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Abstract
Electronic Health Records(EHR) are electronically maintained, linked, collections of allied, patient-related 
healthcare information collected during past encounters. They incorporate patient demographic information, 
encounter details, laboratory reports, prescription notes, past medical records, and other medical data. EHR creation 
is designed to support the future diagnosis, treatment, and decision making in patient care. However, since EHR 
technology is a burgeoning science, many facets lie under-used or under-utilized. Current implementations are 
confined to national boundaries managed by individual National Health Systems (NHS). Consolidated, universally 
interoperable EHR schemes are still a thing for the future; a migratory patient may not have his national EHR 
available in distant territories. Further, the examination of operational factors unearthed more inadequacies. 
Interoperability-related issues include the limiting network bandwidth causing inordinate delays, diverse local 
storage schemes at the various NHS clusters, the related requirement for synchronous vocabulary-related translation 
mechanisms at the various NHS-controlled boundaries causing inordinate delays, and the related security and access 
issues. These issues arise from the requirement for synchronous, query-messaging nature of information access and 
exchange. This paper articulates a novel, sound, and secure methodology for achieving true International 
Interoperability and uniform efficiency in ubiquitous Electronic Health Record systems. Utilizing intelligent 
machine learning processes, required query-messaging information is meaningfully aggregated enhancing the 
relevancy, access speed, and value-derivation from the given data. Asynchronous learning excludes the need for 
high available network bandwidth, upload and download delays associated with current synchronous database/cloud 
systems. Indeed, this overarching solution ensures seamless synchronous operation and high-end international 
interoperability, and would work in any ubiquitous EHR environment.

Keywords : Health Level 7, Interpolated, Consolidated, Electronic Health Records, International
Interoperability, Ubiquitous, Macrocosm.

1. Introduction
The Electronic Health Record (EHR) is a dynamic, longitudinal data structure of recorded healthcare information. 
Typically, patient encounters, patient, healthcare provider, and medication-related demographic data, treatments, 
laboratory reports, prescriptions, and medical history make good EHR material; infact efficient EHR 
implementations should circumscribe the gamut of pertinent, captured healthcare data enabling efficient, speedy 
future diagnosis and treatment of patients and diseases. The Health Information Management System Society 
(HIMSS) defines EHRs as follows [3]:

“The Electronic Health Record (EHR) is a longitudinal electronic record o f  patient health information generated by 
one or more encounters in any care delivery setting. Included in this information are patient demographics, 
progress notes, problems, medications, vital signs, past medical history, immunizations, laboratory data, and 
radiology reports. The EHR automates and streamlines the clinician's workflow”.

EHR interpolation in the IT-driven healthcare sector resulted in many parallel healthcare standards being instituted. 
For instance, Health Level 7 (HL7) developed the Electronic Health Record System Functional Model (EHR-S FM) 
which “provides a reference list o f functions that may be present in an Electronic Health Record System (EHR-S)
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|4|. Functional profiles which are predetermined functional sets applicable to earmarked purposes, users, or 
environments, are created thereafter affording standardized descriptions of the specified scenarios. They are 
pertinent subsets of the complete function list in the EHR-S FM. The functional model therefore overarchingly refers 
to the allied EHR system, which in turn manifests in the form of one or more scenario-related functional profiles.

EHR systems in general are developed with the following merits in mind |3)|5J .
• Improved Quality of Patient Care.
• Efficient Patients/Costs Monitoring.
• Filips to the Ffealthcare Industry.
• Improved Documentation and System Audit Readiness.
• Interoperability.
• Safety/Secunty.
• Quality/Reliability.
• Efficiency/Effectiveness.
• Improved Communication.

According to [4], an EHR standard regulates the exchange of valued, pertinent healthcare information. It provides 
common language parameters for the design and development of EHR systems. Efficient, seamless International 
Interoperability, defined herein as the global exchange of valued healthcare information with homogenous 
understanding amongst participating healthcare service provider-oriented computer systems, should be the goal and 
expectation of every EHR implementation. Present day EHR systems however, are mainly institution-based and 
territorially-scoped by individual National Health Systems (NHS). Many facets and perspectives of the EHR science 
are still unexplored, the possibilities for enhancement and advancement almost unbounded. Interoperable EHR 
schemes with global consolidation are still distant dream. Further, current implementations are stricken with 
operational issues such as limited network bandwidth, the requirement for synchronous vocabulary-related 
translation mechanisms at the various NFIS-controlled boundaries due to diverse local storage schemes, and related 
security and access concerns. These issues arise from the synchronous, query-messaging nature of information 
access and exchange; ironically they trigger inordinate communication delays and really subvert International 
Interoperability. This paper propounds a sound, secure methodology for achieving seamless International 
Interoperability and global efficiency in ubiquitous Electronic Health Record (EHR) systems. Using intelligent 
machine learning and EHR aggregation, required stakeholder information is meaningfully aggregated for easy 
access and enhanced value-derivation. The asynchronous learning process excludes the need for high availability of 
network bandwidth, and avoids the upload and download delays associated with current, synchronous, 
database!cloud-based EHR systems. Accordingly, this paper is organized as follows; Section 2 presents a 
conceptual EHR overview, Section 3 presents details of the proposed EHR learning model. Section 4 articulates the 
proposed intelligent learning methodology, Section 5 presents study results, and Section 6 sums up with the 
Conclusion of the overall research findings.

2. Electronic Health Record M acrocosm
Conventionally, healthcare-related information was recorded by area eg., emergency, laboratory, pharmacy, or 
emergency. These unintegrated subsystems had their own access procedures, patient identification schemes, and 
often diverse backend storage mechanisms (see Figure 1).
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Figure 1. Electronic Health Data -  Pre-EHR [3]

The mere diversity in subsystem development employing different vendors utilizing different languages and 
methods for user/patient identification and even access, subverted operational uniformity across all areas. Retrieval 
of an encompassing electronic record would thus require exhaustive login to all sub-applications and aggregating 
relevant patient record fragments. This unintegrated arrangement results in “inordinately lengthy access times, 
vocabulary variations across silos, and gross data duplication, incompatibility, and inconsistency” [1J. Further, the 
universal dispersion of allied electronic patient record fragments due to patient migration impedes efficient health 
record consolidation and access. Indeed the principal goal of this research was to devise an innovative, learning- 
based, asynchronous solution for efficient EHR-based system operation, mitigating if not totally eliminating the 
said inefficiencies due to poor, unintegrated organization, query-messaging type access and exchange, and 
associated delays, and line bandwidth concerns.

3. Features of the proposed Internationally Interoperable Intelligent EHR-based Learning 
Model

i. Timely, up-to-date information provided at any node -
• Patients
• Diseases
• Treatments
• Treating Medical Practitioner
• Service Provider
• All-permutative relationships among above data entities.

ii. All pertinent healthcare information stored in global Electronic Health Record (EHR) schema, in multiple, 
universally-accessible healthcare service provider databases spread globally.

iii. Universal addressing of all healthcare artifacts -  using Object IDs (OIDsJ or Universal User IDs (IDs).

iv. Unsupervised Learning used during the “relevance and value enrichment” operation of the EHR-based 
information system. Popular techniques include Bayesian Learning, Self-Organizing Maps, Nearest-Neighbor 
Mapping, K-Means Clustering and Singular Value Decomposition”.

v. Electronic Health Record (EHR) information is consolidated and learned asynchronously for quick access 
eliminating common vocabulary translation issues, access and security-related delays, and communication line 
concerns inherent in conventional query-messaging type EHR schemes.

vi. EHRs are stored non-uniformly in respective National Health Service (NHS) and Healthcare Service Provider 
(HSP) repositories spread globally, in national and intra-national (HSP) clusters.
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vii. Similar to system start-up in the mornings (or system shut-down the previous evening), list of required EHR- 
related search artifacts, eg., patient, disease, diagnosis, treatment, clinician, or HSP. is fed into system and 
learning initiated.

viii. Absolutely NO synchronous long-distance queries, messaging, or rummaging in alien, distant databases 
necessary.

ix. Learned (required) information cached locally for prompt, speedy retrieval. Time-consuming download, upload 
procedures prevalent in current cloud-based systems eliminated.

x. “Asynchronous Learning for Efficient Synchronous Operation” - the Essential Slogan.

xi. System-related processes embedded in proposed EHR-based Learning Model
• Human-related : learning Natural Language-based Interaction vocabulary.
• System-related:

a) Updation -  additions/insertions/deletions at nodes; affects global EHR schema (Blend-in).
b) Consolidation -  Any record-based target Resultset filtered from pertinent kindred EHR sets composed

by on-the-fly global consolidation (Leaf Search Artifact-based Link-in). Decentralized learning 
at individual nodes.

c) Stratification -  Intelligent, dynamic, stratification of global network according to pre-defined
guidelines- by global, continent, country, economy, paid service-fee slab etc. (ClusterKey-based 
Link-in). Centralized learning applicable to entire network.

d) Rejuvenation -  Intelligent, dynamic arrangement of global EHR fragments such that consolidation
(Link-in) occurs according to frequency of information access. Facilitates access according to 
frequency of information use (Access Frequency-based Link-in).
Decentralized learning at individual nodes.

e) Attenuation -  Intelligent, dynamic arrangement of global EHR fragments such that consolidation (Link-
in) occurs according to age of information fragment. Facilitates access according to age (Aging- 
based Link-in). Decentralized learning at individual nodes.

Updation relates to automated (eg., using scripts) or manual-input based regular insert, delete, and update 
operations performed in the local database. Therefore, Consolidation, Stratification, Rejuvenation, and Attenuation 
constitute the actual intelligent, machine learning processes. Since Stratification, Rejuvenation, and Attenuation 
possess a similar operational nuance (all three entail hierarchical clustering with diverse cluster-key’s, ie., 
Stratification with cluster-key = global, continent, country, economy, paid service-fee slab. Rejuvenation with 
cluster-key = frequency of access, and Attenuation with cluster-key = age of data, they are algorithmically similar. It 
suffices therefore to present learning algorithms for Consolidation and Stratification only.

4. Intelligent Learning Methodology

a) Learning Overview
International Interoperability necessitates the universal referencing of healthcare artifacts, eg.,Universal User IDs 
(UUIDs) and Object IDs (OIDs) both facilitate universal reference [2], as indicated by the probe sequence shown in 
Fig.2.
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Figure 2. HL7 v3 Message - Query Probe Sequence [2]

Given this model, locally-maintained UUIDs for query-target reference are of the given form,

{UUID = [ContinentnE1iT, CountrynEST, SPnESJ■ Application^^, DB-Cloudm:sl, LeajArtifactnEsifs

OID construction is similar and as such we have empirically,

{OID = 1 .999999c1.999999c2.999999Sp.999999a999999Dik;.999999u'} where

Cl -Continent, C2-Country, SP-Service Provider, A-Application, DB-C -  Database-Cloud, and LP-Leaf
(Search)Artifact.

As presented above, this paper assumes the query probe sequence of

Continent msT CountryDEsr ServiceProvidermsT ApplicationnEST Database/CloudDES,
Leaf (Search) Artifact

However, in essence, this would depend on the operational setup and configuration of the global healthcare network. 
The Leaf (Search) Artifact (L-SA) set as modelled herein is

L-SA = {Patient, Disease, Diagnosis, Treatment, MedicalPractitioner, ServiceProvider}

The delays associated with querying busy networks, synchronous data uploads, and downloads are eliminated; 
instead asynchronous intelligent learning, data enrichment, and relevance interpolation is proposed and applied. 
Archaic Learning Algorithms are utilized to probe, filter, and locate', focused, convergent learning techniques help 
retrieve and cache required EHR segments locally for prompt, speedy retrieval.

Learning requirements-related Predicates constitute system-related interactive input. Input predicates are designed 
in order to preserve brevity of communication, ease of operator-learning, facilitate system-parsing, and promote 
future multi-linguilism. Two modes of interactive operation, singular and batched mode (using batch file-based 
predicate collections) are recommended. Typically, similar to system start-up in the mornings (or system shut-down 
the previous day), the list of required £7/,R-related search artifacts, eg., patient, disease, diagnosis, treatment, 
medical practitioner, and healthcare service provider are fed into system and Learning initiated. Significantly, the 
asynchronous learning initiated is unaffected by system delays, network hogs, and line bandwidth unavailability 
associated with synchronous, query-based approaches prevalent in today’s systems, “Asynchronous Learning for  
Efficient Synchronous Operation” being the motivation and goal of this solution. Prior requirements records of 
search artifacts are prepared and used for source predicate input, eg., daily patient appointments schedule for the 
current day’s beginning-ofthe-day system learning.

As mentioned in section 3., learning processes constitute both human and system-related learning; human learning 
related to system users and operators acquiring conversance of the predicate-based interactive vocabulary, and 
intelligent system learning aimed at network-wide healthcare data enrichment and relevance interpolation, ie., data 
updation, consolidation, stratification, rejuvenation, and attenuation. However, updations per se (data additions, 
insertions, deletions) are procedural, performed locally in the service provider/national database/cloud; these do not
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entail a learning endeavour. Learning processes should ensure the incorporation of up-to-date system updates in the 
globally consolidated and learned, kindred EHR chunks. Therefore the pertinent, intelligent, system-related 
learning processes are consolidation, stratification, rejuvenation, and attenuation which are described later in this 
section.

In general, record-based storage schemes are utilized universally in EHR repositories, as shown in Figure 4. A 
veritable plethora of such schemes exist, from the inceptive Hierarchical and Network models to the present-day 
conventional Relational, Object-Oriented. Object-Based, and Hybrid models. All these record-based structures 
suffer from the Data Sparseness syndrome; first cuts with populated data may leave large-scale gaps in fields for 
non-existent or unavailable data. Conventional relational techniques overcome these storage deficiencies through 
multi-level Normalization. Other models may use similar techniques. However, this paper presumes a reasonably 
full complement of stored data in all repositories, to make the proposed learning processes efficient, fruitful, and 
worthwhile. Further, for convenience, the conventional relational model is presumed in all repositories: this can be 
seamlessly extrapolated to all record-based models as needed.

CONT2 

( .C

CONT3

Figure 3. Universal Electronic Health Record Storage

SPi: Service Provider i
/,: EHR Information Database, where x = Database Number 
CONTi: Continent, where i = Continent Number 
CM : Country q in Continent p

b) Learning Predicates for Input

Learning Predicates were designed with brevity and universal uniformity in mind. Given the modelled query probe 
sequence, the maximal, semantically-meaningful, convergent learning predicate set 6(LP) takes the Quintuple form

0(LP) = [Global, Continent, Country’, ServiceProvider, Leaf(Search)Artifact\

Any random learning predicate set §{LP) would contain five or lesser number of elements in each member, eg.,

(Jt(LP) = {[Continent, Country, ServiceProvider, Leaf(Search)Artifact], [Continent, Country],

[Country, ServiceProvider, Leaf (Search) Artifact], [Continent, Leaf (Search) Artifact],

[Countiy, Leaf (Search) Artifact], .......................................}

Learning can be initiated with any one as the Head Learning Artifact (HLA), ie., Global, Continent, Country, Health 
Service Provider (HSP) or Leaf Search Artifact (LSA); the learned EHR knowledge chunks would encompass the
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allied remaining artifacts. Typically, the five HLAs would be defined as random access fields in the local storage 
repositories, eg., Primary, Alternate Keys in a Relational database arrangement. However, it is important to note that 
efficient, focused, and convergent learning necessitates the specification of at least one Sentinel Learning Artifact 
(SLA) in the input learning predicate. SLAs constitute relatively static datasets, eg., Global, Continent, Country, as 
opposed to the dynamically mutating non-SLA datasets HSP, and LSA. SLAs spearhead and searchingly drive 
forward the Learning process, efficiently consolidating related globally-spread EHR chunks on-the-fly, finally 
converging on the coherent, relevant EHR-Target-Cluster (ETC). The terminal ETC of any input learning predicate 
signals a completed learning thread; a completed batch of input learning predicate-related ETCs constitute the 
consummation of a Learning session.

c) Learning Algorithms
Two unsupervised learning algorithms are presented. For efficiency, convergence, and operational versatility, 
learning is multi-threaded but directed, starting at the highest specified sentinel artifact and flowing towards the 
required leaf search artifacts (LSA). Of paramount significance is that actual target LSAs become available a few 
clicks away together with their allied surround, improving the relevance, accuracy, and semantics of the required 
information. Clarifications, verifications and validations can be performed locally with enhanced efficacy and 
greater value extraction than conventional means.

i) Consolidation : Learning of pertinent, kindred, global EHR segments, readied for exhaustive and comprehensive 
knowledge provision during synchronous operation. Learning techniques used are trivial K-Nearest Neighbour for 
the fan-out phase, and Bayesian learning for related global EHR consolidation.

Procedure Consolidate (input: scope, required-lsa-value; output: consolidatedResultSet);

{ read scope', /* either Global, Continent or Country’ */
If scope = countryValue goto Skip2;
I* learning the scoped Continents using trivial K-Nearest Neighbour learning (single-step) *1 
generate-leam memberlist m,; i€N, 1 < i < k, k is number of Continents in list 
generate-leam memberlist m, associated probabilities; 
if m , o  continentValue then [«,] = [m,], goto Skipl;

{store m ,; iCN, 1 < i < k , k i s  number of items in list 
for each m,

I* learning the scoped Countries using K-Nearest Neighbour learning */
{generate-leam memberlist n,; iCN, 1 < / < / , /  is number of countries in list 

generate-leam memberlist nt associated probabilities;
Skipl: i f / i , o  countryValue goto Skip2;

{store n ,; iCN, 1 < / < / , /  is number of items in list 
for each n, within each m,

/* generate and leam ServiceProviders who relate to each n, */
Skip2 : {generate-leam memberlist o,; iCN, 1 < i < q, q is number of HSPs in list

generate-leam memberlist o, associated probabilities; 
if O /O  Isa

{store o ,; iCN, 1 < i < q , q  is number of HSPs in list 
for each o, within each n, within each m,

/* using Bayesian learning and selection */
{generate-leam memberlist records p, where key = required-lsa-value;

iCN, 1 < i < r , r  is number of required-lsa records in list 
generate-leam memberlist p, associated Bayesian branch probabilities

for records where key -  required-lsa-value}',
exitQ;
}
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/* Completes generate-and-learn phase of LSA chunking and related Bayesian Network (BN) creation*! 
/* Link-in Consolidation *! 
for each in,

{for each n,
{for each o, (HSP) in created (learned) BN

{consoIidatedResultSet -  append-cache(required-lsa-value records) r times; 
consolidatedResultSet = append-cache( [m,-, nh o,,p] paths) r times}:

\ •

};
return consolidatedResultSet:

On completion, the learning process (preprocessing) would have aggregated and cached the required and relevant 
LSA-related EHR chunks for speedy inquiry.

ii) Stratification

Procedure Stratify (input: cluster-key, output: stratifiedResultSet [ ]);
{ read cluster-key, /* either Continent, Country, Economy, Paid-Ser\’ice-Fee-Slab */

If duster-key = countryValue goto Skip2;
/* learning the scoped Continents using trivial K-Nearest Neighbour learning (single-step) */ 
generate-leam memberlist m,\ iCN, 1 < / < k, k is number of Continents 
generate-leam memberlist m, associated probabilities; 
if m , o  continentValue then [«,]= [mj, goto Skipl;

{store m ,; iCN, 1 < / <k. k is number of Continents 
for each m,

I* learning the scoped Countries using trivial K-Nearest Neighbour learning (single-step) */ 
{generate-leam memberlist n, ; i€N, 1 < / < / , /  is number of Countries per Continent 
generate-leam memberlist n, associated probabilities;

Skipl: if n , o  countryValue goto Skip2;
{store n ,; iCN, 1 < / < / , /  is number of items in list 

for each //, within each m,
/* generate and leam HSPs who relate to n, within each m, */

Skip2 : {generate-leam memberlist o,\ i€N, 1 < / < q, q is number of HSPs in list
generate-leam memberlist o, associated probabilities; 
if o , o  Isa

}

{store o, ; iCN, 1 < / < q, q is number of HSPs in list 
for each o, within each n, within each in,

I* using Bayesian learning and selection */
{generate-leam memberlist records p, and associated paid-service-fee-slabs, 

iCN, 1 < i < r, r is number of Isa records in list 
generate-leam memberlist records p, 's associated Bayesian branch probabilities

for associated paid-service-fee-slabs} :
exit();
ii
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X

}
}

/* Completes generate-and-learn phase of LSA Hierarchical Structuring and related Bayesian Network
(BN) creation */

/* Link-in based on Hierarchical Structuring */ 
for each m,

{for each n,
{for each o, (HSP) in created (learned) BN

{stratifiedResultSet [/]= append-cache(re<7(«ra/- paid-service-fee-slab, records); 
stratifiedResultSet [/'] = append-cache( [m„ n„ oLp]  paths) } /  <j< 3

};
return stratifiedResultSet [ ];
} !
On completion, the learning process {preprocessing) would have aggregated and cached the required and relevant 
cluster-key-related, hierarchically-structured, EHR chunks for speedy inquiry. The system will operate and provide 
rights and accessibility to the global HSP membership based on paid-service-fee slabs. Note that the learning 
algorithms for Rejuvenate and Attenuate are similar; they just utilize different cluster-keys.

The asynchronous learning performed at every HSP node precedes the actual synchronous, global £7//?-based 
healthcare system operation. During operation, all connectivity is deemed local but with a global feel\ costly real­
time long distance links and access delays completely eliminated. The system will operate as learnt with minimal or 
no intervention until a new learning paradigm is launched, causing re-learning and re-configuration of the local 
operational environment. The overlay of learning processes is also possible as required eg, Rejuvenation atop 
Attenuation. The Learning would so structure data according the clinician’s requirement.

d) Implementation
System Implementation warrants a great deal of indepth thought; automating learning processes requires and is 
facilitated by overarching uniformity in data storage, access, manipulation, and archival processes. However, given 
the geographical spread of the envisaged, ideal, asynchronous-learning-driven, intelligent EHR healthcare solution, 
with interpolated stratifications by continent, country, economy, or even paid-service-provider-membership-fee, it is 
expected that diverse storage schemes, access and manipulation mechanisms exist, cordoned by stringent security. 
The successful operation of the proposed asynchronous-learning-driven EHR solution with International 
Interoperability requires the easy, unhindered access to globally-spread healthcare data repositories with the most 
current data, and appropriate translation mechanisms handling mixed language and vocabulary issues. The learning 
algorithms presented herein need to be embellished with proper scripting and coding in order to afford seamless 
access, parsing, and homogenous understanding through precision semantics, of the learned data. Convenient, easily 
accessible, available-data mirrors is a innovative yet super-efficient approach to hawk required LSA data amongst 
the participating membership. Distinct and separate from the main HSP repositories, these frequently-refreshed data 
mirrors can embed high-end technology for super-fast and effortless universal access and visibility. The main HSP 
data stores can be protected and securely-cordoned from any external interference or access.

5. Results
The Machine Learning algorithms presented herein utilise Bayesian and trivial K-Nearest Neighbour learning 
techniques.
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The simplest form of the Bayes' Theorem as presented in

i. Bayesian Learning

P(A\B)
P(A)P(D\A)

P(B)

|131 is

where A and B are events.

• P(A) and P(B) are the respective probabilities of A and B.
• P(A \ B), is the conditional probability of A given that B is true.
• P(B | A), is the conditional probability of B given that A is true.

However, according to [12] when considering an entire sample space S  of n events A h A:. A, A,, all mutually- 
exclusive. and if any random event B of 5 is such that P(B) > 0, then we have

P ( A \ B )
p(At nB)

P( a , r \ B )  + p ( a : n B)  + . . .  + p ( a . n s ;

Since P( Ak n  B ) = P( Ak )P( B | Ak ), Bayes ’ theorem can be rewritten as [ 12]

P(At) P ( B \ A t )
P ( M B )  =

P(A, )  P(B  | A,)  + P(A, )  P(B \ A ,)  + . . . +  P ( A J P ( B  \ A.)

ii. K-Nearest Neighbour
K-Nearest Neighbour (KNN) algorithm essentially selects the k closest neighbours out of possible n options where k, 
n are parameters (k < n). The selection criterion used is allied to the problem space and solution envisaged; 
Euclidean and Least Mean Squares (LMS) distances are popular criteria. Hence the KNN set is these instances 
would be the k closest neighbours in terms of Euclidean or LMS distances.
1-Nearest Neighbour (INN) is a special case of the KNN, selecting the single closest neighbour.

In our study, we will be using a trivial form of the K-Nearest Neighbour technique, the selection criterion being the 
step-distance. A single-step fan-out distance will be used to learn the new membership at each new transition.

iii. Learning Probabilities
Both SLAs Continent and Country constitute relatively static datasets. We have,

[Continents] = [C,], i GN, 1 < i < 5

eg., [Continents] = [America, Africa, Europe, Asia, Australasia] = [Am, A f Eu, As, Au]

P[C,] = 1/5 = 0.2 / GN, 1 < J < 5

Note : Presently some sources prescribe a Hepta-Continent model consisting of [North America, South America, 
Antartica, Africa, Europe, Asia, Australasia], but we will stick to the conventional and familiar Penla-Continent 
model.
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[America] = [Antigua and Barbuda, Argentina, Brazil, Bahamas, Barbados, Canada, ... Cuba, .... USA]

Let num denote the number of countries in any continent. Thus [14],

num[Ci = Am] = 38 
num[C2 = A f  = 57 
num[C} = Eu] = 52 
num[C4 = As] = 50 
num[C, = Au] = 14

P(C,„) = 1/38 = 0.0263, p CN, l< p< 38  
P (C  „) = 1/57 = 0.0175 q CN, !< q< 57  
P(C,„) = 1 /52 = 0.0192 r CN, l< r < 52 
P(C „)=  1/50 = 0.02 s€N , l< s <50
P(C,„) = 1/14 = 0.0714 t€N , ]< t< 14

Total countries according to above source = 38+57+52+50+14 = 211

However, HSPs and LSAs represent dynamically mutating non-SLA datasets.

The HSP membership globally are dynamic and variable, denoted by

globalHSPs = [hsp,„a, hspq,h, hsp„„ hsp„d, hsp,„]
p ,q ,r ,s ,tC N , l< p <38, l< q  <57, l<r<52, ]<s <50, ]< t < 14
a, b, c, d, e CN, 1< a, b, c, d, e < n, n is the upper-bound on HSPs per country.

Let B = Getting a required-lsa-value EHR 
Applying Bayes' Learning

P(hsp-AmpJ  P( B  | hsp-AmpJ

P(hsp-Am„  | B ) = P(hsp-Am,0) P (B  | hsp-Amu )  + P(ksp-Amu )  P (B  \ hsp-Am2u)  + . . .  +
P(hsp-Am»j,)  P (B  | hsp-Am,,„)

p€N, l< p< 38  1< a < n, n is the upper-bound on HSPs per country 

|  P(hsp-AfqJ,)P (B \ hsp-A fJ

P(hsp-Afq,  | B )  = P(hsp_A f n ) P ( B \ hsp-Afn)  + P(hsp-Aflb)  P (B \  hsp-Af2, )  + . . .  + P(hsp-Af,„) P( B \ hsp-
' ... Afjj,)

q€N, l< q < 5 7  1< b < n, n is the upper-bound on HSPs per country

P(hsp-Eur,)P(B\hsp-Eur.c)

P(hsp-Eurx\B ).=  P(hsp Eu .c) P (B  | hsp-Eu,c) + P(hsp-Eu2J  P (B  \hsp-Eu2x)  + . +
P(hsp-EuS2 J  P ( B  | hsp-Eu!2 c)

r€N, l< r< 52 l< c < n ,n  is the upper-bound on HSPs per country

P(hsp-As,.d) P( B | hsp-Asu )

P(hsp-AsSJ | B ) = P(hsp-Asu ) P ( B | hsp-As,j )  + P(hsp-As2J  P ( B \ hsp-As2J  + . . . + P(hsp-AsSM ) P ( B | hsp-
Ass„j )

s€N, l< s  <50 1< d  < n, n is the upper-bound on HSPs per country

P(hsp-AuJ P (B  | hsp-AuJ

P(hsp-Au,e | B )  = P(hsp-Au,.e)  P (B  ] hsp-Au,e) + P(hsp-Au:J  P (B  | hsp-Au2J  + . +
P(hsp-Aun.c) P(B \hsp-Au,u )

t€N, l< t< 1 4  1< e < n, n is the upper-bound on HSPs per country
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Suppose the following results were returned by the learning run for input learning predicates :

a) [Global, required-lsa = Tom]

b) [Global. Cluster-key = service-fee-paid]

iv. Learning Transitions

Table 1 : Learning Run Results
SLAs Non-SLAs

Consolidatio
n

Asia. Sri 
Lanka

HSP = eclipse, 
goodhealth, 
required-lsa = Tom

Europe.
Sweden

HSP = happyheart

required-lsa = Tom

Stratification Global Cluster-key=serv\ce- fe e - 
paid ; 3 slabs a, 
b. c

Using the Bayesian form given in [12] where 5 is a sample space of n events A,, A,. A, A. aW mutually-exclusive. 
and if any random event B of S is such that P(B) > 0, then we have

Considering the previous result, 
globalHSPs = [hspr .. h s p h s p ,. , ,  hsp,.j. hsp,.r]

p .q .r .s .tG N . l< p< 38. l< q< 57 , l<r<52, l< s< 50, l< t< 14
a. b. c. d, e €N, 1< a. b. c, d. e<n,w  is the upper-bound on HSPs per country.

For this example, let n = 10, n is the upper-bound on HSPs per country. Using the following Bayes' form [12] where S 
is a sample.space of n mutually-exclusive events A,, A:, As /)„ and B is any random event of S  is such that P(B) > 0, 
then we have

P(Ai \ B )  =
p (A t n b  )

P( a , r \ B ) + P ( A : r \ B)  + . . . +  p (  a , n B)

For required-lsa (B) = “Tom”
P  (hsp-happyheart \ B-~Tom") = P (hsp-happvheart IT i?=”Tom”) =1 1 <c< 10

J.P (hspswmtsc H B=’Tom”)

P (hsp-edipse\ 5=’Tom”) = P (hsp-eclipse f~l Z?=’Tom”) =1/2 l < d < 1 0
Y.P (hspauuxxu n 5="Tom”)

P (hsp-goodhealth \ 5='Tom”) = P (hsp-eoodhealth fl Z?=’Tom"l =1/2 1 <d< 10
Y.P {hspsuLASKM Fl 5="Tom”)
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Table 2 : Probabilities and Learned Results
Transit

No.
Consolidation Stratification

1 Probability P[C,] = 0.2, / CN, 
1 <z<5

P[C] = 0.2. ; CN,
1 < / < 5

Learned
Result

(trivial
KNN)

America, Africa, 
Europe, Asia, 
Australasia

America. Africa, 
Europe, Asia, 
Australasia

2 Probability [0.2x0.0263, 
0.2x0.0175, 
0.2x0.0192, 
0.2x0.02, 
0.2x0.0714] =

[0.0053, 0.0035, 
0.0038, 0.004, 
0.0143]

[0.2x0.0263, 
0.2x0.0175, 
0.2x0.0192, 
0.2x0.02, 
0.2x0.0714] =

[0.0053,0.0035, 
0.0038, 0.004, 
0.0143]

Learned
Result

(trivial
KNN)

Antigua and 
Barbuda, 
Argentina, Brazil, 
Bahamas,
Barbados.... 211
countries.

Antigua and 
Barbuda, 
Argentina, Brazil, 
Bahamas,
Barbados.... 211
countries.

3 Probability

(n=10)

[0.2x0.0263x0.1, 
0.2x0.0175x0.1, 
0.2x0.0192x0.1, 
0.2x0.02x0.1, 
0.2x0.0714x0.1] =

[0.00053,0.00035, 
0.00038, 0.0004, 
0.00143]

0.2x0.0263x0.1, 
0.2x0.0175x0.1, 
0.2x0.0192x0.1, 
0.2x0.02x0.1, 
0.2x0.0714x0.1] =

[0.00053, 0.00035, 
0.00038, 0.0004, 
0.00143]

Learned
Result

{[America....... ],
[Africa...........],
[Europe,
......... Sweden,
happyheart,......],
[Asia, ..Sri Lanka, 
eclipse, Sri Lanka
,goodhealth...... ],
[Australasia..... ]}

{[America....... ],
[Africa...........],
[Europe,.. 
Sweden, 
happyheart,a,
....... ],
[Asia,..
Sri Lanka, eclipse, 
b,
Sri Lanka 
,goodhealth, b 
...... ],
[Australasia..... ]}

4 Probability

(After
Bayes’

Learning)

{0,0, 0.0038, 
[0.004x0.5, 
0.004x0.5] , 0} =

{0,0, 0.0038, 
[0.002, 0.002], 0}

{...,..., 0.0038, 
0.004+0.004,...}

{..., ...,0.0038, 
.008....... }

Learned
Result

(Bayes0

{[Europe, Sweden, 
happyheart, Tom], 
[Asia, Sri Lanka, 
eclipse, Tom], 
[Asia, Sri Lanka,

{[Europe, Sweden, 
happyheart, a], 
[Asia,
Sri Lanka, eclipse, 
goodhealth, 6]}
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g o o d h c a lth . T o m ] ;

6. Conclusion

This research studied indepth the use Machine Learning techniques for Electronic Health Records (EHR) system 
operation in the global healthcare industry'. It was determined that present practice dictated the synchronous 
operation of EHR-hased healthcare systems, giving rise to difficulties in access and data transmission . Further, 
since EHR creation, maintenance, and use is confined to convenient healthcare-provider and national boundaries, the 
underlying diversity in the data storage mechanisms and associated vocabularies require homogeneity in access, use. 
and understanding. Currently, no scalability potential exists nor modalities for synchronous global EHR 
consolidation, causing grave hindrance to our principle goal of true International Interoperability. Also, these 
unorganized, non-homogenous clusters of EHR implementations infuse and breed alarming inefficiencies into the 
total network; unintegrated organization engenders inordinately-lengthy access times, vocabulary variations, and 
gross data duplication, incompatibility, and inconsistency. These ricochet on other performance factors such as 
safety and security, quality and reliability, and efficiency and effectiveness. This paper articulated a sound and 
secure methodology to achieve efficient International Interoperability amongst all participating HSPs. Through 
asynchronous machine learning, earmarked EHR clusters are consolidated and learned. affording interoperable, 
current, relevance and value-enriched EHR data to all stakeholders. Utilizing two proven learning techniques, 
namely Bayesian and K-Nearest Neighbour, two learning algorithms were presented, namely, Consolidation and 
Stratification.

As previously mentioned, the successful operation of the proposed asynchronous-leaming-driven EHR solution 
requires the easy, unhindered access to globally-spread healthcare data repositories. Convenient, easily accessible, 
available-data mirrors is a innovative yet super-efficient approach to hawk required LSA data amongst the 
participating membership. Distinct and separate from the main HSP repositories, they are really HSP showcases 
containing the available, most current data and may also incorporate common-vocabulaty-related translation 
mechanisms enhancing the value of the hawked data. These frequently-refreshed data mirrors can embed high-end 
technology for super-fast and effortless universal access and visibility. The main HSP data stores can be protected 
and securely-cordoned from any external interference or access. Summing up, it is satiating that the new learning- 
based EHR system development solution is not only efficient and convergent towards our prime goal of 
International Interoperability, rather its capacity to circumvent or eliminate stereotypical line, access, and other 
real-time issues prevalent in present-day Distributed Systems makes it a practical and worthy interpolation to the 
development paradigm. Indeed it represents a true endorsement of the slogan “Asynchronous Learning for Efficient 
Synchronous O p era tio n a global snapshot of pertinent consolidated healthcare information presented at your local 
computer.
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