 
size

□asses (s ize) □ass 1 tru e  
p os itive

□ass 2  true  
pos itive

F-m easure

HH(A) 83.1 ±  1 3 6.7 ± 3 .1 1 (2 4 6 X 2 (2 6 0 ) 0 3 5  ±  0.03 0.81 ± 0 .02 0 3 3  ± 0 .0 1
BH x HH(D) , 8 1 1 9 6 ± 1 .0 7 3  ±  4 1 0 3 5  ±  0.04 0.78 ± 0 .0 3 0.82 ± 0 .01

FDT '  8 3 3  ± 0 .7 6 ■■31- 0 3 3  ±  0.02 0.85 ±  0.02 0.84 ± 0 .0 1
HH(A) 9 6 3  ± 0 3 2.7 ± 0 .7 0 3 6  ±  0.002 0 3 7  ± 0 .0 1 0.97 ± 0 .0 0 3

BC HH(D) 97 ±  0.4 3.0 ± 1 .4 1 (444X 2 (239) 0 3 7  ± 0 .0 0 2 0 3 8  ±  0.01 0.97 ±  0.004
FDT 95.7 ± 0 .7 7 0 3 7  ± 0 .0 1 0 3 4  ± 0 .0 2 0.95 ±  0.01
H H (A) 66 .1  ± 2 .6 8.0 ±  3.6 0 5  ± 0 3 7 0.78 ±  0.06 0.65 ±  0.03

BUPA H H (D ) 65.15 ± 2 3 1 2 5 4  ± 5 .4 1 (1 4 5 X 2 (2 0 0 ) 0 5 3  ±  0 3 4 0.74 ± 0 .0 3 0.64 ± 0 .0 3
FDT 63.16 ± 1 .7 43 0 5 7  ±  0.04 0.68 ±  0.03 0.62 ± 0 .02

HH(A) 1 7 3 5  ± 1 .0 9.1 ± 4 7 0 3 4  ± 0 .0 3 0 5 4  ±  0.04 0.7 ± 0 .0 1
PIND HH(D) 73.7 ± 1 .1 1 6 3  ± 7 .1 1 (5 0 0 X 2 (2 6 8 ) 0 3 3  ± 0 .0 3 0 5 6  ±  0.04 0.7 ± 0 .0 1

FDT 69.04 ± 1 5 67 0.76 ±  0.02 0 5 6  ±  0.03 0 .66  ± 0 .01

HH(A) 75.19 ± 1 .7 5 3  ±  1 3 0.78 ±  0.03 0.71 ± 0 .0 3 0.75 ± 0 .0 2
HRT HH(D) 75.4  ± 2 3 7 3  ± 3 3 1 (1 5 0 X 2 (1 2 0 ) 0.78 ±  0.05 0.71 ± 0 .0 4 0.75 ±  0.03

FDT 75.7 ±  1.7 2 0 0.77 ± 0 .0 1 0.75 ± 0 3 3 0.76 ±  0.02
HH(A) 72.4  ± 1 3 8.4  ± 4 1 0 3 8  ± 0 .0 3 0 3 9  ±  0.05 0.60 ± 0 .02

SUR H H (D ) 7 2 3  ±  1 5 7 3  ±  2.9 1 (2 2 5 X 2 (8 1 ) 0.89 ± 0 .0 1 0 3 8  ±  0.03 0 .6  ± 0 .02
FDT 6 7 5  ± 1 3 42 0 3 2  ±  0.02 0 3 1  ±  0.04 0 5 6  ±  0.03

4.1.2 HHCART methods versus FDT
The parameters of both HHCART methods were set as described in Section 4.1.1. The parameters of FDT were set as in 

Lopez-Chau et ai. (2013) and they are as follows: Minimum number of examples jier terminal node =  2, the pruning method 
was pessimistic pruning with a confidence factor of 025  (default) and sub-tree raising was set to true. The comparison was 
done on average accuracy, average tree size (number of terminal nodes), the F-measure and the true positive rate. FDT 
estimates all these parameters (except the tree size) using stratified random sampling-based cross-validations. The cross- 
validation estimate for the tree size is not available. Therefore, the sizeof the tree built on the entire example set is reported. 
Ten, fivefold cross-validations are run and hence the results given in Table 5 are averaged over 10 runs. Since FDT is only 
capable of classifying two-class problems, the comparisons are made on example sets with two classes.

It is evident from Table 5 that the trees produced by HHCART(A) and HHCART(D) are substantially smaller than those of 
FDT. The average accuracy of HHCART(A) for BC, PIND and SURare significantly higher (more than one standard deviation) 
than that of FDT. Furthermore, HHCART(A) produces higher F-measures for BC BUPA, PIND and SUR, whereas FDT had 
higher F-measures for BH and HRT. FDT produced higher true positive rates for the minority classes of BUPA, HRT and SUR, 
whereas HH£ART(D) produced a higher true positive rate for BC and PIND. HHCART(A) has lower true positive rates for 
minority classes than FDT. However, HHCART(A) has higher true positive rates for majority classes. Hence, based on the 
overall performances (F-measure, accuracy and tree size), the HHCART methods produce better results than FDT.

‘x  /•
4.2. Comparison on example sets with qualitative and quantitative features

/  ' * •' ''-N,' '
Experiments were performed to studythe performance of the HHCART methods when the training examples contained 

both qualitative and quantitative features^ Since FDT, OC1, OC1-AP and OC1-LC are not designed to handle oblique splits 
containing both qualitative and qualitative features, QUEST (Loh and Shih, 1997) was used for comparison purposes. Example 
sets were downloaded from Bache and Lichman (2013) and are given in Table 6. Ten, fivefold cross-validations were used 
and the.average accuracies and tree sizes (over 10 cross-validations) are reported in Table 7. The Income dataset comes 
with its own training and testing set of 30,162 and 15,060 examples respectively. We induced 10 trees, each using 90% of 
the training examples; the remaining 10% was used for pruning. The accuracy of all the trees was estimated using the same 
test s e t  QUEST uses the following parameter setting: estimated priors, unit misdassification cost, zero standard error for 
pruning, linear splits, linear discriminant analysis for the split point minimum node size for splitting =  2. The parameters 
of the HHCART methods were set as described in Section 4.1.1. For the Income dataset HHCART(A)’s performance was 
significantly (more than 2 standard deviations) better than QUEST both in terms of the average accuracy and average tree 
size. For the other two datasets, HHCART(A) produces comparable accurades with smaller trees. These results also suggest 
that the HHCART algorithms perform well in relatively high dimensions. Though HHCART(D) produces larger trees compared 
with HHCART(A), its classification accuracy is comparable with that of HHCART(A).

5. Conclusions and discussion

In this work, we have presented a new way of indudng oblique DTs called HHCART. It uses the eigenvectors of the 
estimated covariance matrices of the respective dasses to define a Householder matrix that is used to reflect the examples 
so that axis parallel splits can be searched. Two versions of HHCART have been presented: HHCART(A) uses all possible

Please c ite  th is  a rtic le  in  press as: W ick ram arachch i, D .C , e t a t .  HHCART: A n  o b liq ue  decision tre e  C om puta tiona l S tatistics and Data Analysis (2015), 
h ttp ://d x d o i.O rg /1 0 .1 0 1 6 /j.c sd a J0 1 5 .ll.0 0 6

http://dxdoi.Org/10.1016/j.csdaJ015.ll.006


ICOM STA: 6177]

■ ■ ■ ■ ■ ■ ■ ■ I
D.C W ickram arachchi e t  al. /  C om putational S ta tistics and  D ata A nalysis x x  (xxxx) x x x -x x x

T a b le  6
Real exam ple  sets w ith  q u a lita tive  and q u a n tita tive  features, dow nloaded fro m  U Q  Repository.

Dataset No. o f  features (no . o f  Q ua lita tive ) No. o f  classes No. o f  exam ples

Incom e 14(8) 2 4 5 2 22
Bank 16(9) 2 45211
S ta ttog 14(8) 2 690

Tab le  7
Results o f  HHCART and QUEST. The tree  size is  m easured as th e  n u m b e r o f te rm in a l nodes.

Dataset Decision Tree Average accuracy Average tree  size

Incom e HHCART(A) 85.1 ±  0.2 32.7 ± 1 2 .9
HHCARRD) 8 5 J ± 0 . 2 59.5 ±  19.7 *
QUEST 83.9 ±  0 2 68.0 ± 2 3 .1

Bank HHCARTjA) 90.2 ± 0 .1 2 22.58 ±  11.94
HHCART(D) 90 .4  ± 0 .0 7 44.4  ± 1 4 .1 9
QUEST 90.1 ± 0 .1 27.0 ±  1 5 2

StatLog HHCART(A) 85.1 ± 0 .9 5.6 ±  1.9
HHCARRD) 85.8  ± 0 .7 6 5  ±  3.0
QUEST 85.65 ± 0 .9 2 6.08 ±  3.6

# ’ "1
eigenvectors of the estimated covariance matrices of respective classes, whereas HHCART(D) uses only the dominant 
eigenvector of each class. Based on the empirical results obtained, it is dear that both HHCART methods perform well 
in terms of accuracy and tree size. Furthermore, as discussed in Section 2.1, optimisation algorithms based DTs take 
considerable time to find the best split at a node. For example, the SADT and OC1 algorithms iterate many times until a 
locally optimal point of A(I) is found. In particular, OC1 takes 0(pn2 logn) time to find the best split at a non-terminal node 
(If Max Minority or Sum Minority functions are used as impurity functions), whereas HHCART(A) takes 0(Cp2n log n) time 
when n ;»  p. Therefore, the ratio of the two time complexities HHCART(A):OCl is 0(cp) : 0(n). Furthermore, HHCART is 
capable of classifying example sets with both qualitative and quantitative features and this is useful in a diverse range of 
applications. Hence, the proposed heuristic algorithms are competitive alternatives for the existing oblique decision trees 
especially for those based on optimisation algorithms. ,

According to the true positive rates, the HHCART methods perform well when the class imbalance is not too large. Both 
HHCART methods have similar F-measure values and hence both methods have similar recall and precision capacities. 
Moreover, based on the two-class classification results, the performance of the HHCART methods is better than that of 
FDT in terms of accuracy, tree size and the F-measure.

HHCART is effective in data classification if class orientation is properly captured by the eigenvectors. However, the 
eigenvectors may fail to capture class orientation if outliers and/or clusters are present in a class. Eigenvectors can be 
influenced by outliers, making them ineffective at capturing class orientation if outliers are present. This is most evident in 
classes with few examples, where a single outlier can dramatically change the eigenvectors for the class. Clusters within a 
class can also affect the proposed heuristic because each cluster may have an orientation that is different from the orientation 
of the entire class. Hence, defining splitting directions using the orientation of the entire class may be ineffective.

vtrv

Appendix, lim e  and space complexity of HHCART

Here, we derive the maximahtime complexity at a node of HHCART(A) and HHCART(D). Assume there are n examples 
with p quantitative features and C classes at the node.

AJ. Time complexity of HHCART

1. HHCART(A) and HHCART(D)—The complexity for constructing the estimated covariance matrix for one class of examples 
is 0(np2). For C classes; tiie complexity is 0(Cnp2).

2. HHCART(A)—The complexity of the complete eigenanalysis for one class of examples is 0 (pi3). For C classes, the 
complexity is 0(Cp3). HHCART(D)—The complexity for finding the dominant eigenvector for one class of examples is 
0(p2). For C classes, the complexity is 0(Cp2).

3. HHCART(A)-The complexity for the reflection of n examples using one Householder matrix is 0(np2). Since there are Cp 
Householder matrices, the complexity is 0(Cnp3).
HHCART(D)-The complexity for the reflection of n examples using one Householder matrix is 0(np2). For C Householder 
matrices, the complexity is OfCnp2).

4. HHCART(A)-The complexity of finding the best axis parallel splits for one reflected space is 0(p(n 4- n log n». That is, q s  
along one dimension, sorting the examples takes 0(n log n) time and impurity function evaluation takes a maximum of q s  
O(n) time. Hence, the total time alongp dimensions (one reflected space) is 0(p(n+ n log n)). Since there are Cp reflected 
spaces, the complexity is 0(cp2(n +  n log n)) =  0(qj2n (l +  log n)) =  0(cp2n log n).
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HHCARIfD)—The complexity of finding the best axis parallel splits for one reflected space is 0(p(n +  nlogn)). For C 
dasses. the complexity is 0(Cp(n +  n log n)) =  0(pn(l +  log n)) =  0 (C p n  log n).

5. HHCARJ(A)—The maximal timexomplexity at a node is therefore OfCnp2) +  OfCp3) +  OfCnp2) +  0(cp2nlogn) =  
0(Cp2(p + n lo g n )).
HHCART(D)—The maximal time complexity at a node is therefore OfCnp2) +  OfCp2) 4- O(Cnp) +  O(Cpnlogn) =  
0 (C n p (p  +  log n)).

A 2. Sp a ce com plexity o f  H H CART

1. The space required for storing the entire example set is O(np). /
2. The space required for the examples in one transformed space O(np). There are Cp transformed spaces. However, 

axis parallel splits are performed in one space after the other. Therefore, once the search of one transformed space is 
completed, examples in that space can be deleted. Hence the space complexity remains at O(np).

3. The final dedsion tree holds some information at each node. The largest tree has n nodes and each node holds: (a) the
dass label, (b) the class distribution vedor (C-dimensional) and (c) the status of the node whether it is a terminal or 
non-terminal node. All this information requires the maximal space complexity of 0(C). Moreover, each non-terminal 
node holds a p +  1-dimensional coeffident vedor of the separating hyperplane and there is a maximum of (n — 2) non­
terminal nodes (for the binary trees of minimum node size 2). Hence, the space requirement for holding the hyperplanes 
is  (p  +  l ) ( n  -  2 ) .  /

4. Therefore, the total space complexity of HHCART is: 0(np) +  0(np) -I- 0(C) -I- (p-t- l)(n  -  2) =  0(np) +  0(C) =  0(np).
' ^
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