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Most real world combinatorial optimization problems are difficult to solve with multiple objectives
which have to be optimized simultaneously. Over the last few years, researches have been proposed
several ant colony optimization algorithms to solve multiple objectives. The aim of this paper is to
review the recently proposed multi-objective ant colony optimization (MOACO) algorithms and compare
their performances on two, three and four objectives with different numbers of ants and numbers of
iterations. Moreover, a detailed analysis is performed for these MOACO algorithms by applying them on
several multi-objective benchmark instances of the traveling salesman problem. The results of the
analysis have shown that most of the considered MOACO algorithms obtained better performances for
more than two objectives and their performance depends slightly on the number of objectives, number
of iterations and number of ants used.

© 2015 Elsevier B.V. All rights reserved.

1. lntroductioli

Ant Colony Optimization (ACO) was introduced by Dorigo and
Stutzle in the early 1990s which is based on the behavior of natural
ant colonies in particular, the foraging behavior of real ant species [1}].
The indirect communication of real ants in the colony uses pher-
omone trail laying on the ground to find the shortest path between
their food source and the nest. This procedure of real ant species in
the colony is exploited by artificial ants. Moreover, ACOs are becoming
popular approaches for solving combinatorial optimization (CO)
problems such as the traveling salesman problem, job shop schedul-
ing problem and quadratic assignment problem. Recently, ACO
algorithms have been proposed to solve multi-objective problems
(MOACO algorithms). Most of these algorithms find pareto optimal
solutions and this characteristic makes ACO very attractive to solve
multi-objective optimization problems.

The aim of this study is to review the recent MOACO, including
pareto strength ant colony optimization (PSACO), and study the
performances of those algorithms by comparing them. These
MOACO algorithms have been applied to the travelling salesman
problem (TSP) and six TSP problem instances have been consid-
ered to solve two, three and four objectives by changing the
number of ants and number of iterations. A detailed analysis has
been developed to analyze each of the MOACO algorithms by
considering some of the performance indicators.
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The remainder of this paper is structured as follows: some
preliminaries about the multi-objective optimization problem,
travelling salesman problem and ACO algorithms are reviewed in
Section 2. Section 3 introduces the recent MOACO algorithms. The
experimentation with the adaptation of MOACO algorithms to the
traveling salesman problem, performance indicators, problem
instances and parameter settings are presented in Section 4. In
Section 5, the experimental results of the study are analyzed.
Section 6 provides some concluding remarks.

2. Preliminaries
2.1. Multi objective optimization problem

Many real world problems consist more than one objective
functions which are to be minimized or maximized simulta-
neously [2]. Single objective optimization problems find only one
solution. However, multi-objective optimization problems find a
set of optimal solutions. Generally, the multi-objective optimiza-
tion can be presented as follows:

y=f@=[f1x).f2(), ... fm(X)),
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where X denotes the decision space of a set of decision variables n
and the objective space is denoted by Y of a set of objective
functions m with k restrictions.

22. Traveling salesman problem

The traveling salesman problem (TSP) is an extensively studied
combinatorial optimization problem by computer scientists and
mathematicians. In TSP, a salesman starts from his home city and
returns to the starting city by visiting each city exactly once to
finding the shortest path between a given set of cities {1]. To
represent the TSP, a complete weighted graph G=(N.E) can be
used, where a set of nodes N represents the cities and E is the set
of arcs which has fully connected the nodes. A value dj; is assigned
for each arc (i, j) € E to represents the distance between nodes i and
J. The distances between the cities are independent in the sym-
metric TSPs for every pair of nodes. that is, dj=dj. In the
asymmetric TSP (ATSP), distances between the cities are not
independent for at least one pair of nodes, which means, d;; # d;;.

2.3. Ant colony optimization algorithm

Ant colony optimization (ACO) is a meta-heuristic which has
been emerged recently, for solving hard combinatorial optimiza-
tion problems {1]. ACO is based on the characteristics of the real
ant colonies. Ants in the colony find the shortest path for gathering
food by frequently travelling between their nest and food source.
When ants move between nest to the food source, they deposit a
chemical called pheromone trails on the path which can be
followed by other ants to find the shortest path to the food source.
If no more pheromone is laid down the pheromone trail evapo-
rates over time. This indirect communication behavior of real ants
is based on the artificial ants.

Artificial ants find solutions by transiting from one node to
another. Also, they use special data structure which stores in the
memory to keep their previous actions and it is used when ants
move from one node to another. Each path has constant amount of
pheromone when an ant starts its journey from the first node.
After the ant completes its tour by visiting the first node to the last
node, the pheromone trail of all paths are updated. If the
completed path by the ant is a good path, then the pheromone
trail of that path will be high and vice versa. Also pheromone trails
are evaporated in each path before applying the new pheromone
trail. Furthermore, when the ant moves, it considers heuristic
information which measures the quality of the given problem.

23.1. Ant system

Dorigo et al. [3] proposed the first ant colony optimization
algorithm, Ant System (AS) for solving stochastic combinatorial
optimization problems. This approach was applied to the classical
traveling salesman problem and also to the asymmetric traveling
salesman problem, the quadratic assignment problem and the job
shop scheduling problem. All the pheromone values are associated
with edges and the initial pheromone value of each edge set is
equal to the given value 7o. The heuristic information 7 set to 1/d;;
. where d; represents the distance between the city i and j.
Initially, m ants are placed into the randomly selected cities.
Thereafter, every ant k moves from city i to city j using the
probability given in the following equation:

. {24 ..
5= Tuemlral Y 2)
0 otherwise

The relative importance of the pheromone trail and the
heuristic information are represented by the parameters a and

p. respectively. N:‘ is the feasible neighborhood of ant k in city i.
After n iterations all the ants have completed a tour, the pher-
omone trails are updated. First the pheromone trail is evaporated
and then pheromones are deposited on arcs that ants have visited
as in the following equation:

m
Tijz(]_p)rij"‘ ZAT{; (3)
=1

The pheromone evaporation rate denotes by p(0 < p < 1) and
the amount of pheromones deposited by ant k on arc (i, j) denotes
by Azf. In AS Az is defined as follows:

A

£

= (4)
where Q is a constant and L, being the total length of the tour of
the k-th ant.

2.32. Ant colony system

Dorigo and Gambardella |4} introduced the ant colony system
(ACS) which is based on the ant system (AS) algorithm and it has
improved the efficiency of AS when applied to the traveling
salesman problem. Artificial ants of ACS use parallel searching
procedure to find better solutions for small TSP instances. ACS
identified three main modifications which differ from the Ant
System.

(i) Each ant in ACS uses the state transition rule to select the next
node to be visited as given in the following equation:
arg max[zy)"[n;Y if g<q
j= i (5)
b otherwise

where ¢q is a random number selects in [0. 1] and ge[0. 1} is a
parameter. | is a random value calculated using the probability
distribution given by Eq. (2). # is a parameter which repre-
sents the relative importance of pheromone information
versus distance. When consider the Egs. {2} and (5} together
it is called pseudo-random-proportional rule.

(ii) After all ants completed their tour, the global updating rule is
applied for the best ant tour from the beginning of the trail
and deposit the pheromones using the following equation:

T = (1-p)t+p AT (6)

The best ant deposits the pheromone A7 = 1/L,, which
generates the best solution. Where the length of the best ant
tour from the beginning of the run denotes as Ly,

(iii) After an ant moves from one node to another, the local
updating rule is performed for the pheromone trail of the
edge as in the following equation:

T =(1-p)ty+pAr; (7

where At = 7o, 7 is the initial pheromone trail of the edge.

3. Muld objective ant colony optimization algorithms
3.1. Pareto strength ant colony optimization (PSACO)

Thantulage {5] introduced pareto strength ant colony optimiza-
tion (PSACO) algorithm which is based on the first ant colony
algorithm, ant system (AS). For all of the objectives it uses a same
pheromone matrix while pheromone trail is updated using the
domination concept as in SPEA II [G]. PSACO algorithm has been
extended to solve multi-objective problems. When an ant moves
from one node to another it uses the random propositional rule as
defined in ant system (AS) algorithm (Eq. {2}).
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Pheromone updating procedure is the major change in this
algorithm. For each iteration t, PSACO algorithm maintains two
sets of solutions; population P, and archive A,. Solutions produced
by the current iteration is kept in the set, population P, Also,
archive A, contains a fixed number of globally best non-dominated
solutions. If the size of the archive is greater than the number of
globally best non-dominated solutions, then the archive A, fills up
by the current best dominated solutions. A strength value is
assigned for the number of solutions dominated by each individual
in the population P, and the archive A; as in the following
equation:

Siy=|{liePrUA ~ni>j}| ' 8)

where the cardinality of a set is denoted by | - | and i >j represent
that solution i dominates solution j. On the basis of this S(i) value,
the raw fitness R(i) of an individual solution i is calculated. k—th
nearest neighbour method is used to calculate the density infor-
mation D(i). After that, using Eq. {9) the quality Q(i) of a solution i
is calculated:;

1
R+ D)

This Q(i) value is used for the pheromone updating of PSACO
and it uses the pheromone updating procedure as in AS (ant
system) as defined in Egs. {3) and (4), Finally, new archive is
created by copying all the non-dominated solutions from the
population P, and the archive A, Some solutions are removed
from the archive if non-dominated solutions are greater than the
fixed size of the archive. ‘

Q)= 9

3.2. Crowding population-based ant colony optimization (CPACO)

Angus {7] introduced the crowding population based ant
colony optimization (CPACO) algorithm for solving the multi-

objective traveling salesman problem and it extends the

population-based ant colony optimization algorithm (PACO).

" CPACO uses a crowding replacement scheme while the PACO uses
the super/sub population scheme. Moreover, this scheme main-
tains a preset size of single population (§) and randomly generated
solutions are used to initialize it. Every generation it creates a new
population of solutions (Y) and to find its closest match a
randomly selected subset S’ of S is compared with each new
solution. If the new solution is better than the existing solution it
replaces the existing solution with the new solution. CPACO uses
different heuristic matrices with a same pheromone trail for each
objective. It initializes the pheromone matrix with some initial
value 7. Thereafter, pheromone values of all solutions are
updated in each iteration, according to their inverse of the rank
as in the following equation:

1

Aﬁ" N Srank ) ) (]0)

An integer rank is assigned for all solutions in the population
using the dominance ranking method. CPACO generates a correc-
tion factor (4) of the heuristic component for each objective
function of each ant. Therefore, this correction factor allows each
ant to use different amount of heuristic matrices. Transition
probability has been calculated using the following equation:

A ' TTh _ i)’
! Yie Nk (ral® - ng _ 1[1,‘3.]‘4/1

Summary attainment surface comparison and the C matrix
(dominance ranking) performance measures are used to test the
performance of the CPACO algorithm. This performance measures
use to test whether the solutions are close to pareto front and also
it obtains a diverse set of solutions. Moreover, the comparison has

amn

been done between the CPACO and the PACO algorithms. The
CPACO algorithm obtains better solutions by covering the all areas
of the pareto front as it locates and maintains a diverse set of
solutions. Both algorithms use the distance sorting routine. CPACO
algorithm maintains a smaller population than PACO and to assign
ranks to solutions it applies a sorting method for non-dominated
solutions. To assign ranks to the objectives PACO uses the average-
rank-weight method. Therefore, CPACO obtained better results and
its computational complexity is lower than PACO.

3.3. An efficient ant colony optimization algorithm for multi-
objective flow shop scheduling problem (ACOMOFS)

" Rabanimotlagh {8] introduced an efficient ant colony optimiza-
tion algorithm for solving flow shop scheduling problem and it is
named “ACOMOFS.” It uses only one colony having one phero-.
mone structure and several heuristic matrices to optimize two
objectives, makespan and total flow time. In order to apply the
state transition rule, a random number q is generated in the range
[0, 11. If the generated number g < g, selects the next job accord-
ing to the exploitation step given in the following equation:

= arg max((zh o) (12)
Exploration step is performed as follows when, g > g,
@y
T NP

where the relative importance of exploration versus exploitation is
denoted by go. 7 denotes the pheromone trail of the schedule
when placing of job j at position t 7] denotes the heuristic
information of positioning job j at position t of the schedule. The
relative importance of the heuristic preference and the pheromone
trail are represented by # and a respectively. When selecting the
next job j of the schedule, the heuristic preference is calculated in
each construction step as in the following equation:

. 1
nj= Zsu; -7
If the job j has not been added to the schedule yet, it is called
the partial solution. Therefore, the total weighted objective func-
tion of the partial solution is represented by Z°. After adding the
job j to this partial solution, the total weighted objective function
is denoted by Z*“J. Before, selecting the next job at each construc-

tion step, the pheromone trail of the step is updated by applying
the local updating rule as follows:

VjeN 13)

(14

7t =Min{zi (1~ )t +p'1u) (15)
where 7, calculated as follows:

1
Ty = GFB—S- (16)

‘where Z“BS denotes the objective function value of the global best

solution and @ is a parameter. The global updating rule is
performed after completing the tour by all ants in the colony.
The iteration best solution or the globally best solution is used to
apply the global updating of pheromone trails. Therefore as the
first step, it evaporates the pheromone trails as in the following
equation:

7 =(1-p)1} an
Then, the global updating rule is applied as follows:

H=t4p (1)
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Moreover, the local search algorithm has been coupled with the
main ACO algorithm for obtaining high quality solutions. After
applying global updating, the iteration best solution is used to apply
the local search algorithm and it uses two types of neighborhood
structures, First one is “adjacent pair wise interchange method” and
the second one is “the insertion of each job in each possible position
of the sequence.” The resuits of the proposed approach of ACOMOFS
are compared with HAMC algorithms {9] and MOACSA algorithm
{10]. This shows that ACOMOFS performs best for makespan and
total flow time and multiple objectives than other algorithms. Also it
archives lower computational time to obtain very good solutions
when compared with other algorithms.

34. Ant colony optimization for multi-objective optimization
problems (m-ACO)

Alaya et al. {11] proposed a generic ant colony optimization
algorithm to solve multi-objective optimization problems which is
called “m-ACO.” It uses several ant colonies with several pher-
omone trails for solving the multi-objective knapsack problem.
The m-ACO algorithm follows the MAX-MIN Ant System {12}
scheme. Pheromone trails are connected with edges or vertices
of the graph and a number of pheromone structures are included.
Moreover, it assumes that every objective function uses a one
heuristic trail value. Two bounds of pheromone trails Tpmin and Trgx
are defined to prevent premature convergence and these bounds
should be in the interval 0 < T, < Tmax. At the beginning of the
run, pheromone trails are initialized with upper bound of
the pheromone trail, 7,4 At each iteration, an ant evaporates
the pheromones by considering these bounds. The algorithm
iterates until reach to the maximum number of iterations. At
every iteration, each vertex of the graph selects the next vertex to
move within the set of candidate list N according to the following
probability as in the following equation:

[P V)Y (19)
¥ vl vy

vieN

P;(Vi)=

where the pheromone trail and the heuristic factor of the vertex v;
is represented by z{(vi) and ng(vj), respectively. The relative
importance of the pheromone trail and the heuristic information
is denoted by two parameters a and f. Pheromone trails are
globally updated as follows:

7(0)—(1=p) x T(C)+ AT (C) (20)

There are four variants of this generic algorithm which differ
from the number of colonies and pheromone trails.

3.4.1. Variant 1: mACO; (m+1, m)

This variant uses m number of pheromone trails and (m+1)
number of colonies, where number of objectives are represented
by m = |F|. A single different objective function is used by each
colony and it considers a single pheromone trail with single
heuristic information. To optimize all objectives, it uses an extra
ant colony. Pheromone may be lying on vertex v; or on the edge
between vertex v; and the vertex of the partial solution S.
Randomly chosen objectives have been assigned for the extra
multi objective colony for optimization. Therefore, the pheromone
trail considered for this colony is the pheromone trail of the
randomly chosen colony. The sum of heuristic factors of all
objectives is used as the heuristic factor of the extra multiobjective
colony. The best solution of the current iteration is used to update
the pheromone trails in each colony. In order to update the
pheromone trail which corresponding to each objective, it uses
best solution of each objective function.

3.4.2. Variant 2: mACO; (m+1, m)

This uses (m+1) colonies and m number of pheromone
structures. It has introduced an extra multiobjective colony which
optimizes all objective functions. This variant is almost the same
as the variant one. But the difference is, to build solutions of the
extra multi objective colony it uses the pheromone factors of other
colonies. Therefore, the sum of each pheromone factor of each
colony is used to obtain the pheromone factor of the extra multi-
objective colony.

34.3. Variant 3: mACO; (1. 1)

This variant of m-ACO uses a single colony with single pher-
omone structure. Pheromone structure is dependent on the
considered application. The sum of heuristic factors of all objective
functions is considered as the heuristic factor of the colony.
Pheromone has been updated for all non-dominated solutions.

3.4.4. Variant 4: mACO4 (1, m)

This variant of m-ACO uses a single colony and m number of
pheromone factors. At each step an objective is chosen randomly for
optimization. Therefore, the pheromone has been defined for this
randomly chosen objective. The sum of heuristic factors of all
objective functions is used as the heuristic factor of the colony.
Pheromone is updated for m best solutions with regard to m
objectives. Experimental results show that the mACO; (1, m) obtains
better solutions for larger instances than the other variants.

3.5. Multiobjective optimization of time cost quality quantity using
multicolony ant aigorithm (MCAA)

Shrivastava et al. {13} proposed a new multi-colony ant algo-
rithm (MCAA) for optimizing four objectives - time, cost, quality
with quantity. The number of colonies are set to be equal to the
number of objectives. Each colony uses different heuristic infor-
mation and different pheromone structure. At the time period ¢,
the state transition rule for moving an ant from node i to node j
can be given as in the following equation:

[ arg max (7)"Inl ifg<go
J= J « atimwed (21)

J otherwise

At time ¢, the total pheromone trail deposits on path i,j is
represented by z; Using the measurements of the objective
functions the heuristic value of path i.j is denoted by #;. « and j
are parameters which represents the relative importance of the
pheromone trail and the heuristic information. J is a node and
the probability distribution of the node is selected according to the
following equation:

IrgtOF“irg0f iy
Pyt = m if j e allowed 22)
0 otherwise

After all the ants in a colony complete their tour, the global
updating is performed for non-dominated solutions as follows:

T,'j(t+1)*—/)fg(t)+Af,'j (23)

where p is the evaporation rate

if edge(i.j) is transuessed by the kth ant

Q

0 otherwise

where Q is a constant, n is the number of objectives and the value
of the objective function in each iteration is represented by f(k).
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36. ‘Performance analysis of elitism in multi-objective ant colony
optimization algorithms (AMPACOA)

Bui et al. {14] studied the effect of elitism on multi-objective
ant colony optimization algorithms and also, to control the effect
of elitism a new adaptatron strategy is proposed. The proposed
approach is called as “AMPACOA” and it is based on the first ant
colony optimization algomhm ant system (AS). The way of
phefomone updating is the only dlfference of this algorithm. This
adaptation strategy-gives an extra weighting to some solutions in
thearchive. The most recently entered solutions to the archive are
assigned an extra werghtrng and the solutions are in the archive
for a long period of-time is:assigned less weightings. The transition
probability for moving from node i to node j is given as follows:

where pf is a probabrlrty whrch can be calculated using Eq. (2), M

is the number of objectives and w; is the weighting coefficient.

Before laying an amount of . pheromohe at each location in each

iteration, evaporation performs to decrease the pheromone trail

values as in Eq. (17).. When consrdermg the adaptive elitism
. procedure, an age is assrgned for each solution in the archive. At
7. the time ¢, the coefficient & is calculated for the solution h in the
. archive as follows: =
’ 'm

5 t a,,+1
where ay is the age of solutron hinthe archlve and m is the number

of ants, Usmg this agmg strategy 1" can be calculated as follows:

i o (26)

gfh fh+ S @7

: 3 7. A multi- ob}ectrve ant colony system (MACS) Jor vehicle routing

problem with time wmdows ‘ ,

Baran and Schaerer {15] proposed a multr-objectlve ant colony

" system (MACS) for solving the vehicle routrng problem with time
* windows (VRPTW). The, proposed approach for the VRPTW uses

_only one ant colony.to optrnnze two ob]ectrves simultaneously.
This incorporates the:pareto. optimal’ concept to obtain a set of
pareto optrmal solutlons All dbjectives use two heuristic informa-
tion, 7§} and #} and a single pheromone trail = in the colony. It
follows the same transition rule of ACS tolmove from one node i to
the next node j by each ant m. But it h'as applied for the multi-
objectrve context as follows: :

[ argmaxizinlml -y if g< g
Cj=d TN ,_
e D

where g.is a random number in. [01 and the relative importance
of the objectives is represented by ﬂ For each ant k, A is computed

otherwrse

5 o ‘ . ‘
Table 1 ' : -]
A taxonomy for multl-objectlve ACO algonthms.' n ;

@8)

as A= k/m. where m is the total number of ants and the next node
J is selected as in.the following equation:
101 Y R
Ph={ T, emeultlPin, 1 -7 ' L9
0 otherwise

The local pheromone is updated as follows: ;
Ty =(1~p)T+ptg : (30) :

where 1y is the initial pheromone trail value of each objectrve."
function: s

1
Tl s (s

where the initial number of nodes is denoted by n. After complet-
ing each iteration by each ant k, the pareto optimal set. P is:
compared with the complete solution of the ant, Then each non-.
dominated solution is included and dominated ones are removed -
from the archive. Using the average values of the pareto optimal’
set, 7, is calculated at the end of each iteration. If T > 7o, the
pheromone trail is reinitialized with the new value 7. Otherwise ~
the pheromone trail of each solution in the current pareto optrmali o
set is globally updated as follows:

(31')"

© 1y=Q=p)ry+p/F (s (5h) @2

Table 1 shows the taxonomy of the above MOACO algorithrns.

4. Experimentation

To accomplish the experimental comparison, we ‘considered .
only the seven MOACO algorithms that have been presented in the - °
above section because they have been implemented in most recent
years and their final aim is to produce a set of non-dominated , .
solutions. However, the pareto strength ant colony optrmlzatron .
(PSACO) algorithm presented in Section 3.1, has been proposed
and applied to automatic multi-objective hose routing in 3D space, * -
The experimental results have shown that solutions of P-ACO are’ =
dominated by the corresponding solutions of PSACO {5]. Thus, in
this experimentation PSACO algorithm was applied to the-traveling "
salesman problem and the performance was compared with other o
MOACO aigorithms. o

Moreover, four variants have been considered in ant colony t
optimization for multi-objective optimization problems (m-ACO)
[11]. It has been concluded that especially for large instances, the ‘_ a
m-ACO, (1, m) variant is better than the other three variants. Thus, |
the m-ACO,4 (1, m) variant was selected for this experimentation;
Finally, seven MOACO algorithms - ACOMOFS, AMPACOA, CPACO,
mACO,4, MACS, MCAA and PSACO - were considered for this study -
and their performance levels were compared by applying them to
the travelling salesman problem.

Algonthm Number of Use of multrple Use of muitiple

Which solutions were used for global Local

Which component was used for

colomes pheromone matrices  heuristic matrices pheromone updating " pheromone local pheromone updating
) i ¢ ' ‘updating
ACOMOFS 1 No ' No Iteration best solutions Yes Globally best solution
AMPACOA 1 Yes. . | Yes Non-dominated solutions No’ -
CPACO 1 No . - Yes Non-dominated solutions No -
mACOg - 1 Yes . o No~ Iteration best solutions ‘No -
MACS .1 No, -~ * Yes Non-dominated solutions Yes Initial pheromone
MCAA Multiple Yes - . i No Non-dominated solutions No -

PSACO 1

Non-dominated solutions No -

algorithms’fo)
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4.1. Adaptation of MOACO into multi-objective TSP

Only CPACO and AMPACOA algorithms have been proposed for
the multi-objective travelling salesman problem while the other five
MOACO algorithms have been proposed for different applications
such as the flow shop scheduling problem, vehicle routing problem,
etc. In order to adapt all the MOACO algorithms into TSP, several
changes have to be done. Mostly, the heuristic inforrnation value
should be changed, which represents a priori information of the
problem instance. Also, the value of the objective function should be
changed because different applications use different objective func-
tion values. Hence, in order to apply the five MOACO algorithms to
the TSP problem, the following changes were performed.

4.1.1. Pareto strength ant colony optimization (PSACO)

The PSACO algorithm has been applied to the multi-objective
problems for solving hose routing problem which is quite similar
to TSP. But some changes should be performed in order to adapt
the PSACO algorithm to TSP. Hence, the heuristic information will
be set as in the following equation:

_ k
Y, d;

where k is the number of objectives and the cost associated to the
edge (ij) of each objective is denoted by dfj

ij (33)

4.12. An efficient ant colony optimization algorithm for multi-
objective flow shop scheduling problem (ACOMOFS)

ACOMOFS uses only one colony to optimize two objectives with
a single heuristic matrix and only one pheromone value. There-
fore, when applying the algorithm for multi-objective TSP the
heuristic matrix will be changed as in Eq. {34}, which is based on
the heuristic matrix defined in Eq. { 14).

1
ZL 1 Wkd;

where w, is the weighting coefficient of each objective. Moreover,
the pheromone updating will be done as Eq. {15) where 7,
calculated as follows:

1
Ty = 97)? (35)
where F is the total objective function value as defined in Eq. {35},
6 and p are fixed parameters.

Ny (34)

K
F=Y wdy (36)
k=1

where f; is the objective function value of objective k and w; is the
weighting coefficient of each objective. Equal weights are used for
each of the objective functions. The weight can be computed as
0.5 for each objective when applied to the algorithm for the bi-
criteria optimization problem.

4.1.3. Multi-objective optimization of time cost quality quantity
using multi-colony ant algorithm (MCAA)

When applying this algorithm to the multi-objective TSP the
heuristic information will be computed as in Eq. {34). Further-
more, a single pheromone coefficient and the same heuristic
information will be set for each colony and the number of colonies
will be set to the number of objectives.

4.14. Ant Colony Optimization for Multi-objective Optimization
Problems (mACO,)

When applying the mACO, algorithm in to multi objective TSP,
the heuristic information which will be used by a colony will be

set equal to the sum of all the heuristic information values related
with all the objectives as follows:

_ 1
Yo dy

where k is the number of objectives and the cost associated to the
edge (i) of each objective is denoted by df.

U (37)

4.1.5. A multiobjective ant colony system for vehicle routing problem
with time windows (MACS)

The MACS algorithm has been proposed only for solving
optimization problems with two objectives. A single colony uses
two heuristic information values and only one pheromone matrix.
MACS algorithm cannot be extended to solve multi-objective
optimization problems. Therefore, some changes are made in
order to adapt it to dealing with multi-objective TSP. Therefore,
in the multi-objective context it will use different heuristic
information values and only one pheromone matrix for all the
objectives. Hence, an ant moves from node i to node J as in the
following equation:

h
j= { arg max{zy I [;)g]’d”if g < ggJotherwise . (38)
JeN; d=1

where h denotes the number of objectives and the node J will be
selected as in the following equation:

VLA CE e Ak
if jeN
P'.;. = Sfm,rmn:: ware MIEN (39)

0 otherwise

The sum of all heuristic component factors (y) set equal to one
and it will be calculated as follows:

h
> ya=1 (40)
d=1

4.2. Performance indicators

Different facts of the algorithms performance are reflected by
performance indicators, such as their closeness to the true pareto
optimal front and the distribution of solutions in the pareto
optimal front. Many performance indicators can be categorized
into two types: unary measures and binary measures. A quality
value to a pareto set is represented by unary measures and binary
measures compare two different pareto fronts obtained by two
different algorithms.

4.2.1. Overall non-dominated vector generation (ONVG)

As given in the following equation, ONVG | 16| measures the
number of non-dominated solutions in each pareto front, denoted
as lylmown|~

ONVG = | Yinown| (41)

where | .| represents the cardinality. If the value of ONVG is larger,
then the pareto front is better.

4.2.2. Overall true non-dominated vector generation (OTNVG)

OTNVG [16] calculates the number of solutions of yinown that
are in true pareto optimal front, y.. The higher the value of
OTNVG, the better the solutions are obtained. This indicator is
defined as given in the following equation:

0TNVG=|{Y|yE.Yknown’\ye.lee}| (42)
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4.2.3. OQverall true non-dominated vector generation ratio (OTNVGR)

OTNVGR {16] measures the ratio between the number of solutions
in OTNVG to the number of solutions of true pdreto optimal front. This
- can be expressed as a percentage as given in the following equation:

OTNVGR = ¢

x 100% (43)
Woel

A good solution should have a value of OTNVGR which is close
to 100%.

4.2.4. Error ratio (ER)
This performance indicator [2] calculates the number of solu-
tions of approximation set Q which are not members of the pareto
optimal set P* as given in the following equation:

12 ¢, ‘
Li=171 44

il 49
when i is in P* then e;=0 and otherwise ¢;=1. The lower values of
the error ratio indicate that non-dominated solutions are better.

ER=

4.2.5. Hypefvolume ratio (HVR) performance indicator
It can calculate the HVR value [2] as in the following equation:

H@Q -
HV(P)

where HV(Q)and HV(P) represent the volume of the approximate
pareto set and the volume of the true pareto set, respectively. If
the approximate pareto set and the true one are equal, then the
HVR value is equal to one. In other words, when the HVR value is
close to one, the approximate pareto set is near the true pareto set.
The better solutions have HVR values close to one.

HVR = 45)

4.2.6. Coverage performance indicator (C performance indicator)

This performance indicator [2] can be used to compare the two
sets of non-dominated solutions A and B to find their relative spread
of solutions. The C performance indicator C(A, B) calculates the ratio
between the number of solutions of B dominated by solutions in A to
the number of solutions in B using the following equation:

|beB|3acA:a<b|
IB] -

Hence the value C(A, B) = 1 represents that all the solutions in B
are dominated by or equal to solutions in A. On the other hand,
C(A,B) = 0 means that none of the solutions in B are dominated by
solutions in A. It is important to note that both C(A, B) and C(B,A)
should be considered, because C(A,B) is not necessarily equal to
1~C(B,A). .

It has been observed that the true pareto optimal front is used
by most performance indicators. Therefore, it should be calculated
an approximation to the true pareto optimal front which is called
“pseudo-optimal pareto front", using the following 5 steps {17]:

CA,B)=

46)

® Each algorithm was run for 10 times to obtain non-dominated

solutions; yy,¥4, .-, Y10 _
® For each algorithm, the union of all runs were calculated as

Y= U Yi 47

i=1

® The pareto front of each algorithm was dbtained from the union
of all runs by removing the dominated solutions, as follows:

 YacoMors» Y AMPACOR» Y CPACO» YimACO,YMACS» YMcAs Ypsaco 48)

® A set of solutions y’ was obtained as

Y' = Yacomors Y Yameacoa U Yeraco Y Ymaco, Y Ymacs Y Ymom
U Ypsaco 49)

® Dominated solutions were removed and finally the approxima-
tion to the true pareto front was obtained, called y,,, practically
Yapr = Yine. In other words, y,, is an excellent approximation to

the true pareto front, y
4.3. Problem instances anﬁarameter setting

The traveling salesman problem (TSP) was selected to compare
the MOACO algorithms presented in Section 3. Each algorithm in this
study, two, three and four objectives were considered and ten
independent runs were made to solve the TSP problem. Therefore,
six multi-objective TSP benchmark instances were considered:
kroab50, kroac50, kroabcS0, kroabcd50, kroab100 and kroabc100
which involve 50 and 100 cities respectively [18}. For fair compar-
ison, the same parameter setting was applied for all the MOACO
algorithms used in this study. First, the most effective parameters
which cause to the performance of the algorithms were identified
and the best values were: a=1,=2,p=02,p'=0.05 and
Go = 0.98. The initial pheromone value 7 of each algorithm was
set as 5.5498 — E18. Nevertheless, the mACO, algorithm was applied
in different values for some parameters. In these #=5 and g, = 0.5
gave the better non-dominated solutions. Furthermore, MOACO
algorithms were compared by changing both the number of ants
and the number of iterations, Hence, all the algorithms were applied
to the three different models as given in Table 2.

The number of ants (n) and number of iterations (m) are (n x m)
ranging from 10 x 100, 20 x 100 and 20 x 50 were named as model 1,
model 2 and model 3 respectively. Each MOACO algorithm of each model
was run 10 times for a fixed number of iterations. All the algorithms
were initiated in the same computer: Intel Core i3 CPU at 2.13 GHz, 1GB
memory, Ubuntu 10.04 environment using CodeBlocks 10.05.

5. Analysis of results

Some of the performance indicators described in Section 4.2 were
considered to analyze the performance of the MOACO algorithms.
The ER performance indicator calculates the number of solutions of
the approximation set which are not members of the pareto optimal
set. In this experimentation, each algorithm returns different pareto
fronts of different sizes. Hence, ER may calculate misleading results
when comparing the small and large pareto fronts with each other.
Also, the hypervolume ratio (HVR) performance indicator produces
misleading results when a convenient reference point is not found. In
addition, it cannot be easily applied to more than two objective
problem instances, since calculations for finding the reference point
and the volume is more complex. Therefore, ER and HVR perfor-
mance indicators were not considered for analyzing the performance
of MOACO algorithms in this study.

In contrast, OTNVGR measures better results than the ER
performance indicator since it measures the number of solutions

Table 2
Three different models which MOACO algorithms were applied by changing both
the number of ants and number of iterations.

Model Number of ants (n) Number of iterations (m) Notation (n x m)
Model 1 10 100 10 x 100

Model 2 20 100 20 x 100

Model 3 20 50 20 x 50
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of the approximation set which are in the pareto optimal front.
Also, it is easy to obtain a relative coverage comparison of two
solution sets using the coverage performance indicator. Moreover,
it is more useful when the true pareto optimal front is not known
of the real world problems. Furthermore, OTNVGR and C perfor-
mance indicators can be easily applied to analyze the perfor-
mances of multiple objective problems. Therefore, ONVG, OTNVG,
OTNVGR and C performance indicators were selected to analyze
the performance of MOACO algorithms. ONVG and OTNVG perfor-
mance indicators were used to represent only the non-dominated
solutions in this study.

5.1. Analysis of the completion time

Figs. 1-0 represent the statistics of the completion time returns
by each algorithm for six multi-objective TSP instances for three
models separately. As discussed in Section 4.3, three different
models were selected by changing the number of ants and number
of iterations. All the completion times were represented using
box-plots in milliseconds. If the completion time is lower, the
algorithm is faster and vice versa.

When comparing the completion times of bi-objective TSP
instances (see Figs. 1. 2. 4, 5, 7 and 8) of three models, it is
noticeable that ACOMOFS and MACS algorithms are faster than
other algorithms as they obtained minimum completion times.
When we consider the completion times of four objective TSP
instance (see Figs. 3. 6 and 9), the MACS algorithm becomes slower
than ACOMOFS, CPACO, mACO4 and PSACO algorithms as its
completion time becomes longer. The reason is that, in each
iteration, the MACS algorithm returns more non-dominated solu-
tions than other MOACO algorithms in the four objective TSP
instance (Kroabcd50).

When comparing the completion times of all TSP instances (see
Figs. 1-9), AMPACOA and MCAA algorithms are slower than other
algorithms as they return maximum completion times. The reason
is that the AMPACOA algorithm takes more time to find a solution
as it considers different transition probabilities for each objective
as given in Eq. (25). On the other hand, the MCAA algorithm takes
more time to find a solution as it considers one colony for one
objective (see Table 1). Therefore, completion times of both
algorithms are higher as they take more time to find a solution
iteratively.

However, when comparing each TSP instance and the three
models with each other, completion times obtained for model
1 and model 3 are less than model 2. This is because the problem
size of model 2 (20 numbers of ants used in 100 iterations, hence
problem size equal to 2000) is two times larger than the problem
size of model 1 (10 numbers of ants used in 100 iterations, hence
problem size equal to 1000) and model 3 (20 numbers of ants used
in 50 iterations, hence problem size equal to 1000). When
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£ 254 - -
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considering all TSP instances, the ACOMOFS algorithm is the
fastest among all MOACO algorithms as its completion time is
minimum. Moreover. it can be observed that the order of comple-
tion times of each MOACO algorithm does not change with each
model of each TSP instance except for the MACS algorithm.
Therefore, the order of completion time does not depend on the
number of ants and number of iterations except for the MACS
algorithm.

5.2. Visual representation of non-dominated solutions

All the non-dominated solutions generated by each algorithm
by their 10 runs are joining together. Then, a single pareto front is
obtained by removing dominated solutions [19}. Afterwards, the
generated pareto fronts of TSP instances with bi-objectives:
Kroab50, Kroac50 and Kroab100 for three different models are
visually present using scatter-plot matrix method (see Figs. 10-18).

According to these figures, it is shown that the MACS algorithm
returns good distribution over the pareto front while other
MOACO algorithms return non-dominated solutions only in the
central part of the pareto front. According to Fig. 10, the AMPACOA
algorithm returns good non-dominated solutions for small TSP
instances of size 50 (Kroab50) of model 1. Also, the mACO,
algorithm returns poor non-dominated solutions for small size
TSP instances of 50 cities (Kroab50 and Kroac50). However,
AMPACOA and mACO, algorithms return very poor non-
dominated solutions for large TSP instance of 100 cities
(Kroab100). Therefore, it can be noted that AMPACOA and mACO,
algorithms are outperformed by other MOACO algorithms. More-
over, it is observed that ACOMOFS, CPACO, MCAA and PSACO
algorithms return better solutions than the MACS algorithm in the
central part of the pareto front but they are not able to obtain
solutions in the entire extent of the pareto front. However, it
cannot be easily determined which algorithm is best among the
ACOMOFS, CPACO, MCAA and PSACO algorithms as they have
obtained similar pareto fronts.

5.3. Analysis of the overall true non-dominated vector generation
ratio (OTNVGR)

Pseudo optimal pareto front y,,, can be obtained using the
method explained in Secticn 4.2 which is a better approximation
to the true pareto front. Tables 3 and 4 represent the number of
solutions of |y, | which were experimentally found for each TSP
instance with respect to each model.

Tables 5-10 represent a comparison between the solutions
with respect to the ONVG, OTNVG and OTNVGR for each model
found with MOACO algorithms. The high value of OTNVGR
indicates that the solution is better. According to these tables it
can be observed that the MACS algorithm found many more
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Fig. 1. Completion time returns by each algorithm for Kroab50 and Kroac50 TSP instances for model 1(10 x 100).
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Fig. 2. Completion time returns by each algorithm for Kroab100 and Kroabc50 TSP instances for model 1(10 x 100).
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Fig. 3. Completion time returns by each algorithm for Kroabc100 and Kroabcd50 TSP instances for model 1(10 x 100).
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Fig. 4. Completion time returns by each algorithm for Kroab50 and Kroac50 TSP instances for model 2(20 x 100).
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Fig 6. Completion time returns by each algorithm for Kroabc100 and Kroabcd50 TSP instances for model 2(20 x 100).
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Fig. 7. Completion time returns by each algorithm for Kroab50 and Kroac50 TSP instances for model 3(20 x 50).
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Fig. 8. Completion time returns by each algorithm for Kroab100 and Kroabc50 TSP instances for model 3(20 x 50).
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Fig. 9. Completion time returns by each algorithm for Kroabc100 and Kroabcd50 TSP instances for model 3(20 x 50),
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Fig. 12. Pareto fronts returns by each algorithm for Kroab50 TSP instance in model
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solutions in OTNVGR than other MOACO algorithms in each model

of each TSP instance. Therefore,

algorithm and also it is the best

the MACS algorithm is the best
approximation to the true pareto

front, ya,r. The reason is that the MACS algorithm obtains a set of

non-dominated solutions which
pareto front. Therefore, the most
covered by the MACS algorithm.
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Fig. 15. Pareto fronts returns by each algorithm for Kroac50 TSP instance in model
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Secondly, ACOMOFS algorithm is better than all the other
MOACO algorithms, but it could not obtain more solutions in
OTNVGR than the MACS algorithm. This is because the ACOMOFS
algorithm obtains better non-dominated solutions by covering
only the central part of the pareto optimal front and was not able
to obtain results to the extent of the pareto optimal front. Also, it is
the best approximation to the central part of the pareto optimal

2.003

Colony optimization.
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2 (20 % 100).
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Fig. 18. Pareto fronts returns by each algorithm for Kroab100 TSP instance in mode!
3 (20 x 50).

front. Moreover, AMPACOA and mACQ, algorithms are outper-
formed by all the other MOACO aigorithms because they obtain no
solutions in OTNVGR. Also, they obtained very poor pareto fronts
which are not able to give better approximation to the pareto
optimal front. Furthermore, Table 7 represents the large TSP
instance of 100 cities: Kroab100. According to the Table, only

MACS and ACOMOFS algorithms found better solutions in OTNVGR
in each model. Therefore, other algorithms are outperformed by
MACS and ACOMOFS algorithms as they did not find any solutions
in OTNVGR.

When considering all the TSP instances (see Tables 5-10),
ACOMOFS algorithm found better solutions in OTNVGR in model
1 and model 3. Also, PSACO algorithm found better solutions in
OTNVGR in model 2 than the other two models. Moreover, CPACO
and MACS algorithms found different values of OTNVGR in each
model in each TSP instance. The reason is that it considered different
numbers of ants and different numbers of iterations in each model.
Therefore, it can be noted that when changing the number of ants
and number of iterations, OTNVGR values of MOACO algorithms have
been changed. Hence, the performances of MOACO algorithms
changed with the number of ants and number of iterations used.

In addition, the PSACO algorithm outperformed AMPACOA,
mACO,, CPACO and MCAA algorithms in small TSP instances
(Kroab50 and Kroac50) as it obtained more solutions in OTNVGR
than those algorithms. However. CPACO and MCAA algorithms
perform better in three and four objective TSP instances as their
OTNVGR values are higher than in bi-objective TSP instances.

54. Analysis of the coverage performance indicator

The summary of the results obtained by all the algorithms is
presented using a set of box-plots as shown in Figs. 19--21. In each
box, six box-plots are represented from left to right: Kroab50,
Kroac50, Kroab100, Kroabc50, Kroabc100 and Kroabced50. Algo-
rithms A and B refer to two algorithms in a row and column,
respectively. This indicator measures the proportion of solutions of
set B which are dominated by solutions of set A. Thus, C(A,B)=1
means that all solutions of B are weakly dominated by solutions of
A. Also, C(A.By=0 indicates that no solution of B is weakly
dominated by A as described in Eq. {5} in Scction 4.2. The middle
line of each box represents the medians of C(A,B). The bottom
scale represents 0 and 1 at the top per each box.

Fig. 19 represents the box-plots of results obtained for model
1 and it should be noted that the ACOMOFS algorithm performs
best among other MOACO algorithms since its C performance
indicator values are almost zero most of the time. This is because
pareto fronts obtained by the ACOMOFS algorithm dominate the
pareto fronts obtained by other MOACO algorithms only in the
central part of the pareto optimal front (see Figs. 13-18). Secondly,
the MACS algorithm performs better than other MOACO algo-
rithms as its C indicator values are close to zero. However, the
ACOMOFS algorithm performs better than the MACS algorithm
because the ACOMOFS algorithm dominated solutions of the MACS
algorithm.

Also, AMPACOA and mACQ, algorithms are outperformed by all
the other algorithms as their solutions are dominated by other
algorithms and most of the time their C indicator values are close
to one. In addition, CPACO and PSACO algorithms perform similarly
as they return similar C indicator values. Furthermore, the ACO-
MOFS algorithm performs better for bi-objective TSP instances in
model 1 and 3 as their C indicator values are less than model 2 (see
Figs. 19-21). In each model ACOMOFS, CPACO, MACS and MCAA
algorithms return better solutions for three and four objective TSP
instances as their C indicator values are minimum in comparison
with bi objective TSP instances. Therefore, it can be noted that the
performance of MOACO algorithms depends on the variation of
objectives.

5.5. General analysis

By summarizing all the detailed analyses, some key global
conclusions can be drawn as follows: In terms of completion
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Table 3 )
Total number of non-dominated solutions of § Yapr| for Kroab50, Kroac50 and Kroab100 TSP instances.

TSP instance Kroab50 Kroac50 ' Kroab100
Model Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
1 Yaprt 91 136 10 101 143 81 101 91 93
Tabled *
Total number of non-dominated solutions of |y,,,| for KroabcS0, Kroabc100 and KroabedS0 TSP instances.
TSP instance Kroabc50 ' ) Kroabc100 Kroabcd50
Model Model 1 Model 2 Mod¢l 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
(Yape! : 877 97%6 830 187 1533 1213 2537 3774 2779
Table 5
Comparison of solutions with y,, of Kroab50 TSP instance for each model.
MOACO algorithm Kroab50
Model 1(10 x 100) Model 2(20 x 100) Model 3(20 x 50)
ONVG OTNVG OTNVGR (%) ONVG OTNVG OTNVGR (%) ONVG OTNVG OTNVGR (%)
ACOMOFS 24 g 9.89 27 1 074 . T 42 0 0.00
AMPACOA 20 0 0.00 36 0 0.00 15 0 0.00
CPACO 14 1 12,08 32 2 147 20 17 15.46
mACO,4 11 0 0.00 o 22 0 0.00 16 0 0.00
MACS 85 ' 59 64,84 116 86 63.23 108 86 78.18
MCAA 10 0 0.00 R 0 0.00 15 0 0.00
PSACO 60 12 13.19 48 47 34,56 23 7 6.36
Table 6
Comparison of solutions with y,,, of Kroac50 TSP instance for each model.
MOACO algorithm  Kroac50
Model 1(10 x 100) Model 2(20 x 100) Model 3(20 x 50)
ONVG OTNVG OTNVGR (%) ONVG OTNVG OTNVGR (%) ONVG OTNVG OTNVGR (%)
ACOMOFs 35 35 34.65 29 27 18.88 24 24 29.63
AMPACOA 15 0 0.00 17 0 0.00 25 0 0.00
CPACO 6 0 0.00 17 0 0.00 16 0 0.00
mACO, 32 0 0.00 29 0 0.00 19 0 0.00
MACS 79 64 63.37 128 88 61.54 72 54 66.67
MCAA 20 0 0.00 42 0 0.00 32 0 0.00
PSACO 34 2 1.98 62 28 19.58 30 3 3.70
Table 7 ) :
Comparison of solutions with y,, of Kroab100 TSP instance for each model.
MOACO algorithm Kroab100
Model 1(10 x 100} - ‘ Model 2(20 x 100) Model 3(20 x 50)
ONVG OTNVG OTNVGR (%) ONVG OTNVG OTNVGR (%) ONVG OTNVG OTNVGR (%)
ACOMOFS S 20 : 20 19.80 15 15 1648 19 19 2043
AMPACOA 16 0 0.00 21 0 0.00 16 0 0.00
CPACO ) 9 0 0.00 12 1 1.10 16 1 1.07
mACO, 24 0 0.00 10 0 0.00 21 0 0.00
MACS 102 81 80.20 92 73 80.22 99 73 78.50
MCAA 12 0 0.00 15 0 0.00 9 0 0.00
PSACO 24 ] 0.00 26 2 220 11 0 0.00

times, the resuits obtained show that ACOMOFS is the fastest poor completion times. In addition, the MACS algorithm achieves a
algorithm as it obtains- the minimum completion time while  good completion time except for the four objective TSP instance.
AMPACOA and MCAA are the slowest algorithms as they obtain Furthermore, it is observed that the order of completion time of
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Table 8
Comparison of solutions with yp, of Kreabc50 TSP instance for each model.

MOACO algorithm Kroabc50
Model 1(10 x 100) Model 2(20 x 100) Model 3(20 = 50)
ONVG OTNVG OTNVGR (%) ONVG OTNVG OTNVGR (%) ONVG OTNVG OTNVGR (%)
ACOMOFS 160 131 14.94 194 7 1.27 143 134 16.15
AMPACOA 92 0 0.00 155 0 0.00 98 0 0.00
CPACO 35 23 262 62 32 3.29 54 46 5.54
mACO, 77 0 0.00 83 0 0.00 86 0 0.00
MACS 914 657 7491 1m9 794 8135 846 627 75.54
MCAA 49 11 126 72 1 0.10 88 5 0.60
PSACO 110 55 6.27 105 78 7.99 57 18 217
Table 9
Comparison of solutions with yq,- of Kroabc100 TSP instance for each model.
MOACO algorithm Kroabc100
Model 1(10 x 100) Model 2(20 x 100) Model 3(20 < 50)
ONVG OTNVG OTNVGR (%) ONVG OTNVG OTNVCGR (%) ONVG OTNVG OTNVGR (%}
ACOMOFS 123 123 1036 208 208 13.57 156 156 12.86
AMPACOA 54 ¢} 0.00 138 0 0.00 120 0 0.00
CPACO 33 30 253 77 61 3.98 73 52 429
mACO, 73 0 0.00 136 0 0.00 120 0 0.00
MACS 1183 1034 87.1 1463 1262 82.32 1133 1002 82.60
MCAA 50 0 0.00 65 2 0413 77 0 0.00
PSACO 63 0 0.00 66 0 0.00 64 3 0.25
Table 10
Comparison of solutions with y,,, of Kroabed50 TSP instance for each model.
MOACO algorithm Kroabcd50
Model 1(10 x 100) Model 2(20 x 100) Model 3(20 < 50)
ONVG OTNVG OTNVCGR (%) ONVG OTNVG OTNVCGR (%) ONVG OTNVG OTNVGR (%)
ACOMOFS 535 535 21.01 672 655 17.35 492 488 17.56
AMPACOA 236 0 0.00 435 0 0.00 340 0 0.00
CPACO 38 35 1.38 104 100 2,65 83 81 291
mACO, 228 0 0.00 255 0 0.00 254 0 0.00
MACS 2642 1933 76.19 3821 2956 78.33 2797 2169 78.05
MCAA 157 23 091 250 11 0.29 236 25 0.90
PSACO 127 13 051 130 52 138 148 16 0.58

MOACO algorithms are not dependent on the number of ants and
the number of iterations used except for the MACS algorithm.

When representing bi-objective TSP instances graphically, it
shows that only the MACS algorithm returns good distribution all
over the pareto front while all other algorithms obtain non-
dominated solutions only in the central part of the pareto front.
Moreover, the AMPACOA and mACO;, algorithms are outperformed
by other algorithms. Further, ACOMOFS, CPACO, MCAA and PSACO
algorithms obtain better solutions in the central part of the pareto
front and they are competitive with each other.

When considering the OTNVGR performance indicator, it can
be concluded that the MACS algorithm is the best performing
algorithm over the other MOACO algorithms, while ACOMOFS is
the second best algorithm. According to Table 1, only the MACS
and ACOMOFS algorithms use the local pheromone updating. In
addition, AMPACOA and mACO, algorithms are outperformed by
other algorithms in all situations. As given in Table 1, AMPACOA

and mACQ; algorithms use one colony with multiple pheromone
matrices. Moreover. the PSACO algorithm returns better solutions
for the problem of large size of 2000 (20 x 100 model). Also, the
ACOMOFS algorithm produced the best results for the problem of
small size of 1000 (10 x 100 and 20 x 50 models). Therefore, it can
be concluded that the performance of some MOACO algorithms
depend slightly on the numbers of ants and numbers of iterations used.

According to the C performance indicator, the ACOMOFS and
MACS algorithms are the best MOACO algorithms. But ACOMOFS is
slightly better than the MACS algorithm as the solutions of the
ACOMOFS algorithm dominates solutions of the MACS algorithm.
Also, AMPACOA and mACQ, algorithms are dominated by all the
other MOACO algorithms. Nevertheless, ACOMOFS, CPACO, MACS
and MCAA algorithms produce better results for three and four
objective TSP instances than for bi-objective TSP instances. There-
fore, it can be concluded that variation of objectives change the
performance of MOACO algorithms.
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Fig. 20. Box-plots of the results obtained by the C performance indicator for MOACO algorithms of model 2.
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6. Concluding remarks

This contribution has demonstrated that the comparison of the
recent MOACO algorithms when applied to the six instances of the
multi-objective TSP problem to optimize two, three and four
objectives. The comparison was performed by changing the
numbers of ants and numbers of iterations. MOACO algorithms
have been compared graphically using the scatter-plot matrix
method, as well as in terms of performance indicators {(OTNVGR
and C indicator) and completion times. According to the results

obtained, some key conclusions can be drawn. In terms of
completion time, the results showed that the ACOMOFS algorithm
is the fastest algorithm in all situations. However, the order of
completion times of MOACO algorithms are not dependent on the

- number of objectives, number of ants and number of iterations

used except for the MACS algorithm. Graphically, it can be seen that
AMPACOA and mACO, algorithms are outperformed by all the other
algorithms, The MACS algorithm returns non-dominated solutions -
throughout the pareto front and also it covers a greater proportion of
the pseudo pareto optimal front than other algorithms.
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Fig. 21. Box-plots of the results obtained by the C performance indicator for MOACO algorithms of model 3.

According to the OTNVGR performance indicator, the MACS algo-
rithm produces the best performance while the ACOMOFS algorithm is
found to have the second best performance over other MOACO
algorithms. But when considering the C performance indicator, the
ACOMOFS algorithm dominates the solutions of the MACS algorithm as
the ACOMOFS algorithm obtains better non-dominated solutions in the
central part of the pareto front. Therefore, it can be conduded that
MACS and ACOMOFS algorithms perform better in all the situations
considered. Moreover, CPACO, MCAA and PSACO algorithms are
competitive with each other. Furthermore, the performances of some
MOACO algorithms such as ACOMOFS, CPACO, MCAA and PSACO
algorithms depend slightly on the number of objectives, number of
ants and number of iterations used.

For future development, an idea which arises from this study is
to study the performance of these MOACO algorithms in other
combinatorial optimization problems such as the quadratic assign-
ment problem and the job shop scheduling problem.
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