
PH YS IC A L R EV IEW  B 93,165110 (2016)

C oulom b-enhanced  su p erco n d u ctin g  p a ir  co rre la tio n s an d  p a ired -e lec tro n  
liq u id  in  th e  fru s tra te d  q u a rte r-filled  b an d

Niladri Gom es,* 1 W. Wasanthi De Silva,2 Tirthankar Dutta,1 R. Torsten Clay,2'* and S. Mazumdar1 *
1 Department of Physics, University of Arizona, Tucson, Arizona 85721, USA 

2 Department of Physics & Astronomy and HPC2 Center for Computational Sciences, Mississippi State, Mississippi 39762, USA 
(Received 1 July 2015; revised manuscript received 11 March 2016; published 7 April 2016)

A  necessary condition for superconductivity (S C ) driven by electron correlations is that electron-electron 
(e-e) interactions enhance superconducting pair-pair correlations, relative to the noninteracting limit. We report 
high-precision numerical calculations of the ground state on four different finite lattices of up to 100 sites 
within the frustrated two-dimensional (2D ) Hubbard Hamiltonian for a wide range of carrier concentration p 
(0 < p < 1). The average long-range pair-pair correlation for each cluster is enhanced by Hubbard U only for 
p «  0.5. At all other fillings e-e interactions mostly suppress pair correlations. Our work provides a key ingredient 
to the mechanism of S C  in the 2D  organic charge-transfer solids and many other unconventional superconductors 
with frustrated crystal lattices and p ~  0.5.
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I .  IN T R O D U C T IO N

The possibility that electron-electron (e-e) interactions 
drive superconductivity (SC) in correlated-electron systems 
has been intensely investigated. The minimal requirements for 
a complete theory are, (i) superconducting pair correlations are 
enhanced by e-e interactions, and (ii) pair correlations are long 
range. For moderate to large e-e interactions, pair correlations 
are perhaps best calculated numerically, which can be done 
only for finite clusters. The simplest model incorporating e-e 
interactions is the Hubbard model,

H  =  -  ] C  + u Y l n i ’ i n i ’ i + \ vv n‘nJ• o )
(</■).<» i (O')

In Eq. (1), Bjj'O =  (cJCTc7>  +  H.c.) where cja creates an 
electron o f spin a  on site i . U  and Vy are on-site and nearest- 
neighbor (n.n.) Coulomb interactions, respectively. Numerical 
calculations within Eq. (1) have failed to find enhancement 
of pair-pair correlations relative to the noninteracting model 
without making assumptions regarding the wave function [1]. 
Indeed, quantum Monte Carlo calculations on finite lattices 
find suppression o f  pair correlations by U  [2-6].

It has been surmised that correlated-electron SC evolves 
upon doping a spin-gapped semiconductor, as in toy models 
consisting o f weakly coupled even-leg ladders [7,8]. Finding 
realistic 2D models with spin-gap (SG) and enhanced-pair 
correlations remains challenging. Here w e demonstrate from 
explicit numerical calculations on frustrated 2D  lattices 
enhanced-pair correlations evolving from a spin-gapped state 
at a carrier density p  ~  0.5, far from the region most 
heavily investigated (0.7 <  p  < 1.0). We point out the strong 
relevance o f the resulting theoretical picture to real materials, 
in particular the 2D charge-transfer solids (CTS) superconduc­
tors, which were discovered before the high Tc cuprates [9] 
but are still not understood.
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There occurs an effective e-e attraction uniquely at p  = 0.5, 
driven by charge-spin-lattice coupling. Consider the four-atom 
dimerized “molecule” o f Fig. 1 (a), with two strong intradimer 
bonds and one electron on each dimer. In the absence o f the 
interdimer bond, the electron density is homogeneous. As 
this bond is switched on, there is net migration o f charge to 
the two center atoms, due to the attractive antiferromagnetic 
spin-coupling [10]. Charge migration is enhanced by electron- 
phonon (e-p) interactions [10,11]. The effective attraction is 
stronger than that near p  ~  1, where charge migration is not 
possible, with the neighboring sites already occupied. The 
charge-ordering (CO) o f Fig. 1(a) in the spin-singlet state 
persists in the thermodynamic limit in one dimension (ID ) 
p  =  0.5, where for V <  VC(U )  e-e and e-p couplings act 
cooperatively [11] to give the spin-Peierls states o f Figs. 1(b) 
and 1 (c). The spin-Peierls state at p  =  0.5 is a paired-electron 
crystal (PEC), in which singlet-coupled n.n. singly occupied 
sites are separated by pairs o f  vacancies. Similar PECs occur 
in the zigzag ladder [Fig. 1(d)] [12] and in the anisotropic 
triangular lattice [Fig. 1(e)] [10]. We have not found the PEC 
[10] at any other p. This is expected, as only at p  — 0.5 the 
PEC is commensurate.

Based on a valence bond (VB) perspective similar to An­
derson’s resonating valence bond [13] approach to the nearly 
p  =  1 limit, we posit that SC is achieved in p  ~  0.5 upon 
destabilization o f  the PEC, either due to increased frustration 
or very weak doping. The PEC wave function is dominated 
by covalent VB diagrams with periodic arrangement o f  the 
n.n. singlet bonds. Close to the PEC we anticipate the wave 
function to continue to be dominated by VB diagrams with 
n.n. singlet bonds, except that the arrangement o f the bonds is 
no longer periodic. One such diagram is shown in Fig. 1(f)(i). 
Within Eq. (1), pairs o f VB diagrams with only n.n. bonds 
are coupled through the diagrams with next-nearest-neighbor 
(n.n.n.) bonds, as in Figs. l(f)(ii) and l(f)(iii). We collectively 
refer to diagrams with only n.n. and n.n.n. bonds as those with 
short bonds. There will be considerable pair tunneling in a 
wave function dominated by VB diagrams with short bonds, 
and we will refer to such a wave function as a paired-electron 
liquid (PEL).
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FIG . 1. (a) p  =  0.5 dimers with weak (left) and moderate (right) 
interdimer singlet bonding. Sites colored gray. blue, and red have 
charges 0.5. >0.5. and <0.5. respectively. 2k F spin singlet states in 
the p  =  0.5 ID  chain, for (b) small to intermediate U  and V . and (c) 
for intermediate to large U .  In both cases V  < 1^(6/) [ I I ] .  The P E C  in 
the (d) p  =  0.5 zigzag ladder [12], (e) 2D  triangular lattice [ 10], The 
C O  has pattern. . .  11 00 . . .  in two directions, where “ 1” ("0”) denote 
charge-rich (charge-poor) sites. Double, single, and dotted bonds 
in (b H e )  denote bonds with decreasing strengths, with the double 
dotted bond weaker than a single bond but stronger than a single 
dotted bond. Differences in bond strengths result from nonzero e-p 
coupling, (f) Covalent V B  diagrams with short bonds in p  =  0.5. and 
(g) their total normalized weights in the ground state wave function 
of different p  for the 4 x 4 lattice, for =  1. tJ+y =  0.8.

In the following section we describe the results o f finite- 
size correlated calculations within Eq. (1) that demonstrate 
explicitly the enhancement o f SC uniquely for p ~  0.5. II. * * V.

II. LATTICES, PARAMETERS, AND RESULTS

We consider an anisotropic triangular lattice with r,y =  {/,, 
ty, tx+y}. We express all quantities with dimensions of energy in 
units o f tx (r, =  I). The bulk o f our calculations are for rv — I. 
with tx+y only slightly smaller. This is because antiferromag- 
netism (AFM) or CO dominate at weaker frustrations [10]. We 
first calculate the exact wave functions in the lowest total spin 
5  =  0 subspace for all p within the periodic 4 x 4  triangular 
lattice. In Fig. 1(g) we plot the total normalized contribution 
by the covalent VB diagrams with short bonds to the exact
wave function as a function of p for several Hubbard U and
V. For moderate to large e-e interactions the maximum in this 
contribution occurs at p = 0 .5, indicating that VB diagrams 
with short bonds dominate at p — 0.5.

We anticipate Bose condensation o f singlet pairs within 
the PEL state within the mechanism o f SC proposed by 
Schafroth [14], Since without e-p coupling in Eq. (1) there 
is no static SG and PEC, a complete theory o f SC will require 
explicit inclusions o f both e-e and dynamic e-p interactions. 
As is. however, well established from studies o f CDWs and 
SDWs, the tendency to the dominant instability in models 
containing both e-e and e-p interactions can be determined 
from correlation functions of the electronic Hamiltonian alone
[15]. We have performed calculations within Eq. (1) to 
determine if the dominance o f VB diagrams with short bonds at 
p ~  0.5 implies enhanced superconducting pair correlations. 
We demonstrate that the PEL is a precursor to a correlated 
superconducting state.

Our choice of which lattices to consider for calculations of  
SC pair-pair correlations is guided by several considerations. 
First, the total number of sites should be less than around 
100 in order to obtain accurate results for the pair-pair 
correlation functions. Second, the lattice should have a single- 
particle level structure such that quarter-filling (p =  0.5) is a 
nondegenerate state, and the Lx and L v dimensions should be 
an even number o f sites. We took tx slightly different from 
ty (tx — 1, tv = 0.9) in order to maximize the number of 
densities with nondegenerate single-particle spectra. Within 
these constraints, and considering only lattices for which 
Ly >  Z .,/2. the only possible choices are 10 x 10, 1 0 x 6 ,  
and 6 x 6. In addition we considered the 4 x 4 lattice, which 
although degenerate at p — 0.5. is the largest lattice for which 
the full density range can be calculated exactly.

We define the standard singlet pair-creation operators

A )  =  £ s ( ” ) ^ ( c,T.tc,t+ - 4  - c|4 c(!+ -  T), (2)

where g(u) determines the pairing symmetry. The phases 
g(v) determine the pairing symmetry. For rfr:_ v: symmetry, 
g(u) =  (1. — 1.1. - 1 }  for r,. — [ i . v .  —x . — v], respectively. For 
dxy symmetry. g(v) = ( l . - l . l . - l )  for ru =  [Jr +  y , - x  + 
y, - x  -  v.jc -  y). respectively. We note that slightly different 
definitions of Eq. (2) appear in the literature, in that some 
definitions do not include the factor of 1 /y/l.  Caution must 
therefore be used before comparing directly the magnitude of 
pair-pair correlations in different references. We calculated 
equal-time pair-pair correlations Pjj =  (a | A j),  using four 
different numerical techniques: exact diagonalization in the 
VB basis [16-18], the path integral renormalization (PIRG) 
method [19], constrained path Monte Carlo (CPMC) [20], 
and determinantal quantum Monte Carl (DQMC) [21 ]. Further 
details on the methods is given in the Appendix.

To facilitate comparison of multiple lattices and to mitigate 
finite-size effects, we calculate the distance-dependent pair- 
pair correlations P(r) (r =  |?j — r}|) and show here the av­
erage long-range pair-pair correlation P =  Npl ^ | - |>2 P(r), 
where Np is the number o f terms in the sum [22] (see also 
Supplemental Material [23], Sec. S. 1).

We have found and dxy symmetries to dominate over 
s-wave symmetries. Further, for each lattice only one of the 
two d -wave channels is relevant: for 4 x 4 and 10 x 6,
and dxy for 6 x 6 and 10 x 10 [23]. th e  origin o f this lattice 
dependence is currently not understood; note, however, that
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FIG. 2. Average long-range pair-pair correlation P(U) normal­
ized by its uncorrelated value for (a) 4 x 4, (b) 6 x 6, (c) 10 x 6, 
and (d) 10 x 10 anisotropic triangular lattices, for rv =  0.9 and 
tJ+y — 0.8. 4 x 4  results are exact; 6 x 6  and 1 0 x 6  results are 
obtained using the PIRG method; and 10 x 10 by the CPMC method. P P

the distinction between dx2 _ y 2  and dXy symmetries is largely 
semantic in the strongly frustrated regime we investigate. It is 
possible that the actual pairing symmetry is a superposition 
o f dxi-y2 and dXy. We have not attempted to find this 
superposition. Rather, for each lattice and p we have calculated 
the dominant symmetry P as a function o f U (Vy  =  0). Plots 
o f P versus V  for each individual p  on different lattices are 
given in the Supplemental Material [23]. The complete results, 
summarized in Figs. 2 and 4, are remarkable: For each lattice 
P(U)/P(U =  0) >  1 for a single p that is either exactly 0.5 or 
one of two closest carrier fillings with closed-shell Fermi-level 
occupancy at U =  0. Pair correlations are suppressed by U at 
all other p, including the region 0.7 <  p <  1 that has been 
extensively investigated [1]. In three o f four lattices in Fig. 2 
enhancement o f P(U) occurs for p slightly away from 0.5. 
The magnitude o f pair correlations depend on both the pair 
binding energy and the kinetic energy to be gained from 
pair delocalization; in finite lattices both quantities depend 
strongly on the details o f the one-electron energy spectrum. 
We show in the Supplemental Material [23] that the p at 
which enhanced P(U) occurs can be predicted from the known 
one-electron levels. Importantly, the deviation from 0.5 o f the 
p at which P(U) is enhanced (excluding the 6 x  6 lattice 
where this deviation is zero) decreases monotonically with 
size. SC for p close to 1, but U significantly larger than that 
accessible for our largest lattices (U <  4), has been claimed 
within approximate calculations [6,24,25]. We discuss p close 
to 1 in the Supplementary Material [23], Sec. S.4, where we 
show that there exist enough uncertainties here that further 
work would be needed before firm conclusions can be reached.

Nonzero V); affects lattice frustration minimally when 
all three components, Vx, Vy, and Vx+y are nonzero. Pair 
correlations for Vx = Vy = Vx+y could be calculated only for 
the 4  x  4 lattice, where the behavior o f  the pair correlations 
is qualitatively similar to Vy =  0, although the magnitude of 
the enhancement is smaller. We have found that when Vx =  
Vv, Vx+y =  0, dxy pair correlations are enhanced uniquely 
for p ~  0.5. Similarly, V v  #  0, and any one o f Vt , Vv 
nonzero enhances (suppresses) dx2 _ y 2 (dxy). Overall, there

FIG. 3. (aH d) P(U) for dxy pairing as a function of p and inverse 
temperature fi for the 6 x 6 lattice, calculated using DQMC. P(U) 
for p ~  0.5 is gradually enhanced with increasing P beginning from 
P =  8. P(U) is suppressed by U at all other p. P(U) for (e) dx2 _ y 2  

pairing in the 4 x 4 lattice, and (f) dxy pairing in the 1 0 x 6  lattice.

is a broad parameter region over which the pair correlations 
remain enhanced at p ~  0.5 (see Supplemental Material [23], 
Sec. S.1.1).

The ground-state results are further confirmed by finite 
temperature DQMC calculations. The sign problem is severe 
for large U, but up to U =  2 the results are reliable even for the 
largest P (p = tx/keT)  we have investigated. Figures 3 (a)- 
3(d) show that with increasing p  there occurs progressive 
enhancement o f P(U) with increasing U, uniquely at p ~  0.5. 
in the 6 x  6 lattice. Figures 3(e) and 3(f) show similar results 
for the 4 x  4 and 10 x  6 lattices. The excellent agreement 
between PIRG and DQMC indicates that while the DQMC 
calculations could be performed at the smallest T  only for 
U <  2, enhanced pair correlations should be expected at even 
larger U. Figure 4 summarizes the enhancement o f  pairing as 
a function o f  p for all lattices, including in the nondominant 
channels. The dominant pairing symmetry is enhanced only 
for p ~  0.5. Pairing in the nondominant channels is enhanced 
weakly for small U ~  1 for some p, but are weakened further 
as U is increased.

Despite the large amount o f data from our calculations, 
performing a rigorous finite-size scaling o f the pair-pair 
correlations is difficult for several reasons. First, for the 
different lattices, the enhancement occurs in either the dx 2 or
dxy channels. In the thermodynamic limit the pair symmetry for 
the highly frustrated lattice we have considered is most likely 
a superposition of these two symmetries. On finite lattices one 
or the other tends to dominate. Second, even as the density 
p where enhancement occurs tends to p ^  0.5 as the lattice 
size increases, the precise p where the enhancement occurs is 
different on each lattice. Finally, the CPMC method we used 
for the 10 x  10 calculations is approximate, and its accuracy 
for larger lattices and large U is not known. In our comparison
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order is present. P should tend to a finite value as the lattice 
size increases. The data in both Figs. 5(a) and 5(b) appear 
to indicate absence o f long-range order, although we cannot 
rule out the possibility o f a small magnitude (P <  0.002) 
long-range component in Fig. 5(b). Note also that due to the 
limitations o f CPMC we do not have reliable data for pair 
correlations at large U (U > 2) for the 10 x 10 lattice, where 
the enhancement would presumably have been larger. If we 
ignore the P(U)/P(U = 0) for the 10 x 10 lattice, then the 
ratio does extrapolate to slightly greater than 1 in Fig. 5(a). 
This would indicate that the system is indeed a paired-electron 
liquid state that is asymptotically close to a superconducting 
state with long-range order. We therefore speculate that the 
inclusion of e-p interactions will give true superconducting 
long-range order.

FIG. 4. P {U ) normalized by P (U  = 0 ). for (a) U = I and 
(b) U — 4 (U  =  2 for the 10 x 10 lattice). Only results with 
P (U )/P (U  = 0) > 1 are included, for both d,:_v’ and dxy pairing 
symmetries. The dominant pairing symmetry for each lattice is 
indicated with darker shading. The width of each bar is \/N. where 
N is the number of lattice sites.

o f PIRG and CPMC for the 1 0 x 6  lattice (see Supplemental 
Material [23], Fig. S10), CPMC in some cases underestimated 
P for larger U.

Because o f these points we cannot make a meaningful 
extrapolation from a single pairing symmetry at a fixed density. 
Nevertheless, in Fig. 5 we show our attempt to finite-size 
scaling of P in two different ways, for relatively weak U — 2. 
In both panels, we have taken the density and pairing symmetry 
where the peak enhancement occurs on each finite lattice. In 
Fig. 5(a) we plot the peak value of the ratio P(U)/P{U =  0) 
as a function of 1 /vO v, where N  is the total number of lattice 
sites. Figure 5(b) shows the extrapolation o f P(U) itself for the 
same densities as in Fig. 5(a). If superconducting long-range

___ i___ i___ i___ i___■ i___ i___ i___ i___
0 0.05 0.1 0.15 0.2 0.25

V
1 /  N

FIG. 5. (a) Finite-size scaling of the p 0.5 peak (see text) 
P(U)/P{U =  0) for each lattice: (b) Similar scaling plot for P(U) 
at the same densities as in (a).

III. DISCUSSION

We have demonstrated a completely new source o f effective 
electron-electron attraction, which is mediated by charge- 
spin coupling (and ultimately also coupling to lattice) at 
a band-filling far from p = l. The physical arguments are 
based on the tendency to charge migration to form nearest- 
neighbor singlets, which is unique to the p = 0.5 region. The 
significance o f our results lies in the following, (i) This is the 
first time that consistent enhancement o f pair-pair correlations 
for nonoverlapping pairs [22.26.27] with U is observed.
(ii) The enhancement is uniquely at or near p =  0.5, exactly 
the carrier density where the PEC has been found earlier [10].
(iii) The theory' gives consistent explanations o f SC as well 
as many peculiar features observed in the normal states o f 2D  
CTS, as we describe below.

It is highly interesting that superconductivity in the CTS 
is limited to p ~  0.5. While conducting charge-transfer solids 
exist with many other carrier densities there is no example o f a 
superconductor whose carrier density is not exactly or nearly 
0.5. Further, our theoretical work is the very first that gives a 
unified approach to organic superconductivity, independent 
of whether the ambient pressure proximate semiconductor 
is magnetic or charge-ordered. We discuss further specific 
implications for the CTS superconductors below.

Typical quasi-2D superconducting CTS are the families 
(BEDT-TTF)?X [hereafter (ET)2X], which occur with crystal 
structures labeled or. fi, 9. k . etc. [28], and Z[Pd(dmit)2]2. 
The number of holes (electrons) p per ET cation [Pd(dmit)2 
anion] is 0.5. With the exception of the /r-phase materials 
(see below). ET molecules occupy the sites o f triangular 
lattices [28]. In many 2D CTS the unit cell consists of two 
molecules, formally leading to a two- rather than one-band 
model. In our lattice this would add an additional modulation 
o f the hopping integrals. With strong e-e interactions [29], and 
the resultant band narrowing effect, the experimental con­
sequence of this modulation is small. For example, due to 
symmetry the two bands are degenerate in 0-(ET)2X but 
nondegenerate in o-(ET)2X [30]. but similar CO patterns and 
SC are found in both. SC is reached at constant p by application 
o f pressure on a proximate semiconducting state that often 
exhibits CO. Materials exhibiting CO adjacent to SC include 
a-(ET)2l3 [31]. 6>-(ET)2l3 [32], /3-(meso-DMBEDT-TTF)2X 
(X =  PF6 and AsF6) [33]. and EtMe3P[Pd(dmit)2]2 [34], In
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Sec. S.3 in the Supplemental Material [23], we point out that 
the CO pattern in the traditional Wigner crystal, driven by 
large V, is different from that in the PEC [33], where it is 
driven by the tendency to form n.n. singlets. Experiments 
have established that the CO pattern in each o f  the above 
materials showing CO-to-SC transition corresponds to the 
PEC [23,33,34,36,37]. The pressure-induced transition to SC 
in these systems is then likely a bandwidth-driven PEC-to-SC 
transition suggested from our calculations. A strong role of 
phonons in SC is seen experimentally [38]. This is expected, 
as it is the cooperative effect between e-e and e-p interactions 
[10,11] that drives the transition to the PEC.

Our theory is also applicable to the k-(ET)2X. At am­
bient pressure, X =  Cu[N(CN)2]CI (k-C1) is AFM, X =  
Cu2(CN )3 (k-CN) is a quantum spin liquid (QSL), and 
X =  Cu[N(CN)2]Br (*r-Br) and X =  Cu(NCS)2 (*-NCS) are 
superconductors [39]. SC is also observed in k-C1 and k-CN 
under pressure [39]. A variety o f experiments [40-49] have 
suggested fluctuating SC and preformed pairs at temperature 
T* significantly above the superconducting critical tempera­
ture Tc in *-Br (Tc =  11.5 K) and k-NCS (Tc =  10.4 K). 
While estimates o f T* range from 20 to SO K, measurements 
o f ESR spin susceptibility [40], static magnetic susceptibility 
[46], and NMR measurements o f spin-lattice relaxation time 
and Knight shift [41-43] all show a dramatic decrease in 
magnetic fluctuations and the possible occurrence of a spin 
gap at T*. This has been interpreted in terms o f incoherent 
pairs that form at T* to give fluctuating SC. STM [47] and 
magnetic torque measurements [48,49] have been interpreted 
similarly.

In jr-fET^X dimers o f ET molecules are arranged on 
an anisotropic triangular lattice. The underlying monomer 
lattice is also triangular, albeit distorted [28]. Considering 
dimers as effective sites gives an effective p ~  1 Hubbard 
model that yields AFM (QSL) for weak (strong) frustration 
[39,50]. Precise numerical calculations have however found 
no SC within the effective p = 1 Hubbard model for any 
frustration [26,27,31]. We have shown that with increasing 
frustration, there is a strong tendency to a fluctuating PEC 
in tf-(ET)2X, in spite o f dimerization [10]. With increased 
delocalization, dimerization plays a less crucial role and the 
sites o f the lattice are now the monomer molecules themselves 
[10]. Strong support for this theoretical picture is obtained 
from the observations o f the PEC in #:-(ET)2Hg(SCN)2Cl 
[32], and o f a pressure-induced transition from a dimer AFM 
to a state with significant intradimer charge fluctuation in 
0'-(ET)2-ICl2 [53]. Taken together with earlier work [10], our 
present work is then able to explain both the magnetic behavior 
and SC: in the localized insulating phase dimerization plays 
a deciding role and the effective p =  1 description is valid; 
with pressure-induced larger interdimer hopping, the effective 
picture breaks down and a more appropriate description is 
p =  0.5. Within our theory the state below T* is the PEL, 
which is the fluctuating SC state observed experimentally 
[40-49], and which is superconducting once pair coherence is 
reached. In Fig. 3, enhanced pair correlation at p — 0.5 begins 
to appear at /} = 8; with average |/ | ~  0.1 eV, T* can be as 
high as ~  100 K, which is to be compared with experimental 
estimates o f T* ~  50 K [40-44], Lattice effects in the transition 
atT* have been found in ultrasound [54] and thermal expansion

COULOM B-ENHANCED SUPERCO N DUCTIN G PAIR . . .

[55] studies. This is expected, since the PEL is structurally 
close to the PEC, a density wave o f pairs [10].

IV. CONCLUSION

To summarize, we have shown that there occurs a coupled 
charge-spin-mediated effective e-e attraction near p =  0.5 
because o f the strong tendency to form n.n. singlets at this 
density. Two o f us have pointed out the unusual abundance
[56] o f correlated-electron superconductors at p ~  0.5. It 
is conceivable that the shared features o f p  =  0.5, lattice 
frustration, and strong e-e interaction point to a new paradigm 
for correlated-electron SC. Recent finding of a CO phase 
proximate to SC within the pseudogap phase o f the cuprates 
[57-60] has led to theories o f competing or intertwined CO 
and SC orders. Whether or not the PEC to PEL transition 
found by us has any bearing here too is an intriguing 
question.
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APPENDIX: METHODS

Exact diagonalization using the valence-bond basis. The 
valence-bond method is a well-known numerical technique for 
studying correlated quantum systems [16-18]. In the present 
work it is used for computing pair-pair correlation functions 
and relative weights o f nearest- and next-nearest-neighbor VB 
diagrams for the 4  x  4 lattice. In the VB method [16-18], the 
wave function is expanded in terms o f VB diagrams

l*> =  !*■>■ <A1>
n

As the VB basis is nonorthogonal the normalization condition 
involves the overlap o f VB diagrams, (4>n\4>m)'

( » P |4 / > = ^ c ; c m(0fl|0m>. (A2)
m,n

In Fig. 1(g) we plot the total relative weight o f nearest- and 
next-nearest-neighbor singlet VB diagrams, W(NNS).  This 
quantity is defined as

W (N N S) =  Y jc l c A tn  I * . ) / W > .  (A3)
m,n

In Eq. (5), the / over the sum indicates that only VB diagrams 
with either nearest- or next-nearest-neighbor singlet bonds are 
included [as shown, for example, in Fig. 1(f)].
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The main advantages o f the the VB method are that it 
allows, first, visualization o f wave functions in terms of the 
dominant VB diagrams, and second, conservation of total spin 
S. We have used this method to calculate correlation functions 
for the 4 x  4 lattice within the lowest S — 0  state for all values 
of tx+v: for number o f electrons 4 ,8 , and 12, the single-particle 
wave functions are degenerate, and for these cases calculations 
targeting specific total S states would be difficult for methods 
conserving only Sz.

Path integral renormalization group. PIRG was used to 
calculate zero-temperature expectation values of the pair-pair 
correlations. PIRG was used because conventional Monte 
Carlo methods (see below) are limited by the fermion sign 
problem to either small Hubbard U and/or high temperatures 
for frustrated lattices. The PIRG method is described in 
Ref. [19], Within PIRG, the wave function is expanded as a 
sum over L Slater determinants, and the projector operator 
e x p ( - r H) is used to project out the ground state from a 
random starting determinant [19], The method is exact at 
U — 0 and for each L , PIRG calculations are variational. 
For the calculations presented here, we first minimized the 
variational energy for L =  1, followed by optimizing the 
variational state at L = 8. We then continued calculations 
to larger L. doubling (L = 16, 32, . . .) L at each step. We 
used maximum L ’s o f up to 768. The finite-basis bias is then 
removed by extrapolating quantities as a function of the energy 
variance AE [19}. For the results presented here, we typically 
used a linear extrapolation in AE for the three largest L used, 
i.e.. L =  {256,512 ,768).

Several additional techniques are essential to improve the 
accuracy o f the PIRG. First, we incorporated lattice and spin 
symmetries using projection operators o f the QP-PIRG method 
o f Ref. [61], The use o f lattice and spin symmetries has been 
shown to drastically reduce the L required to obtain accurate 
results with PIRG [61]. Here we used the more accurate 
method o f incorporating symmetries during projection (QP- 
PIRG) as opposed to afterwards (PIRG-QP) [61]. For the 
lattice symmetry we used the full space group of the lattice 
(translations and point symmetries). For spin, we projected 
using the spin-parity operator, which separates even and odd 
values o f total spin S. All results here are for the even spin- 
parity subspace. Second, it has been observed that in certain 
cases the PIRG method can be trapped in excited states [62]. To 
help prevent this, in addition to the PIRG projection operator, 
we used a random simulated annealing-like modification of
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the Slater determinants [27.62], Furthermore, several starting 
states were chosen for the projection, and their final energy 
compared.

PIRG has been extensively benchmarked against other 
methods. We previously compared the pair-pair correlations 
from PIRG and exact diagonalization on a 4 x 4 frustrated 
lattice and found essentially perfect agreement [27]. For larger 
lattices. PIRG has further been checked against conventional 
quantum Monte Carlo for systems where there is no sign 
problem, such as the half-filled square lattice Hubbard model 
[61 ]. Our comparisons of PIRG and DQMC (see Supplemental 
Material Sec. S .l [23]) further gives us confidence in the 
accuracy of the method.

Constrained path Monte Carlo. CPMC is a ground-state 
projector QMC method [20], Like PIRG, CPMC works in 
the space o f Slater determinants. This space is over-complete, 
which results in contributions to the ground-state wave 
function that are both positive and negative. The Monte Carlo 
sampling is confined to the region where the overlap between 
each random walker \<j>) and a trial wave function I'P/-) is 
positive [20]. This eliminates the loss o f precision known as the 
fermion sign problem but introduces an approximation into the 
method. The results presented here used the free-electron wave 
function for |4»7-). This trial function produces exact CPMC 
results at U =  0  and also for nonzero U in the one-dimensional 
limit [20]. While this choice has been shown to be accurate 
for many lattices, particularly for closed-shell fillings [20], 
we restrict the use o f CPMC to small U (0 < U <  2). Our 
CPMC code results used an imaginary time discretization 
of A r = 0 . 1  with a second-order Trotter approximation; 
the additional systematic error due to this approximation is 
negligible.

Determinantal quantum Monte Carlo. The DQMC method 
integrates out the fermion degrees o f freedom, replacing the 
Hubbard interaction with an auxiliary Hubbard-Stratonovich 
field [21]; for a review see Ref. [63]. Our results here used 
the finite-temperature variant o f this algorithm. This method 
suffers from sign problem when used for fermion systems. As 
shown in Fig. 3. in the 6 x 6 lattice an inverse temperature o f 
at least P ^  8 is required to see the enhancement of pairing 
at p ~  0.5. At these lower temperatures, the sign problem 
limits us to U % 2. Our results used a Trotter discretization in 
imaginary time of A r =  0.1; for U — 2 the systematic error 
due to this approximation is smaller than the point size on our 
plots and can be neglected.
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