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Abstract—Nonhomogeneous Poisson process (NHPP) and soft-
ware reliability growth models (SRGM) are a popular approach
to estimate useful metrics such as the number of faults remaining,
failure rate, and reliability, which is defined as the probability of
failure free operation in a specified environment for a specified
period of time. We propose performance-optimized expectation
conditional maximization (ECM) algorithms for NHPP SRGM.
In contrast to the expectation maximization (EM) algorithm, the
ECM algorithm reduces the maximum-likelihood estimation pro-
cess to multiple simpler conditional maximization (CM)-steps. The
advantage of these CM-steps is that they only need to consider one
variable at a time, enabling implicit solutions to update rules when
a closed form equation is not available for a model parameter. We
compare the performance of our ECM algorithms to previous EM
and ECM algorithms on many datasets from the research litera-
ture. Our results indicate that our ECM algorithms achieve two
orders of magnitude speed up over the EM and ECM algorithms
of [1] when their experimental methodology is considered and three
orders of magnitude when knowledge of the maximum-likelihood
estimation is removed, whereas our approach is as much as 60 times
faster than the EM algorithms of [2]. We subsequently propose a
two-stage algorithm to further accelerate performance.

Index Terms—Expectation conditional maximization (ECM)
algorithm, nonhomogeneous Poisson process (NHPP), software
reliability, software reliability growth model, two-stage algorithm.

NOMENCLATURE
Acronyms

EM Expectation-maximization.
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ECM  Expectation conditional maximization.
DSS Delayed S-shaped model.

CDF  Cumulative distribution function.
LL Log-likelihood function.

RLL Reduced log-likelihood function.
MLE  Maximum-likelihood estimation.
MVF  Mean value function.

NHPP Nonhomogeneous Poisson process.
SRGM Software reliability growth models.
GO Goel-Okumoto model.

ISS Inflexion S-shaped model.
Notation

m(t) MVF of NHPP.

Instantaneous failure rate.

Cumulative distribution function of software fault
detection process.

Number of latent faults at start of testing.
Scale parameter of Weibull SRGM testing.
Shape parameter of Weibull SRGM testing.
Rate at which bathtub transitions. from second to
final phase.

Inflexion parameter.

Inflexion rate.

Gamma function.

Polygamma function.

MeijerG function.

Total number of faults.

Observed number of faults.

Unobserved number of faults.

Vector of failure times.

Time of the ith failure.

nth observed failure.

Time at which testing stopped.

Mission time.

Observed data.

Unobserved data.

Vector of model parameters.

Number of model parameters.

Vector of conditional maximization steps.
Subvector of conditional maximization steps.
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I. INTRODUCTION

OFTWARE reliability [3], commonly defined as the prob-
S ability of failure free operation in a specified environment
for a specified period of time, can be estimated with the as-
sistance of software reliability growth models. SRGMs [4], [5]
are a fundamental and well-established methodology, many of
which are based on the NHPP [6], [7]. These NHPP SRGM [8]
also enable the estimation of useful metrics such as prediction of
the number of faults remaining, failure intensity, etc., SRGM are
also used in optimization problems [9] to determine the amount
of testing required to achieve a desired level of reliability [10]
and to minimize testing costs, while considering the risk of post
release failures [11].

A significant challenge associated with SRGM is the com-
plexity of estimating the parameters of a model [12] with tra-
ditional fitting procedures that perform MLE [13]. This diffi-
culty arises because traditional numerical procedures to find the
MLE:s of a software failure dataset such as the Newton—Raphson
method [14] are sensitive to initial parameter estimates and can
fail to converge to the MLE if the initial parameter estimates are
not sufficiently close to the MLE. This sensitivity of existing
model fitting procedures requires a relatively high level of expe-
rience, which is the primary reason why many potential users are
deterred from applying NHPP-based SRGM to quantitatively
assess the reliability of their software. Given the increasing de-
mand for reliable software, a model fitting procedure that is less
sensitive to initial parameter estimates is needed so that software
reliability growth models can be fit to data with relatively little
or no effort. Such a procedure will simplify the application of
NHPP-based SRGM and encourage their widespread use if an
algorithm exhibiting a combination of stability and performance
is incorporated into an automated tool.

Our previous research [1] developed EM [15] and ECM [16]
algorithms for NHPP SRGM using the theory of stochastic point
processes to derive CM-steps for failure time and failure count
variants of the Weibull and Gamma models. The EM and ECM
algorithms exhibit greater stability than the Newton—Raphson
method. However, the CM-steps obtained through the stochastic
point process approach contain semiinfinite integrals and sev-
eral special functions, which must be computed in each iteration
of the algorithms; thus, slowing performance. To overcome this
shortcoming, this paper presents performance optimized ECM
algorithms to identify the MLEs of the parameters of an NHPP
SRGM. The numerical nature of our ECM algorithm simpli-
fies the maximum-likelihood estimation process by reducing a
p-dimensional problem to p one-dimensional (1-D) problems,
drastically simplifying the computation. Two variants of the
ECM are proposed. The first derives CM-steps for all parame-
ters of an SRGM, whereas the second approach eliminates one
parameter from the estimation process, reducing the number of
model parameters by one. We apply these algorithms to several
combinations of well-known models [17]—-[22] and datasets [4],
[23] from the literature to assess their performance. Our contri-
butions are twofold:

1) The proposed ECM algorithms achieve two orders of mag-

nitude speed up over the EM and ECM algorithms of [1]
when their experimental methodology is considered and

three orders of magnitude when knowledge of the MLEs
is removed, whereas our approach is as much as 60 times
faster than the EM algorithms of [2].
2) We subsequently accelerate our algorithm by an additional
order of magnitude by combining our ECM algorithm into
a two-stage algorithm that first performs a finite number
of ECM iterations, but stops prior to convergence and then
provides these intermediate parameter estimates as input
Newton’s Method, achieving even faster convergence.
The remainder of the paper is organized as follows.
Section II provides an overview of software reliability growth
models. Section III reviews methods to estimate the parame-
ters of an SRGM, including maximum-likelihood estimation
as well as expectation—-maximization and ECM algorithms.
Section IV presents performance optimized ECM algorithms
for NHPP SRGM. Section V illustrates the effectiveness and
performance of these algorithms through numerical examples.
Section VI offers conclusions and directions for future research.

II. SOFTWARE RELIABILITY GROWTH MODELING

This section provides an overview of an NHPP software relia-
bility growth models and then presents several models, including
the GO [17], DSS [18], Weibull [19], ISS [20], gamma [21], and
bathtub [22].

A. NHPP Software Reliability Growth Models

The nonhomogeneous Poisson process is a stochastic pro-
cess [6] that counts the number of events that occur by time t.
The expected value of an NHPP is characterized by the MVF,
denoted m(t). The MVF can take many functional forms. In
the context of software reliability, the NHPP counts the number
of faults detected after the software has been tested for a given
period of time. The MVF of several SRGM can be written as

m(t) =a x F(t) (H

where a denotes the number of faults to be detected with in-
finite testing and F'(¢) is the cumulative distribution function
(CDF) of a continuous probability distribution, characterizing
the software fault detection process.

The rate of occurrence of failures is time varying with instan-
taneous failure rate

dm(t)
T (2)

1) GO SRGM: The GO model was originally proposed by
Goel and Okumoto [17]. The MVF is

m(t) = a(l — e ") (3)

A(t) =

where b is the fault detection rate.

2) DSS SRGM: Another SRGM that follows the form of (1)
is the DSS model proposed by Yamada et al. [18]. The MVF of
the DSS SRGM is

m(t) =a(1— (1+bt)e™") 4)

where the term bte "' can characterize a delay in fault detection

induced by phenomenon such as delayed failure reporting and
fault masking.
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3) Weibull SRGM: The MVF of the Weibull model [19] is

m(t) =a (1 — e_bt“) .

Here, b and c are the scale and shape parameters, respectively.
Setting ¢ = 1 in (5) simplifies to the GO model [11].

4) ISS SRGM: The MVF of the inflection S-shaped
model [20] is

®

1— e—bt

(6)

Here, b is the constant fault detection rate and ) is the inflection
parameter. The inflection parameter [22] is defined as

1—r

P(r) = ;7€ (0,1]. )
where r is the inflection rate that provides the ratio of the number
of detectable faults to the total number of faults in the system due
to masking and other causes. As r approaches 1.0, the inflection
S-shaped model reduces to the GO model.

5) Gamma SRGM: The MVF of the gamma SRGM [21] is

t be 1,(:71 efbx

m(t) = a/o 0 dx (8)
where the identity F'(t) = [ f(¢)dt has been used and I'(c) =
f()oo e~ dy is the gamma function. Here, b and c are the
scale and shape parameters. Setting ¢ = 2 in (8) simplifies to
the DSS model [24].

6) Bathtub SRGM: Another SRGM that follows the form of
(1) is the bathtub model [22]. The following distribution [25] is

bathtub-shaped when b > 0 and ¢ < 1

B(t) = bet* et o
Substituting (9) into (1), the MVF of the bathtub SRGM is
m(t) =a (1 — e*bct“{yﬁl) )

where b characterizes the ease of detecting simple faults when
testing commences, ¢ influences the rate at which fault detection
approaches the second phase where functional requirements are
verified, and ¢ describes the rate at which the bathtub transitions
to the third and final phase of the testing process which may be
characterized by code comprehension [26]. It can be shown that
setting ¢ = 0 in (9) reduces to the Weibull model. Nevertheless,
Fiondella and Gokhale [22] demonstrated that there are datasets
where the bathtub model outperforms the Weibull model with
respect to both information theoretic and predictive measures
of goodness of fit, indicating that all three stages of the bathtub
may be present in some software testing processes.

III. PARAMETER ESTIMATION METHODS

This section describes various methods to estimate the param-
eters of an SRGM with the method of maximum-likelihood esti-
mation, including Newton’s method [14] as well as the EM [27]
and ECM [16] algorithms.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 3, SEPTEMBER 2017

A. Maximum-Likelihood Estimation and Newton’s Method

Maximum-likelihood estimation maximizes the likelihood
function, also known as the joint distribution of the failure
data. Commonly, the logarithm of the likelihood function is
maximized because the monotonicity of the logarithm ensures
that the maximum of the LL function is equivalent to maxi-
mizing the likelihood function and application of logarithmic
identities simplifies the derivation of LL estimates. Observed
failure time data consist of a vector of individual failure times
T = (t1,t2,...,t,) with density function f(¢;;0). The LL
function of a failure times dataset is

n
LL(t;;©) = —m(t,) + Y _log (A(t;)) (11)
i=1
where © is the vector of model parameters and A(¢;) is the in-
stantaneous failure rate at time ¢;. The MLE is found by numer-
ically solving the following system of simultaneous equations:

0
—LL(®)=0
50 LL(©)
with an algorithm such as the Newton—Raphson method [14].
The Newton—Raphson method is a numerical algorithm to

identify the roots of an equation. The iterative update rule is
0=0-H1©)e) (13)

where ©' is the vector of present parameter estimates, H is the
Hessian matrix, and u is the score vector defined in (12). How-
ever, the Newton—Raphson method may not converge when the
initial estimates chosen as input are not close to the maximum.

Given the parameter estimates of a model, software reliability
is defined as the probability of failure free operation in the time
interval (¢,¢ + s) [5]

R(S, t) _ 6(77?1(1‘+5)7m(t))

12)

(14)

where m(t) is the MVF of the model evaluated with the numer-
ical parameter estimates obtained from maximum-likelihood
estimation and s is the mission time.

B. EM Algorithm

The EM algorithm computes the MLEs by maximizing with
respect to the complete data, which consists of observed and
unobserved data. Thus, the EM algorithm maximizes the LL
function of the complete data, which can be expressed as

B(n(f(2.2:0))[0 ,z) = / In(f(z, 2 ©))f (z]: )dz (15)

where x = (x1,x9,...,x,) is the observed data and z =
(21,29, ..., 2y ) the unobserved data, both possessing probabil-
ity density f(-;©) and ©' are the previous iteration’s parameter
estimates. In(f(z, z; ©)) is the LL function of the complete data
y = (x,2) of length N = n +m and f(z|x;©) is the condi-
tional density of the unobserved data.

Let t; <ty < ... <ty be the fault detection times of the
complete data, where NN is the total number of faults in the soft-
ware and a Poisson distributed random variable with parameter
a > 0. The complete LL function for a SRGM of the form given
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in (1) is

LL(a,©) = Nlog (a (t;;0)) (16)

—a-+ Z log (f

By the first-order optimality condition, initial estimates of
parameter a and the additional parameters of the probability
distribution function F'(¢; ©) are computed based on the ob-
served data such that

a% =n (17)

and

n a

= ; 50108 (f(t;0)) = (18)

Okamura et al. [27] showed that for a MVF of the form
m(t) = a x F(t), an initial estimate of the number of faults (a)
is simply the number of observed faults (n), while the remaining
initial parameter estimates can be determined by maximizing the
LL function of the probability density function f(-; ©) = 0 and
solving to obtained closed-form expressions for these additional
parameters. In cases where (18) lacks a closed form solution for
a model parameter, a practical strategy is to explicitly specify
an initial feasible value for the parameter in a manner that sim-
plifies the model form. For example, parameter ¢ of the Weibull
lacks a closed form. However, setting ¢(?) = 1 simplifies to the
GO model, providing an initial feasible estimate for all model
parameters.

For example, the initial estimate of the scale parameter of the
GO SRGM is obtained from (3) and (18)

b -
Zv’,: 1 i
Similarly, the initial estimate of the scale parameter of the DSS
SRGM is obtained from (4) and (18)

p(0) — 27n
2=t ti
Given T = (t1,...,1,, lons), Where T is incomplete data be-

cause all the software faults may not have been detected by the

end of testing t,ps, the EM algorithm is developed by taking the
expected values of (17) and (18) in light of T. This produces

a and 6)/, which are the parameter estimates in iteration j. The

model parameter estimates are calculated as

19)

(20)

d = E[N|T;a,0] Q1)
and

N

© =F —log (f(t;;0))|T;a, O (22)
i=1 00

The expected values in (21) and (22) are [27]
Z h(t)|T;a,0
= Z h(t;) +a x / h(uw) f (u; ©)du (23)

i=1 Lobs

where h(-) is typically an identity function.

For example, the update rules for the a and b parameters of
the GO SRGM are [27]

’
n [ Lobs

a =n-+ae (24)

T bt
" n+ae obs

b = : 25)
Ziz’zl ti+a (tobs + bli/) e tobs

where @ and b are the estimates of a and b identified in the
previous iteration. These update rules are computed iteratively
until some convergence criterion [2] is satisfied.

C. ECM Algorithm

This section provides a brief overview of the ECM algo-
rithm. Additional mathematical details are provided in [1]. Un-
like the EM algorithm which commonly requires the solution of
computationally intensive expressions for complex SRGMs, the
ECM algorithm [16] simplifies computation by dividing a single
M-step into p conditional-maximization (CM)-steps, where p
denotes the number of model parameters. Instead of solving
a system of simultaneous equations as a single p-dimensional
M-step, the ECM algorithm updates only one parameter at a time
holding all others constant, and thus, reduces the maximum-
likelihood estimation process to p 1-D problems.

In each CM-step of the ECM algorithm searches a single
dimension of the parameter space to improve the LL. This is
implemented by partitioning the vector of model parameters ©
into subvectors (01, ...,0,). Successive CM-steps determine

@E'j) , which is the updated value of the ith parameter in the jth
iteration. Let
A={§(0)j=1,...

P} (26)

Without loss of generality, the CM-step which updates
the ith parameter in the jth iteration takes ©UP*?) =
(@UH),@&JH),... elth gl @éﬂ)asinput,holdsall

1 i—1 ) R

values but @EJ ) constant, and maximizes the partial derivative
of the LL function with respect to ©; to produce @77+ (i+1)
containing G) . Each CM-step improves the LL function
monotonlcally Thus, the ECM algorithm preserves the mono-

tonicity property of the EM algorithm [15] as noted in [1].

IV. PERFORMANCE OPTIMIZED ECM ALGORITHM

This section presents the steps of an ECM algorithm which
avoids the complexity of the traditional EM and ECM algorithm.
Unlike the previous EM [2] and ECM [1] algorithms, we do not
seek to obtain closed form expression for model parameters
and instead solve the update rules numerically. This approach
achieves significantly greater computational efficiency. Here,
we describe the steps of a procedure for a reduced LL ECM
(RLL-ECM) algorithm, briefly noting how to derive the CM-
steps from the LL function.

1) S.1: Step one applies (11) to determine the LL function of

a failure times NHPP SRGM.

2) S.2: Step two reduces the LL function from p to (p — 1)

parameters by differentiating the LL function with respect
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to a, equating the result to zero, and solving for a

OLL
— =0. 27
da @7
When the MVF possesses the form a x F'(t), it follows

from (11) that
n
a=—r. (28)
F(t,)

Substituting the solution of (27) or (28) into the LL func-
tion produces a reduced LL (RLL) function with (p — 1)
model parameters.

3) S.3: Step three derives the conditional maximum (CM)-
steps for the remaining (p — 1) parameters by computing
partial derivatives

ORLL
90,

0 (29)

for(1<i<p-1).

4) S.4: Step four cycles through the (p — 1) CM-steps hold-
ing the other (p — 2) parameters constant at the values
from the previous iteration and then applying a numeri-
cal root finding algorithm to the single nonconstant pa-
rameter. This cycle repeats until a convergence criterion
such as

IRLL; —RLL; | <e (30)

is satisfied, where € > 0 is an arbitrarily small constant.
Ihis identifies the MLEs of all parameters but a, denoted
©/a.

5) S8.5: Step five computes the MLE of a by substituting
©/a into (27) or (28), producing © the MLE for all p
parameters of the model.

The CM-steps can also be derived from the LL function in

(11) by obtaining partial derivatives with respect to all the model
parameters using

OLL
00;

0 €19

for (1 <i <p).

The algorithm then cycles through the p CM-steps holding the
other (p — 1) parameters constant and then applying a numerical
root finding algorithm. The cycle repeats until the convergence
criterion

ILL; —LL; 4| <e (32)

is satisfied. This method is referred to as the LL-ECM method
hereafter.

The following sections present the equations needed to ap-
ply the RLL and LL-ECM algorithms for the GO and Weibull
SRGM to the models discussed in Section II to demonstrate the
steps involved. LL-ECM algorithms are not presented for the
context of ISS, gamma, and bathtub, as the RLL-ECM consis-
tently exhibited better performance than the LL-ECM alterna-
tive. Nevertheless, CM-steps can be derived by following the
steps described above and illustrated in the context of the GO
and Weibull SRGM below.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 3, SEPTEMBER 2017

A. Goel-Okumoto SRGM

1) LL ECM: Applying (2) to (3) for the MVF of the GO
SRGM provides the instantaneous failure rate

A(t) = abet.
The LL function of the GO SRGM is therefore

(33)

LL(a,b|T) = —a (1 —e ™) + Z log (abe ") . (34)

i=1

The CM-steps for @' and b are obtained by differentiating
(34) with respect to model parameters « and b to produce
" _ n
R S
” n

b = 0 , . (36)
a//tn e—b tn + Z;Lzl tl

(35)

Equation (35) obtains the updated parameter a’ by holding b’
constant. However, (36) must be solved numerically with a’
to obtain the update b  because a closed-form solution is not
available. It is also possible to first apply (36) with ¢’ and then
substitute b" into (35). Thus, unlike the EM algorithm the CM-
steps of the ECM algorithm updates just one parameter at a
time.

2) Reduced LL ECM: From the LL function given in (34),
the MLE of parameter a is

n
1—e b’

Substituting (37) into (34) produces the reduced LL function

d:

(37)

nbe Pt

Since the RLL contains only one unknown parameter, namely
b, the parameter can be estimated with a single application of a
numerical root finding algorithm. Thus, in cases where the RLL
contains only one parameter, the ECM algorithm reduces to a
simple root finding problem, requiring only a single iteration.
Thus, in this case, the CM-step for parameter b obtained by
differentiating (38) with respect to b is identical to the traditional
MLE

"
tn

" n " ntne’b
b =— — E i — ——.
b 1 — e 't

i=1

(39)

B. Delayed S-Shaped SRGM

1) LL ECM: Applying (2) to (4) for the MVF of the DSS
SRGM provides the instantaneous failure rate

A(t) = ab*te Pt (40)
The LL function of the GO SRGM is therefore
LL(a,b|T)

=—aqa (1 — (1 +bt,)e Pt ) + Zlog (athie_bt") . 4D

i=1
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The CM-steps for o’ and b are obtained by differentiating
(41) with respect to model parameters a and b to produce
" n

a = ; 7
1— (1+bt,)e 't

(42)

" i ’I’I,

_ 2 —bf .
b =—a'bte - Zt
i=1

Equation (42) obtains the updated parameter @’ by holding b’
constant. However, (43) must be solved numerically with a'
to obtain the update b  because a closed-form solution is not
available.

2) Reduced LL ECM: From the LL function given in (41),
the MLE of parameter a is

(43)

n
i = . 44
T T bty)e b “4)

Substituting (44) into (41) produces the reduced LL function

. > NS

Similar to the GO model, since the RLL contains only one
unknown parameter, namely b, the parameter can be estimated
with a single application of a numerical root finding algorithm.
Thus, in this case, the CM-step for parameter b’ obtained by
differentiating (45) with respect to b is identical to the tradit-
ional MLE

b// 2 " 1-— e_b”t" + 1 + it
=N\ 7 —ln P 7" Q-
b 1—(1+b"t,)e vt e

(40)

nb?t;e Pt
(14 bty)e

RLL(b|T) = —n + Z log <

C. Weibull SRGM

1) LLECM: Applying (2) to (5) for the MVF of the Weibull
SRGM provides the instantaneous failure rate
At) = abett e P 47)

The LL function is

LL(a,b, c|T)

= —a (1 —e Pt ) + Z log (abctf’le’bt:). (48)
i=1

The CM-steps fora”, b, and ¢ are obtained by differentiating
(48) with respect to model parameters a, b, and ¢
" n

a = ———— 49)
1—elth
b” = ’ " ’n ’ (50)
a'tie 4+ 30t
and
c// o n
abe 't log(t,)te — S0 log(t) — b SO " log(t;)
(51)

Parameters b and ¢ lack closed-form solutions. Thus, numerical
root finding is required to obtain b and ¢

2) Reduced LL ECM: From the LL function given in (48),
the MLE of parameter a is

“ n

Substituting (52) into (48) produces the reduced LL function
b t(( 1) —bt{
RLL(b,¢|T) = —n + Z log <”Ce . (53)

Differentiating (53) according to (29), the ECM update rules for
parameters b and ¢ are

K l)”t(‘/ n K b”l‘c/
) —nti e ' + (;% — it ) 1—e™

b - v
1—e bt
(54)
and
] B b/tc/rl . 7blt$"//
J = nbtg og(t/ )He _’_g
1— e Vts c
+ Z log (t;) — b th log (t;) (55)
i=1 i=1

Note that the CM expressions given in (54) and (55) can be
applied in any order. Thus, it is possible to update parameter b
in odd iterations and parameter c in even iterations or reverse the
order of their application so that parameters c and b are updated
in odd and even iterations, respectively.

D. Inflexion S-Shaped SRGM

Applying (2) to (6) for the MVF of the ISS SRGM provides
the instantaneous failure rate

ab(1 + ¢)elt

Substituting (6) and (56) into (11), the LL function is

At) = (56)

a(l — e Pt) ab(1 +1)e”
LL(t;;©;) = log| ———————|.
( ) 1 +1,[}67bt" Z ql) +€bt )
(57)
The MLE of parameter a is
. n(1 + e btn
a= 7(1 — Zibt” ) (58)

Substituting (58) into (57) produces the reduced LL function

n(1 4 e " )b(1 + 1)t
n—|—Zl ( ebtll)zw(ﬂb“))e? )

(59)

RLL(t;; ©;)
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Differentiating (59) according to (29), the [IECM update rules
for parameters b and v are

n

" 1 "
b = Z[( ] 7 *eb t”)tn
P 1 + 1/) e_b 29
2 1
+ <1— ,,,> ti+”+ti:| (60)
14+etti b

] . (61

n

" 1 1 2
wzz[,, BN
il KA I

Similar to the Weibull model, the initial estimates are obtained
using the special case of the exponential model. Setting (%) =
0 reduces the ISS model to the GO model. Therefore, (19) is
used as an initial estimate for b(*)

E. Gamma SRGM

Applying (2) to (8) for the MVF of the Gamma SRGM pro-
vides the instantaneous failure rate
abCe-btie—1
I (c)
Substituting (8) and (62) into (11), the LL function is

A(t) = (62)

n et 1 7bx n abcefbt;tqfl
LL(¢;;©;) = fa/ 2T i + (’) )
) 2 ("

0

(63)
The MLE of parameter a is
~ n
SN e (64
I'(c)
where T(¢) = [t le¢dt and T (¢, bt, ) = [} e~'t°'dt

Substltutmg (64) into (63) produces the reduced LL function

RN Ve o

Differentiating (65) according to (29), the IECM update rules
for parameters b and c are

bt, tc 1

RLL(t;;©;) (65)

"o n ’ (b t )
"=y lc () - T (¢,01, ] Zt (60
n ! 3 0 171 7
¢c = —n|logt, )T+ G Lot
2 01\0,0,c
+r(c)(14nl)+ Zlog (b't;) (67)

where M denotes the Meijer G-function defined as

G ”(Zl;::::”ﬂ z) and F (c) is the digamma function, de-

fined as r( ) and

T (c,bty,)

" T(c) =T (c,bty)
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Similar to the Weibull and ISS models, the initial estimates
are obtained using the special case of the exponential model.
Setting ¢!?) = 0 reduces the gamma model to the GO model.
Therefore, (19) is also used as an initial estimate for b(*)

F. Bathtub SRGM

Applying (2) to (10) for the MVF of the bathtub SRGM
provides the instantaneous failure rate

A(t) = abcte™1eft—bet’ e’ (c+ ot).
Substituting (10) and (68) into (11), the LL function is

(68)

LL(t;; ©;) = —a(l — e """ ")
n

+> log [abct;‘*1 Pl Thetie® (¢ 4 ¢ti)} .(69)

i=1
The MLE of parameter a is

b= —2 (70)

1— efbce@’” te
Substituting (70) into (69) produces the reduced LL function

" nbeté (¢ + ¢t; e®ti—betielti
=-n+ Z log ( d 1( — eibct); — . (71)

Differentiating (71) according to (29), the IECM update rules
for parameters b, ¢ and ¢ are

n
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” " th tn ?
b= E b ——+
_ —b”(/t’ e¢/tn

/ Q/t (‘,
& (6‘ n tn
i=1 1

o't t,f/) (72)

b (1+ ¢'log (£, ))e? t
g (t;) — Pl clos(tn)

1 —ebetyerin

n
" 1 1
‘ im1 [C”'f‘ 't * ¢ o
+ (Ve et (14 ¢ og (1)

— b,tf” (1—¢ log (ti))eo’t‘)}

(73)

b’cltffle‘b”t"

; ¢+ ¢"t ) 1— et e
+ (b’c’ (t;;“e“’"“ . t;f“eo"“) + ti)] s

Since application of (18) lacks closed form solutions for ¢ and
¢, the initial estimates for b is obtained by reducing to the special
case of the GO model by setting ¢(°) = 0, which reduces to the
Weibull model and subsequently setting ¢(*) = 1.0 to further
reduce this to the exponential, possessing the initial estimate for

) in (19).

V. ILLUSTRATIONS

This section illustrates the ECM algorithm through a series
of examples. We first illustrate the RLL-ECM in the context
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of the Weibull model and then conduct a comparative perfor-
mance analysis on LL-ECM and RLL-ECM algorithms for the
GO, DSS, and Weibull, suggesting that the RLL-ECM algorithm
outperforms the LL-ECM algorithm. Thus, we next compare the
performance of our RLL-ECM algorithm with our previously
proposed EM and ECM algorithms [1] as well as the EM algo-
rithm for the LEVMIN SRGM [2], which is equivalent to the
Weibull model under parameter transformation. In some cases,
the EM algorithm for the LEVMIN model outperforms our RLL-
ECM algorithm. Hence, we extend the RLL-ECM algorithm to
a two-stage approach that first executes the RLL-ECM for a
fixed number of iterations in the first stage and then runs the
Newton—Raphson method in stage two, achieving speed up that
consistently outperforms the EM algorithm for the LEVMIN
model, even when it is used in a two-stage approach. Finally,
we assess the performance of the two-stage approach on more
complex models.

A. Weibull RLL-ECM Application

This example illustrates the steps of the RLL-ECM algorithm
by applying the Weibull SRGM to the SYS1 dataset [23], which
consists of n = 136 failure times.

As noted in Section III-B, the EM and ECM algorithms lack
a closed form expression for the initial value of c. However, it is
possible to use the initial estimate of the exponential model given
in (19) by setting ¢{°) = 1.0, providing the initial value of b(*) =
0.0000404. Since the exponential model is a special case of
the Weibull, this strategy of starting from ¢(*) = 1.0 performed
well on all datasets considered because the EM algorithm for
this simpler model often converges despite perturbations to the
initial estimates [27]. The value of the likelihood function at
these initial estimates is —975.899. The first iteration applies
(54), holding c constant at 1.0 and solving for 1) = 0.000034,
increasing the LL value to —974.597. Similarly, the second
iteration applies (55), holding b constant at 0.000034 and solves
to identify ¢!} = 0.9917, increasing the LL value to —974.172.
Successive odd and even iterations update b and c, respectively.
For example, iterations three and four update the parameters
to b(2) = 0.0000371694 and c¢(?) = 0.983453, achieving a LL
of —973.358. Thus, like the EM, the ECM algorithm improves
the LL. monotonically in each iteration. The iterations of the
ECM algorithm continue until the error between two successive
values of the LL given in (30) is less than the convergence
constant ¢ = 107'°. This occurs after a total of 173 iterations,
including the calculation of the initial estimate of b0). The
resulting MLEs are {b = 0.000696057, ¢ = 0.676739} and the
corresponding value of the likelihood function evaluated at these
estimates is —966.080. Substituting the estimates for parameters
b and c into (52) produces the MLE for the initial number of
faults a = 172.526.

Fig. 1 shows the final iterations of the ECM algorithm super-
imposed on a contour plot of the LL function. The 90° angle
movements illustrate how only one parameter is updated at a
time. It can also be observed that the algorithm takes smaller
and smaller steps as the parameter estimates converge to the
MLE. Fig. 2 shows the monotonic improvements made by the
ECM in each of the 173 iterations.
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Fig. 1. Iterations of ECM superimposed on contour plot of LL function.
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Fig. 2. Monotonic improvement of LL function in iterations of ECM.

TABLE I
COMPARISON LL AND RLL-ECM ALGORITHMS FOR GO SRGM

Dataset LL-ECM  RLL-ECM  LL/RLL p-value

SYSI 0.1310 0.0624 2.1000  2.82 x 1079°
SYS2 0.2246 0.0437 5.1428  3.23 x 10710
SYS3 0.5647 0.1061 53235  2.18 x 10710
S2 0.0530 0.0218 24286 0.000208803
S27 0.0437 0.0187 2.3333 0.000238807
SS3 1.7441 0.1310 133095  1.09 x 10710
SS4 8.2119 0.0905 90.7586  3.96 x 10798
CSR1 0.2714 0.1810 1.5000  8.19 x 1078
CSR2 0.1061 0.0655 1.6191  7.93 x 10706
CSR3 0.1903 0.0468 40667  6.68 x 10707

B. Performance Analysis

This section compares the performance of the RLL-ECM and
LL-ECM when applied to the GO and Weibull SRGM for ten
failure times datasets. We then compare the performance of the
RLL-ECM to our previous EM and ECM [1] algorithms as well
as other previously proposed EM algorithms [2].

1) Comparison of LL-ECM and RLL-ECM Algorithms: This
example compares the performance of the LL and reduced LL
ECM algorithm given in Section IV. ECM algorithms for the
GO and Weibull SRGM were applied to the ten failure times
datasets taken from the literature [4], [23] with convergence
error ¢ < 107'% in (30) and (32) for RLL and LL-ECM algo-
rithms, respectively.

Table I reports the run times (in seconds) of the LL. ECM
and reduced LL ECM algorithms given in Section IV-A for
the ten failure time datasets from the literature [4], [23], re-
porting the average time of five runs. The ECM-LL run times
were obtained with the equations given in Section IV-A1, while



TABLE II
COMPARISON LL AND RLL-ECM ALGORITHMS FOR DSS SRGM

Dataset LL-ECM RLL-ECM LL/RLL p-value

SYS1 0.0905 0.0598 1.5130  0.002836542
SYS2 0.0905 0.0468 1.9333  8.29 x 1079°
SYS3 0.2215 0.1154 19189  2.30 x 1070°
S2 0.0468 0.0251 1.8750 0.00231792
S27 0.0374 0.0156 2.4000 0.00231792
SS3 0.4056 0.1498 27083  3.39 x 1079°
SS4 0.4118 0.0905 45517  3.82x 10710
CSR1 0.2527 0.2090 1.2091  1.34 x 1079°
CSR2 0.0749 0.0655 1.1429  0.103075503
CSR3 0.0905 0.0530 1.7059  3.92 x 1079°

the ECM-RLL run times were computed using the equations in
Section IV-A2. The LL and RLL results are shown in the second
and third column, respectively. The fourth column provides the
ratio of LL and RLL run times, while the fifth column reports the
p-value (Student’s ¢-test [28]) of a two means test for equiva-
lence in the run time of the two approaches. Because the LL/RLL
ratio is greater than one Table I indicates that the run time of
the ECM algorithm which uses the LL function is slower than
the RLL approach for all ten datasets considered. The p-values
provided in the last column of Table I indicate the RLL approach
is significantly faster. Since it was noted in Section IV-A2 that
the reduced LL. ECM algorithm for the GO SRGM reduces to
a single application of a numerical root finding algorithm for
parameter b in (38), this observation indicates that Newton’s
method with the initial parameter estimates obtained from (18)
is adequate to achieve convergence for each of the datasets con-
sidered. Thus, when the model is sufficiently simple it may be
preferable to employ Newton’s method with initial estimates
determined by the EM algorithm.

Table II provides the run times (in seconds) of the LL and
reduced LL ECM algorithms for the DSS SRGM given in
Sections IV-B1 and IV-B2, respectively. The algorithms were
run five times each with the initial estimates determined from
(20) and the average run time computed.

In Table II, the LL/RLL ratio is greater than one for all ten
datasets indicating a similar trend to Table I. The p-values also
indicate that the RLL approach is significantly faster. This is
because the RLL. ECM algorithm for the DSS SRGM reduces
to a single application of a numerical root finding algorithm
for parameter b in (46). These results also suggests that when
the model is sufficiently simple Newton’s method with initial
estimates determined by the EM algorithm may be preferred.

Table III lists the run times (in seconds) of the LL and reduced
LL ECM algorithms for the Weibull SRGM in Section IV-C. The
ECM-LL run times were obtained with the equations given in
Section IV-C1, while the ECM-RLL run times were computed
using the equations in Section IV-C2. These algorithms were
run five times each with the initial estimates determined from
(19) by setting ¢(*) = 1.0 and the average run time computed.

Table I1I indicates that the reduced LL ECM algorithm signif-
icantly outperformed the log-likelihood ECM algorithm on six
out of ten datasets where the ratio LL/RLL was greater than 1.0.
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TABLE III
COMPARISON LL. AND RLL ECM ALGORITHMS FOR WEIBULL SRGM

Dataset LL-ECM RLL-ECM LL/RLL p-value

SYS1 1.6723 1.1669 14332 2.66 x 10799
SYS2 2.0842 0.9204 22644  3.49 x 10710
SYS3 3.4164 1.2886 26513  1.68 x 1079
S2 0.8299 0.9329 0.8896  1.90 x 10796
S27 0.6178 0.8611 0.7174  7.89 x 10798
SS3 7.4631 0.5647 132155  1.09 x 10713
SS4 6.8079 1.2262 55522 3.83x 10716
CSR1 5.3536 5.4039 0.9908  0.076701343
CSR2 2.1934 2.6271 0.8349  3.39 x 1070°
CSR3 0.9485 0.1934 49032  5.56 x 1071°

TABLE IV

COMPARISON OF EM [1], ECM [1], AND RLL-ECM ALGORITHM

Factor (p) EM[1] ECM[l] RLL-ECM podl VUL
0.25 2605 2310 0012 230342 197.434
0.50 2232 1.99% 0010 220116  196.645
0.75 1808 1.840 0005 386322 393.151
0.90 1764 1689 0.005 323075  309.338
1.25 1826 1780 0.006 292626 28555
1.50 1888 1761 0005 345785  322.525
175 1965 1966 0.006 314902  315.062
2.00 2123 1983 0006 340222 317.786

However, the LL ECM algorithm outperformed the reduced LL
ECM algorithm on the S2, S27, CSR1, and CSR2 datasets.
However, it is important to note that the reduced LL ECM algo-
rithm outperformed the LL ECM algorithm by as much as 13.21
times, but that the reduced LL ECM algorithm never required
more than 140% of the time taken by the LL. ECM algorithm,
since 1/0.7174 = 1.39. These observations suggest that the rel-
ative attractiveness of the reduced LL ECM algorithm may in-
crease as model complexity increases because it can simplify
the computation by reducing the number of model parameters
to (p — 1). We note that LL and RLL ECM algorithms as well
as all methods considered in the examples that follow produce
the same parameter estimates. However, we do not report these
details because the primary focus of this paper is to determ-
ine which method obtains the MLEs most efficiently.

2) Comparison of EM, ECM, and RLL-ECM Algorithms:
This example applies the EM and ECM algorithms intro-
duced in [1] as well as the RLL-ECM algorithm to fit the
Weibull SRGM to a simulated dataset [1] with parameters
(a =200,b=4.0,c = 2.0).

Table IV lists the run time (in seconds) required to achieve
a convergence error of less than ¢ = 1071 as specified in (30)
and (32), respectively. For the sake of argument, several initial
estimates that were a multiplicative factor p of the true MLEs
By =p x ©) were tested because this was the method applied
in [1] to demonstrate convergence of the EM and ECM al-
gorithms proposed there. Here, p < 1 indicates that the initial
parameter estimates were smaller than the MLEs, while p > 1
indicates that the initial estimates were larger. These initial esti-
mates were used as input to the EM and ECM algorithms of [1]
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Fig. 3. Run time of RLL-ECM for range of initial parameter estimates.

as well as our RLL-ECM to ensure comparability of the results
despite the fact that it is impossible to know the MLEs in ad-
vance to apply such scaling by a multiplicative factor. For each
value of p, the RLL-ECM algorithm was run 20 times for each
initial estimate and the average computed.

The last two columns of Table IV respectively show the ratio
of the performance between the EM [1] and RLL-ECM as well
as the ECM algorithm [1] and RLL-ECM. The ratio of the
performance between the EM and RLL-ECM is 220.116 and
386.322, indicating that the RLL-ECM outperforms the EM
algorithm by at least two orders of magnitude on this dataset.
Similarly, Table IV indicates that the ratio of the performance of
the ECM and RLL-ECM ranges between 196.645 and 393.151,
indicating that the RLL-ECM algorithm is approximately 200
to 400 times faster than the ECM algorithm [1] which utilizes
numerical integration.

Fig. 3 shows the run time of the RLL-ECM in seconds for a
range of initial parameter estimates with a multiplicative factor
of p between 0.05 and 2.0. Fig. 3 indicates that the RLL-ECM
run time is larger when p < 1, but that the run time never exceeds
0.025 s. As might be expected, values of p ~ 1 exhibit the best
performance and the run time improves as p approaches 1.0.
The range from 0.6 to 2.0 exhibits little variation in the run time,
indicating that if the initial estimates are not too far from the
MLEs, the algorithm exhibits better performance, converging
faster. Furthermore, the run time for p > 0.6 never exceeds one-
hundredth of a second.

While the previous experiments enable objective comparison
of the EM, ECM [1], and RLL-ECM algorithms, it is not realistic
to assume that the MLESs are already available. Otherwise, there
would be no need for such algorithms. In practice, it will be
necessary to select initial estimates. For example, using the
initial estimate from (19) on the simulated dataset, the RLL-
ECM algorithm required 0.183684 s to fit the Weibull SRGM,
whereas the EM and ECM required 217.258 and 299.131 s,
respectively. Thus, the RLL-ECM also outperformed the EM
and ECM by factors of 1182.8 and 1628.5, respectively, when
initial parameter estimates based on the EM algorithm are used.

3) Comparison of EM [2] Algorithm for LEVMIN Model and
RLL-ECM Algorithms: The EM algorithm for the LEVMIN
model [2] is equivalent to the Weibull model under parame-
ter transformation and therefore also suitable for comparative
performance analysis. For equitable comparison, we imple-

TABLE V
COMPARISON OF WEIBULL RLL-ECM AND LEVMIN EM [2] RUN TIMES

Datasets EM[2] RLL-ECM il p-value

SYSI 2.0062 1.1669 17192 2.03 x 10799
SYS2 3.0015 0.9204 32610  3.41 x 107!
SYS3 5.9686 1.2886 4.6321 2.43 x 10798
S2 0.7301 0.9329 0.7826  3.16 x 10798
S27 0.2402 0.8611 02790  3.24 x 10710
SS3 34.3733 0.5647 60.8674  1.62 x 10708
SS4 14.6547 1.2262 119516  2.51 x 10710
CSR1 0.8736 5.4039 0.1617  4.89 x 101!
CSR2 0.5242 2.6271 0.1995  3.96 x 10~1°
CSR3 3.7783 0.1934 19.5323  2.68 x 10713

mented the update rules for the EM algorithm of the LEVMIN
model [2] and RLL-ECM algorithm for Weibull model in Math-
ematica and ran them until the convergence criterion ¢ < 10~!¢
specified in (30) was achieved. We ran the algorithms on the
ten failure time datasets considered in Section V-B1 for five
times on each dataset and the average computed. Initial parame-
ters estimates for the RLL-ECM were chosen according to (19)
by setting ¢(?) = 1.0, while initial parameter estimates for the
LEVMIN model were chosen according to the equations given
in [2].

Table V reports the averages of five runs of the Weibull RLL-
ECM algorithm and EM algorithm for the LEVMIN model and
the ratio of the p-value for equality in the mean run times of the
algorithms. All times reported are in seconds.

Row one of Table V indicates that for the SYS1 dataset, the
RLL-ECM algorithm for the Weibull model took on average
1.1669 s, while the average run time of the EM algorithm for
the LEVMIN model was 2.0062 s. Thus, the averages of the
five runs suggest that the RLL-ECM algorithm is 1.7192 times
faster than the EM algorithm for fitting the LEVMIN model.
The p-value of a two means test was 2.03 x 107%?, which is
extremely significant. Moreover, there was little variation in the
individual runs, with standard deviations of 0.0131 and 0.0283
for the RLL-ECM and EM algorithms, respectively. The ratio of
EM [2]/RLL-ECM is greater than one for six out of ten datasets,
indicating that the RLL-ECM outperformed the EM algorithm
six times and the p-value is extremely significant in all the six
cases. Moreover, the RLL-ECM outperformed the EM by as
much as 60.8674 times, but the EM was never more than 6.18
times faster (1/0.1617) than the RLL-ECM and in all ten cases
the run time of the RLL-ECM was never more than 5.4 s.

C. Two-Stage Algorithm

Application of RLL-ECM algorithm to the SYS1 dataset for
the ISS, gamma, and bathtub models with a convergence error
of ¢ < 107! required run time of 29.55, 877.22, and 88.89 s,
respectively. To enhance the run time of the ECM-RLL approach
while preserving stability, this example seeks to improve the
performance of maximum-likelihood estimation by combining
the stability of the RLL-ECM and the performance of Newton’s
method. This two-stage approach improves the performance of
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TABLE VI
RUN TIMES OF RLL-ECM AND TWO-STAGE ALGORITHMS FOR WEIBULL SRGM

Datasets RLL-ECM  Stagel  StageIl = Two-stage total WHW p-value

SYS1 1.1669 0.0374  0.0156 0.0530 22.00 7.44 x 10714
SYS2 0.9204 0.0343  0.0156 0.0499 19.67 4.89 x 10765
SYS3 1.2886 0.0499  0.0218 0.0718 18.77 1.46 x 10713
S2 0.9329 0.0312  0.0125 0.0468 19.93 5.65 x 10799
S27 0.8611 0.0156  0.0062 0.0218 39.43 3.13x 10710
SS3 0.5647 0.0499  0.0187 0.0686 8.62 2.08 x 10714
SS4 1.2262 0.0406  0.0156 0.0562 21.83 7.12 x 10710
CSR1 5.4039 0.0780  0.0343 0.1123 50.94 1.19 x 10710
CSR2 2.6271 0.0406  0.0156 0.0562 52.63 4.40 x 10719
CSR3 0.1934 0.0218  0.0125 0.0343 7.05 6.90 x 10710
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Fig. 4. Run time of two-stage algorithm for bathtub model.

complicated models and further enhances the performance of
the Weibull ECM-RLL.

Fig. 4 shows the run time of the two-stage algorithm for the
bathtub model when applied to the SYS1 dataset with a con-
vergence error of less than 107!, The x-axis shows the number
of iterations k of the RLL-ECM algorithm employed to obtain
initial estimates for Newton’s method and the y-axis shows the
total run time of the two algorithms combined. Fig. 4 shows an
infinite run time for £ = 0, 1, and 2, indicating nonconvergence
of the algorithms. It is important to note that £ = 0 indicates
that Newton’s method alone is not sufficient to estimate the
model parameters with the default initial estimates. The algo-
rithm converges when the RLL-ECM is run for a minimum of
three iterations for this model. The minimum number of itera-
tions for the other models and datasets may vary.

The increasing trend for £ > 3 in Fig. 4 indicates that the run
time increases as the number of times the RLL-ECM algorithm
is run increases, suggesting that switching to Newton’s method
sooner converges faster. Therefore, a sufficient number of
RLL-ECM iterations combined with Newton’s method can
improve stability while preserving performance. For example,
running only the RLL-ECM achieves convergence in 125
iterations but requires 88.889 s, while the hybrid approach
requires only 5.070 s when k = 3, which makes the hybrid
approach 17.53 times faster than running the RLL-ECM
algorithm without switching to Newton’s method. Thus,
considering the hybrid approach can improve the performance

of a complex SRGMs significantly. Nevertheless, it is important
to recognize that selecting the optimal value of £ cannot be
performed a priori. However, a simple strategy is to run the
RLL-ECM for a specified number of iterations and then switch
to Newton’s Method. If this fails to converge, continue to run
the RLL-ECM for 2k iterations and try Newton’s Method again,
alternating between the RLL-ECM and Newton’s Method until
convergence is achieved. Hence, while it is possible that the
two-stage algorithm may diverge if the initial input to Newton’s
Method is too far from the MLE, this can be avoided in practice
essentially guaranteeing convergence.

Table VI compares the run time of RLL-ECM algorithm and
two-stage algorithms for the Weibull SRGM on the ten failure
times datasets. These run times reported are an average of five
runs. In each run, on a dataset five iterations of the RLL-ECM
algorithm were performed in Stage I and Newton’s method in
Stage II. All run times are given in seconds. The sixth column
of Table VI illustrates that the ratio of average RLL-ECM and
two-stage algorithm run times are always greater than one, sug-
gesting that the two-stage algorithm consistently outperforms
the RLL-ECM algorithm. This ratio indicates that the speed up
attained by the two-stage algorithm ranges between 7 and 52.
In all cases, the p-value for a two means test between the run
times of the RLL-ECM and two-stage algorithm is extremely
small, suggesting that the speedup achieved by the two-stage
algorithm is highly statistically significant.

Table VII compares the run time of two-stage algorithms for
the Weibull and LEVMIN [2] models on the ten datasets. The
sixth column indicates the ratio of two-stage algorithms utilizing
the EM [2] and RLL-ECM algorithms in Stage 1. In contrast to,
the results reported in Table V of Example V-B3, the ratios in the
sixth column of Table VII indicate that the two-stage algorithm
that utilizes the RLL-ECM algorithm in Stage I outperforms the
two-stage algorithm that utilizes the EM [2] algorithm in Stage I
for every single dataset, despite the improved performance in the
EM [2] algorithm when incorporated into a two-stage algorithm
as can be seen by comparing the results noted above in column
five of the Table VII.

Tables VIII-X report the average run time of two-stage
algorithms for the ISS, gamma, and bathtub models. Stages I
and II in Tables VIII-X correspond to the times take for the
RLL-ECM and Newton’s method, respectively. Row one of
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TABLE VII

RUN TIMES OF TWO-STAGE ALGORITHMS FOR WEIBULL AND LEVMIN [2] SRGM

LEVMIN Two-Stage Total

Datasets  StageI  Stage Il LEVMIN two-stage total ~RLL-ECM two-stage total RTL-ECM Two Stage Total p-value

SYS1 0.0218  0.1872 0.2090 0.0530 3.94 1.32 x 10709
SYS2 0.0125  0.1310 0.1435 0.0499 3.07 2.21 x 10794
SYS3 0.0281  0.2964 0.3245 0.0718 472 5.89 x 10798
S2 0.0125  0.0718 0.0842 0.0468 1.81 3.04 x 10794
S27 0 0.0593 0.0593 0.0218 2.71 5.25 x 10795
SS3 0.0312  0.3869 0.4181 0.0686 6.38 1.09 x 10709
SS4 0.0251  0.2808 0.3058 0.0562 5.44 2.67 x 10711
CSR1 0.0530  0.6053 0.6583 0.1123 6.21 1.86 x 10798
CSR2 0.0187  0.2402 0.2590 0.0562 5.19 5.86 x 10798
CSR3 0.0156  0.1248 0.1404 0.0343 5.11 1.54 x 10706

TABLE VIII Table VIII shows the run time for the SYS1 dataset, where

RUN TIMES OF TWO-STAGE ALGORITHMS ISS SRGM

Datasets ~ StageI  Stage II ISS
SYSI 0.5429  37.2187 37.7616
SYS2 0.3463  6.0903 6.4366
SYS3 0.8424  0.3713 1.2137
S2 0.2184  6.1558 6.3742
S27 0.1654  0.5086 0.6739
SS3 1.1451 0.4992 1.6443
SS4 0.7862  0.3307 1.1171
CSR1 44772 30.6542 35.1314
CSR2 0.5179  24.5296  25.0475
CSR3 0.4150  0.6022 1.0171
TABLE IX

RUN TIMES OF TWO-STAGE ALGORITHMS FOR GAMMA SRGMS

Datasets  StageI  StageII ~ Gamma
SYS1 2.0093  0.5928 2.6021
SYS2 1.5351  0.5897 2.1247
SYS3 1.9999  0.5990 2.5990
S2 1.9157  0.7987 2.7144
S27 2.0467  4.7456 6.7923
SS3 1.5226  0.2995 1.8221
SS4 1.7411  0.44304  2.1840
CSR1 1.9157  4.5864 6.5021
CSR2 19126 0.3838 2.2963
CSR3 29921  0.7238 3.7159
TABLE X

RUN TIMES OF TWO-STAGE ALGORITHMS FOR BATHTUB SRGMS

Datasets  Stagel  Stage I ~ Bathtub
SYS1 1.3416  4.1964 5.5380
SYS2 0.8455  0.9329 1.7784
SYS3 21279  2.4523 4.5802
S2 0.5117  0.8798 1.3915
S27 0.3588  0.4493 0.8081
SS3 2.6208  4.1278 6.7486
SS4 1.8315  54.2135  56.0450
CSR1 41216 3.4383 7.5598
CSR2 1.3416 1.1170 2.4586
CSR3 0.9329 1.2231 2.15594

the two-stage algorithm for the ISS model exhibited a run time
of 37.7616 s which is slower than the 29.55 s required of the
ECM-RLL alone. However, this can be improved by running
the RLL-ECM algorithm ten times in the first stage followed by
Newton’s method. This produces a total run time of 2.4929 s,
requiring 1.08577 and 1.40713 s in Stages I and II, respectively.
Increasing the number of RLL-ECM iterations can also improve
the performance on the CSR1 and CSR2 datasets and suggests
that parameter values determined by the ECM-RLL that are suf-
ficiently close to the MLE improve the performance in stage II.

Tables IX and X indicate that the run times of the two-stage
algorithm on the gamma and bathtub models for the SYSI1
dataset are 2.6021 and 5.5380 s, respectively, compared to
877.22 and 140.89 s for the ECM-RLL algorithm alone. Thus,
the two-stage algorithm is 337.12 and 25.44 times faster than
RLL-ECM alone for gamma and baththub models, respectively.
Moreover, executing ten iterations of the ECM-RLL algorithm
in stage one on the SS4 dataset reduces the total run time from
56.0450 to 6.4137 s with 3.7409 and 2.67282 s spent in stage |
and stage II, respectively.

VI. CONCLUSION AND FUTURE RESEARCH

This paper presents an ECM algorithm to estimate the pa-
rameters of a nonhomogeneous Poisson process software reli-
ability growth model. Two variants were considered, including
one based on the full LL expression referred to as the LL-
ECM algorithm and a second based on a reduced LL expression
referred to as the RLL-ECM algorithm. The RLL-ECM algo-
rithm exhibited better performance on simpler models. Thus,
the RLL-ECM algorithm was compared to previous EM [2] and
ECM [1] algorithms. The results suggested that our approach
achieved statistically significant improvements in performance
over alternative approaches. Specifically, our ECM algorithms
achieved two orders of magnitude speed up over the EM and
ECM algorithms of [1] when their experimental methodology
was considered and three orders of magnitude when knowledge
of the MLEs is removed, whereas our approach outperforms
was as much as 60 times faster than the EM algorithms of [2].
We subsequently proposed a two-stage algorithm that combined
the EM and ECM algorithms with Newton’s method to improve



performance while preserving stability, where it was observed
that our two-stage ECM algorithm consistently outperformed a
two-stage EM algorithm based on [2].

Future research will seek better strategies to identify initial
estimates for parameters that lack a closed form solution. We
will also compare the performance of the two-stage algorithm
proposed here with alternative combinations of algorithms.
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